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Abstract8

This paper mathematically models a constant-function automated market maker (CFAMM) position9

as a portfolio of exotic options, known as perpetual American continuous-installment (CI) options.10

This model replicates an AMM position’s delta at each point in time over an infinite time horizon,11

thus taking into account the perpetual nature and optionality to withdraw of liquidity provision.12

This framework yields two key theoretical results: (a) It proves that the AMM’s adverse-selection13

cost, loss-versus-rebalancing (LVR), is analytically identical to the continuous funding fees (the time14

value decay or theta) earned by the at-the-money CI option embedded in the replicating portfolio.15

(b) A special case of this model derives an AMM liquidity position’s delta profile and boundaries that16

suffer approximately constant LVR, up to a bounded residual error, over an arbitrarily long forward17

window. Finally, the paper describes how the constant volatility parameter required by the perpetual18

option can be calibrated from the term structure of implied volatilities and estimates the errors for19

both implied volatility calibration and LVR residual error. Thus, this work provides a practical20

framework enabling liquidity providers to choose an AMM liquidity profile and price boundaries21

for an arbitrarily long, forward-looking time window where they can expect an approximately22

constant, price-independent LVR. The results establish a rigorous option-theoretic interpretation of23

AMMs and their LVR, and provide actionable guidance for liquidity providers in estimating future24

adverse-selection costs and optimizing position parameters.25
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1 Introduction32

The success of blockchains supporting smart contract such as Ethereum [4], Solana [18], etc.,33

has led to the rise of Decentralized Finance (DeFi) which offers alternatives to traditional34

financial services by removing central trusted intermediaries and replacing them with public,35

verifiable, and immutable computer programs. One of the pivotal components of the DeFi36

infrastructure stack is automated market makers, or AMMs, allowing the exchange of one37

token for another at prices decided by an underlying algorithm. In recent years, AMMs38

have seen a rapid adoption reflected in financial metrics such as total value locked (above39

$21B) and yearly transaction volumes (above $2T ), as well as by their composability [8, 13].40

Today, tens of thousands of tokens are listed and hundreds of applications are built on top of41

them [10].42
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The key participants in an AMM are traders and agents known as liquidity providers, or43

LPs. Traders exchange one token for another, where the token pair generally consists of a44

risky asset with volatile value, and a stable asset or numéraire.1 On the other hand, LPs45

serve as counterparties to traders (sellers to buyers and buyers to sellers) by depositing both46

tokens upfront to the exchange. As a result of each trade, LPs receive the less favourable of47

the two tokens. To hedge against the adverse selection faced by AMMs, LPs can continuously48

rebalance an off-chain replicating portfolio by accumulating the risky token as its price rises49

and selling it when the price falls. However, this hedge is not perfect when the AMM is not50

the primary venue for price discovery because the pool’s quoted price tends to lag behind51

the prevailing price on a primary venue such as a centralized exchange.52

Under such a setting, even proactive LPs who rebalance in response to price changes are53

exposed to a systematic cost. Since AMM quotes lag those on primary markets, arbitrageurs54

can act faster than LPs and restore the pool price to the external market level. This generates55

a small but persistent transfer of value from LPs to arbitrageurs, and when aggregated over56

multiple price updates, this cost becomes significant. This cost is referred to as loss-versus-57

rebalancing (LVR) [16]. The rate at which LVR accumulates depends on the steepness of the58

AMM curve and the volatility of the underlying token; both amplify the arbitrage gap and59

thus accelerate LVR.60

Despite such costs, LPs are incentivized to participate through the earning of trading61

fees that are proportional to the value of each trade and paid by the trader. Therefore, LPs62

considering whether to provide liquidity on an AMM pool must calculate their expected63

payoff by estimating and comparing their position’s LVR with the anticipated trading fees64

in some predetermined forward time window. Recent work [16] have analyzed and quantified65

expressions for instantaneous LVR and retrospectively tested with historic market data.66

However, there is limited work that provides estimation methods for future LVR.67

This work estimates the LVR for an LP that decides to provide liquidity for an arbitrarily68

long period and can exit at any point. It does so by mathematically modeling liquidity69

provision on a general class of AMMs, known as constant function AMMs (CFAMMs), as70

selling a continuum of perpetual American put options across continuous strikes. Perpetual71

American options are financial derivatives that give their holder the right to buy (known as72

a call) or sell (known as a put) an underlying asset at an agreed-upon price (strike) with73

no expiration. Unlike traditional vanilla options, this work uses exotic options in its model,74

known as continuous installment (CI) options, in which the holder must pay a stream of75

constant installment rate, referred to as funding fees, to keep their position alive. This76

funding fee is analogous to the time value decay of traditional fixed-term options. The paper77

uses perpetual American CI options because, unlike fixed-term vanilla options, the pricing78

function of these options does not change over time (assuming other market parameters are79

constant). Moreover, despite their exotic nature, CI options have been well-studied in the80

past, and this work builds on results from the existing literature [5]. This approach yields81

two key theoretical results.82

Funding Fees = LVR: In the limit where the installment rate tends to infinity (analogous to83

extremely short-dated fixed-term options), a CI put option has the classic hockey-stick payoff84

function: it pays the difference between the strike and the spot price when the underlying’s85

spot price is below the strike price, and zero otherwise. Therefore, in this limit, a continuous86

distribution of CI puts exists that delta-replicates an arbitrary LP position’s payoff at each87

point in time. Moreover, the installment rate earned on this distribution of puts (which, at a88

given point in time, is earned by the option whose strike equals the spot price at that time)89

1 Although some token pairs consist of two stable assets, this work focuses primarily on pairs of one risky
and one stable asset.
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reproduces the expression for the instantaneous LVR. Therefore, theoretically, an LP can90

hold such an options portfolio to stay delta-neutral—the cost due to time value decay of91

holding this portfolio, i.e., funding fees, is the LVR.92

Since the above model is theoretical, as a continuum of options cannot be reproduced in93

practice, the paper subsequently quantifies the approximation error when a discrete portfolio94

of options with discrete strike prices is used to replicate the payoff of a liquidity position.95

Constant Future LVR: The second result analyzes the converse scenario where a liquidity96

position’s payoff replicates the valuation of a single perpetual American CI option. This97

produces a unique liquidity profile with almost constant instantaneous LVR rate over a98

forward time window. Moreover, this rate is approximately equal to the funding fee of the99

replicated CI option. As a result, this yields guidance to LPs, under the model assumptions,100

on:101

Choosing the price boundaries and shape of liquidity provision that incurs predictable,102

flat, price-path independent future LVR.103

Estimating the forward adverse-selection cost for a planned holding period.104

Understanding the relationship between the optimal holding period and the width of the105

liquidity position.106

Selecting an appropriate pool based on its expected future trading fee income.107

The paper is organised as follows. Section 2 explains notations and the necessary108

background, Section 3 discusses prior literature and related works, Section 4 motivates the109

option-based interpretation, Section 5 provides the options decomposition, Section 6 proves110

the funding-fee–LVR identities, Section 7 measures the approximation error on delta when111

the continuous strip is replaced by finitely many strikes, and Section 8 presents the volatility112

calibration and design rules for LPs. Finally, Section 9 concludes with directions for future113

research.114

2 Background115

In this section, we provide the necessary notation, terminology and background concepts116

used in the remainder of the paper.117

2.1 Notation118

We consider two tokens: token 0 representing a risky asset (e.g. BTC, ETH) and token 1119

representing a stable/safe asset (e.g. USDC). Let St denote the spot price of token 0 in120

units of token 1 at time t that follows a geometric Brownian motion (GBM) on a filtered121

probability space
(

Ω, F , {Ft}t≥0 ,Q
)

satisfying the standard assumptions for GBMs (where122

Q is a risk-neutral probability measure), so that123

dSt

St
= r dt + σ dBQ

t , (1)124

with constant annual risk-free rate r and volatility σ > 0. {BQ
t }t≥0 is a Wiener process. As125

usual, we assume that AMMs constitute secondary markets and the price St is governed126

by primary markets such as centralized exchanges. In the subsequent sections, we omit the127

subscript t and use S and St interchangeably for convenience.128

2.2 Constant-Function Automated Market Makers (CFAMMs)129

A constant-function automated market maker (CFAMM) maintains token reserves (x, y),130

deposited by LPs, such that each trade transforms the reserves to (x′, y′) and the reserves131

AFT 2025
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Figure 1 Profiling CPAMM invariant and concentrated liquidity position, its delta and gamma.

before and after the trade satisfy an invariant function F (x, y) = F (x′, y′) = k. In a132

constant-product AMM (CPAMM), such as Uniswap v2 [1], the invariant takes the form of133

F (x, y) = √
xy. As a result, the marginal exchange price, assuming no arbitrage, takes the134

form: S = − ∂y
∂x = y

x . This is shown in Figure 1a. Therefore, the expression for token reserves135

are x = k√
S

, and y = k
√

S.136

A CPAMM with concentrated liquidity (as in Uniswap v3 [2]) uses an invariant parameter k137

within a price band [a, b]. The token reserves of LPs in this band consist of only token 0138

when the price S ≥ b, only token 1 when S ≤ a, and for prices S ∈ (a, b), the reserves are:139

x = k

√
b −

√
S√

Sb
, y = k

(√
S −

√
a
)

. (2)140

Therefore, the reserve value (denominated in token 1) is141

V (S) = k
(√

S −
√

a
)

+ kS

√
b −

√
S√

Sb
, S ∈ [a, b]. (3)142

The liquidity position’s sensitivity to price, known as it’s delta, is denoted by X(S), and the143

sensitivity of delta to price, known as gamma, is denoted by Γ(S). In practice, delta is a144

measure of exposure to small changes in the price of the risky asset, whereas gamma is a145

measure of exposure to large movements of the risky asset’s price. These are given by the146

first and second derivatives of the value function V (S) with respect to the underlying’s price,147

respectively, and are expressed as follows:148

X(S) := V ′(S), Γ(S) := V ′′(S) = X ′(S) ≤ 0 (S ∈ (a, b)). (4)149

Figure 1b illustrates the behavior of delta and gamma across the liquidity band. As shown,150

the magnitudes of both delta and gamma decrease monotonically with price, as higher prices151

correspond to a greater allocation to the numeraire asset.152

2.2.1 Loss-Versus-Rebalancing (LVR)153

A continuously rebalanced, self-financing delta-hedge portfolio that holds X(St) units of154

token 0 has value Wt with dWt = X(St) dSt. The difference155

LVRt := V (St) − Wt (5)156
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quantifies the AMM’s adverse-selection loss relative to a hedged trader and is referred to as157

loss-versus-rebalancing or LVR. The instantaneous LVR, dLVRt, grows quadratically with158

the spot price and volatility, and linearly with the gamma of the liquidity position [16].159

dLVRt = 1
2 σ2S2

t Γ(St) dt = 1
2 σ2S2

t

[
X ′(St)

]
dt. (6)160

We will later demonstrate the equivalence between the right-hand side of Eq. (6) and the161

funding fee of a perpetual American CI option.162

2.3 Perpetual American Continuous-Installment Options163

A perpetual American continuous-installment put option has no expiration date and requires164

the holder to pay a continuous stream of constant funding fee q > rK per year to keep the165

contract alive. At any point, the holder may choose to stop paying the fee, at which point166

they can either exercise the option or drop the position. The option can be exercised at any167

time for a payoff of max(K − S, 0) [5]. In the analysis below, we assume the underlying asset168

(token 0) pays zero dividends.169

2.3.1 Notation and Ordinary Differential Equation Formulation170

Let Pq(S; K) denote the discounted put option value at spot price S, strike K, and funding171

fee q. Let Sℓ denote the lower boundary, below which the option value equals its payoff, and172

let Su denote the upper boundary, above which the option value is zero, as illustrated in173

Figure 2a. Under the risk–neutral dynamics, Pq(S; K) satisfies the inhomogeneous Black-174

Scholes ordinary differential equation in the continuation region Sℓ < S < Su:175

1
2 σ2S2 ∂2Pq

∂S2 + rS
∂Pq

∂S
− r Pq = q, S ∈ (Sℓ, Su). (7)176

The left and right boundaries are determined endogenously from the value–matching and177

delta-matching conditions178

Pq(Sℓ; K) = K − Sℓ,
∂Pq

∂S
(Sℓ; K) = −1,

Pq(Su; K) = 0,
∂Pq

∂S
(Su; K) = 0.

(8)179

Solving (7) with the four boundary conditions in (8) yields the closed-form expressions below.180

181

2.3.2 Closed-form solution182

The expression for the option price Pq(S; K) takes the following closed form as derived in [5].183

184

Pq(S; K) = αpS + βpSγp + q

r
(9)185

The delta of the put option, Xq(S; K) = ∂
∂S Pq(S; K), thus takes the form:186

Xq(S; K) = αp + βpγpSγp−1. (10)187

Moreover, the upper and lower boundaries, Su and Sℓ respectively, have the following closed188

form:189

Sℓ = q

r + σ2/2
[
g − g1/γp

]
, (11)190

Su = q

r + σ2/2
[
g1−1/γp − 1

]
. (12)191

AFT 2025
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Here, αp, βp, γp, and g are expressions that depend on parameters r, σ, K, and q and their192

expressions are provided in Appendix (A).193

The Black–Scholes partial differential equation in (7) contains no derivative with respect194

to time. Consequently, the value of a perpetual CI option is time-invariant. This makes195

it unique from vanilla finite expiry American or European options, whose pricing has a196

time-varying component. The analog of expiration in CI options is the funding rate, where197

high funding rates make it “behave similar” to short expiration option and vice versa for198

small fee rates. This is depicted in Figure 2b, where increasing the fee rate reduces the199

price of the CI option closer to its payoff. The lower and upper boundaries, Sℓ and Su,200

characterize the holder’s optimal policy. When the spot price first falls below Sℓ, it is optimal201

to exercise the option; when it first exceeds Su, it is optimal to drop the option—i.e., to202

exit the position with zero payoff. This is because, in both cases, the expected benefit of203

continued funding is outweighed by its cost. In either scenario, the holder stops paying the204

funding fee immediately upon exit. For this reason, Sℓ and Su are also called optimal exercise205

and dropping boundaries, respectively. Conversely, the option seller receives the continuous206

funding fee only while the spot price remains in the continuation region Sℓ < S < Su. We207

will exploit this fact in the sections that follow.208

3 Related Work209

Early work on studying LP positions in CFAMMs focus on mitigating risks associated with210

impermanent loss—the loss experienced by a liquidity provider compared to simply holding211

the asset, so that an LP can earn trading fees without exposure to this loss. Deng et al. [9]212

and Fukasawa et al. [12] study static replication strategies for impermanent loss in finite-time213

CFAMM positions using European options and variance swaps, respectively. Lipton et214

al. [14] further studies model-based dynamic replication. However, it can be argued that a215

comparison against a buy-and-hold strategy is insufficient as it does not account for adverse216

selection, where informed traders extract value from passive LPs over time.217

Another approach to quantifying LP loss is the concept of LVR, which captures the218

loss incurred by a liquidity provider compared to continuously rebalancing their portfolio219

at market prices, due to adverse selection. LVR was formalized by Millionis et al. [16].220

Their work offers closed-form expressions for instantaneous LVR in a CFAMM and provides221

empirical validation using historical market data. However, they focus on instantaneous and222

historical LVR and do not address forward-looking or long-term LVR estimation. Meanwhile,223

our approach provides a framework that captures forward-looking LVR by delta-replication224

with options portfolios.225
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Maire and Wunsch [15] make a case for the hedging of the LP position value instead226

of the impermanent loss. They study the problem of market-neutral liquidity provision by227

constructing a static replication portfolio that matches the AMM position’s dollar value over228

time, effectively achieving a constant value position for the finite lifetime of the position.229

The replicating portfolio’s margin requirement is then itself hedged by shorting a perpetual230

or dated futures contract to offset changes in the margin value, enabling a market-neutral LP231

strategy that generates interest from LP trading fees and futures funding fees. Meanwhile,232

Clark [6, 7] investigates the replicating portfolio of the payoff of a constant product AMM233

position and shows how an LP position’s terminal value can be fully statically replicated234

using a portfolio of European options. The approach focuses on fixed, finite time horizons235

and seeks to hedge only the terminal value of the liquidity position. On the other hand,236

our approach neither relies on dynamic hedging, nor assumes finite time horizons. Instead,237

we model the LP’s position over an indefinite time horizon using a portfolio of perpetual238

American CI put options, providing a theoretical framework that statically captures the239

path-dependency of forward-looking LVR.240

4 Work Motivation241

The value profile of a concentrated liquidity position in a finite price band, as shown in242

Figure 1b, closely resembles that of a portfolio consisting of cash (a constant payoff) and243

short put options (the negative of the payoff shown in Figure 2a): flat on one wing, linear on244

the other, and smoothly curved in between. Figure 3a makes this visual similarity precise245

by comparing the value of a CPAMM position with k = 1 and band (80, 125) to a portfolio246

comprising cash and a one-month European put, with strike at the geometric mean of the247

price boundaries. The put is valued using the standard Black–Scholes model [3].248

Despite the superficial similarity, key differences emerge. As shown in Figure 3b, the249

two profiles diverge meaningfully. More critically, the European option’s value is inherently250

time-variant: even a single day’s passage erodes its time value (theta), while the CPAMM’s251

value remains time-stationary. This contrast is illustrated in Figure 3c, where the solid252

line represents the option value as a function of the time-to-maturity. In addition, the253

CPAMM offers a flexible, perpetual holding period, whereas fixed-term options require254

periodic rolling—selling expiring contracts and buying new ones—to replicate a liquidity255

position.256

These challenges raise a natural question: Can one construct a static portfolio that tracks257

a perpetual AMM band without daily rebalancing? The answer is affirmative, provided we258

replace European options with a class of American continuous-installment options. This is259

because the ongoing constant funding fee, q dt, charged by an active CI option offsets the260

time decay found in European options. In the limit of infinite maturity (the perpetual CI261

variant), the mark-to-market value of a CI put or call becomes time-invariant, producing a262

flat line as shown by the dashed line in Figure 3c.263

This observation enables a decomposition of a CFAMM band into a perpetual strip of264

CI puts that both matches the pool’s delta and offers stationarity. Beyond its conceptual265

appeal, this decomposition yields two practical insights:266

1. The instantaneous funding fee of the active CI option equals the LP’s loss-versus-267

rebalancing cost. Since a CI option is perfectly hedgeable with a Black-Scholes type268

rebalancing porfolio [5] and both the CPAMM and the CI option strip have the same269

delta, they share the same rebalancing portfolio, and hence the LVR is precisely the270

difference between the two instruments, i.e. instantaneous funding fee.271

2. If the CFAMM’s delta and price boundaries are calibrated to match those of a single272

CI put, then the LVR over a future time window becomes nearly constant and equal273

AFT 2025
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to the funding fee q. Notably, this construction relies on implied volatility, rather than274

instantaneous volatility, meaning it can be formulated using observed market data.275

The following section formalizes the CI decomposition, proving the equivalence between276

funding fees and LVR.277

5 Modeling a CFAMM Position with CI Options278

5.1 Overview279

In this section, we construct a portfolio whose delta (change in option price w.r.t. change280

in spot price) is the same as the delta of a CFAMM X(S). This portfolio consists of a281

distribution of perpetual American CI put options in the limit q → ∞ across a continuum of282

strike prices. As the funding rate tends to infinity, the exercise and dropping boundaries of283

each option collapse to the strike price, and the option’s valuation converges to max(K −S, 0).284

Consequently, the option’s delta converges to a step function. This property enables the285

construction of a portfolio that replicates the delta of an arbitrary (but smooth) CFAMM286

payoff function.287

5.2 Portfolio Construction288

We begin with the following lemma:289
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▶ Lemma 1. In the limit q → ∞, both the lower and upper boundary of a CI put converge290

to the strike K, and option’s delta Xq(S; K) becomes a step function −1{S<K}.291

This lemma encapsulates the relationship between the funding rate and the option’s “effective”292

time to expiration. As the funding rate increases, the option behaves increasingly like a293

zero-time-to-expiry option, with its delta approaching a discontinuous step as q → ∞.294

Next, we specify the weight distribution of the options portfolio that delta-replicates a295

CFAMM value function V (S).296

▶ Theorem 2. Let V : R>0 → R be a twice continuously differentiable function. Assume297

that V ′ ∈ L1(R>0), V ′ has bounded variation on R>0 and that lim
S→∞

V ′(S) = 0. Define the298

weight w(K) := V ′′(K) and, for each q < ∞,299

Πq(S) :=
∫ ∞

0
w(K) Pq(S; K) dK,300

and301

Π(S) := lim
q→∞

Πq(S).302

Then the portfolio Π(S) − V (S) is delta-neutral.303

Thus, a perpetual CFAMM position that can be closed by its owner at any time can be304

perfectly modeled using a distribution of CI puts with very large funding rates2. In practice, a305

continuous distribution is infeasible, and funding rates are finite. Therefore, one may replicate306

the delta profile using a discrete set of puts with different strikes. However, discretization and307

finite funding rates introduce non-negligible delta-replication error, dependent on inter-strike308

spacing and funding rate. We quantify this approximation error numerically for a constant309

product AMM position in Section 7.310

An additional corollary of the above result is the relationship between the instantaneous311

LVR of a liquidity position and the funding fees of options with strikes around the spot312

price (also referred to as activated strikes) in the replicating portfolio. This relationship is313

analyzed in the following section.314

6 Establishing LVR as Funding Fees315

The portfolio Π delta-replicates a given CFAMM liquidity position. However, unlike the316

AMM position, the short options portfolio pays a continuous funding fee to the seller—arising317

from the active CI puts with strike around the spot price. We show that these funding fees,318

absent in the AMM, are precisely equal to the LP’s LVR.319

To compute this running funding fee, we first establish the following lemma:320

▶ Lemma 3. As q → ∞, the product q (Su(q; K) − Sℓ(q; K)) converges to a finite limit:321

lim
q→∞

q ·
(
Su(q; K) − Sℓ(q; K)

)
= σ2K2

2 .322

Next, we express Π as the limit of a discrete sum of options. In the following lemma, we323

construct such a discretization and show that, as q → ∞, this portfolio converges pointwise324

to that of Π. We also compute the limiting funding fee contribution from the option whose325

holding region contains the spot price.326

2 Πq(St) has the same payoff as described above at all times. Therefore, the holder must continuously
reissue options that are exercised or dropped.
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▶ Lemma 4. Fix q > 0 and an interval [a, b] ⊂ R>0. Define a sequence of strikes K1 <327

K2 < · · · < KN(q) recursively by:328 
Sℓ(q; K1) = a,

Sℓ(q; Ki+1) = Su(q; Ki), i = 1, . . . , N(q) − 1,

Su(q; KN(q)) = b.

329

For each i, define the weight330

wi :=
∫ Su(q;Ki)

Sℓ(q;Ki)
w(K) dK = X

(
Su(q; Ki)

)
− X

(
Sℓ(q; Ki)

)
,331

so that332

N(q)∑
i=1

wi =
∫ b

a

w(K) dK = −1.333

Let Kj be the activated strike such that Sℓ(q; Kj) ≤ St ≤ Su(q; Kj). Then, as q → ∞,334

the discrete portfolio335

Π̃q :=
N(q)∑
i=1

wi Pq(·; Ki)336

converges pointwise to the continuous payoff Π(S). Moreover, the weighted funding fees at337

strike Kj satisfies338

lim
q→∞

wjq = σ2S2

2 X ′(S).339

Lemma 4 constructs a portfolio of CI puts with discrete strikes and finite funding rates,340

with weights chosen such that, in the limit q → ∞, the portfolio converges to the CFAMM-341

replicating portfolio defined in Theorem (2). The index j denotes the unique option that342

remains active (i.e., in the holding region), while all other options are either exercised or343

dropped. Therefore, the funding fee received by the portfolio owner is wjq.344

As q becomes large, Lemmas 3 and 4 together imply that this funding fee converges to345

the instantaneous LVR of the corresponding CFAMM position. This leads to the following346

result:347

▶ Theorem 5 (Funding fee = LVR). Let dLVRt denote the instantaneous change in the348

LVR of a CFAMM position, and let dFeet denote the instantaneous funding income of its349

delta-replicating CI option portfolio Π. Then,350

dFeet = dLVRt and Fee|T0 = LVR|T0 (∀ T > 0).351

Therefore, the LVR of a liquidity position is precisely the CI funding premium of its352

delta-replicating options portfolio. Another way to look at this is that a CI option can be353

perfectly delta-hedged using a continuously rebalanced Black–Scholes-type portfolio of risky354

and stable assets [5]. As the funding rate q increases, the delta of this rebalancing portfolio355

converges to that of a CFAMM position. However, unlike the CI option, a CFAMM position356

does not compensate the liquidity provider via a funding stream. The discrepancy between357

the CFAMM position and its hedge is therefore exactly the foregone CI funding. This equality358

relies solely on closed-form expressions and the principle of self-financing, without invoking359

any additional modeling assumptions.360
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One advantage of this option-theoretic interpretation is that CI fee rates, as implied by361

the options market, provide both real-time and forward-looking estimates of LVR, enabling362

informed range management. Moreover, this framework permits the construction of liquidity363

profiles with nearly price-path-independent LVR. These features are demonstrated in the364

sections that follow. A further implication is that a market for CI options allows for365

static-weight delta-hedging of CFAMM positions—under the assumption of constant implied366

volatility—eliminating the need for frequent rebalancing, unlike with conventional American367

or European options.368

6.1 CFAMM Position Replicating a Unit CI Option369

Consider a concentrated–liquidity CFAMM band whose delta, at every price level, matches370

the delta of a single perpetual American CI put option. Specifically, choose the liquidity371

bounds a < b such that372

X(S) = V ′(S) ≡ Xq

(
S; K∗

)
(S ∈ [a, b]), (13)373

a = Sl(q, K∗), (14)374

b = Su(q, K∗). (15)375

for some strike K∗ and finite fee rate q.376

▶ Theorem 6. The instantaneous rate of change of the LVR of the above CFAMM position is377

approximately equal to the funding fees of the unit put option, up to a bounded approximation378

error. That is, there exists a residual function ϵ(t) with |ϵ(t)| ≤ rK∗, such that379

dLVRt = q dt + ϵ(t)dt,380

Thus, the AMM liquidity position with the above delta profile suffers an almost flat, price-381

path-independent, volatility-independent LVR. Note that because Xq(S; K∗) depends on the382

volatility parameter σ, as shown in Eq (10), the calibrated boundaries a, b—and thus the383

entire delta curve X(S)—remain implicitly volatility-dependent. The residual error term,384

ϵ(·), is bounded in magnitude by a constant and its relative magnitude is reported and385

discussed in Section 8. The above liquidity profile is useful for LPs who want to estimate386

forward LVR and compare it with the expected future trading fees. Lastly, constructing such387

an AMM profile requires estimates of future volatility. This can be approximated using a388

term structure of implied volatility gathered from the fixed-term options market. Section 8389

discusses this in detail and estimates the approximation error arising from the calibration390

between fixed-term and perpetual options’ volatilities.391

7 Error Analysis of Discrete CI-Option Replication392

In this section we quantify the approximation error that arises when the continuous–strike393

decomposition of a concentrated CFAMM is replaced by a discrete strip of perpetual American394

CI put options with finite q.395

7.1 Sources of error396

We isolate two drivers of error: (i) The installment rate q (large but finite), and (ii) the397

inter-strike spacing ∆K of the discrete strip. For a given pair (q, ∆K), we construct a strip398

of discrete options and measure the absolute difference between the target delta (of the399

CFAMM) and the strip’s delta. This is done over the active price band S ∈ [a, b] and its400

maximum and root-mean-square values are plotted.401
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7.2 Experimental methodology402

We chose a concentrated liquidity AMM as our target CFAMM. Thus, the analytical delta403

X(S) = L(1/
√

S − 1/
√

b) for uniform liquidity on a price band [a, b]. We choose a = 80, and404

b = 125, and L chosen so that X(a) = 1, X(b) = 0. We discretize the replication weight such405

that on each strike interval [Ki, Ki+1] we set406

wi =
∫ Ki+1

Ki

X ′(K) dK = X(Ki+1) − X(Ki), (16)407

ensuring that the discrete weights sum to the continuous integral. For each strike, we408

compute the short CI put delta, clipped to {−1, 0} outside its continuation band. Let409

Xstrip(S; q, ∆K) =
∑

i wi Xq(S; Ki) be the delta of the strip at S. Define the error410

ε(Sj ; q, ∆K) =
∣∣X(Sj) − Xstrip(Sj ; q, ∆K)

∣∣411

evaluated on grid {Sj}N
j=1 where N =2000. We consider two error metrics:412

Maximum absolute error: maxj ε(Sj ; q, ∆K).413

Root-mean-square error (RMSE):
√

N−1 ∑
j ε(Sj ; q, ∆K)2.414

We evaluate a parameter sweep (q, ∆K) ∈ {8, 16, 32, 64, 125, 250, 500, 1000, 2000, 4000} ×415

{0.25, 0.5, 1.0, 2.0, 4.0}.416

7.3 Results417

Figure 4a shows the logarithm of maximum absolute error versus q for five strike spacings.418

Similarly, Figure 4b displays the RMSE versus q for the same strike spacings. Both errors419

increase strictly with strike spacing for a given q across all installment rates. On the other420

hand, for a given strike spacing, both errors generally decrease with q with some exceptions.421

For large strike spacing, ∆K = {1, 2, 4}, the RMSE error increases with q for large values,422

q ≥ 128. Lastly, Figure 4c plots a representative delta curve (q=250, ∆K=2) against the423

CPAMM target delta.424

7.4 Discussion425

Both errors are below 10−3 and shrink as expected: a larger q steepens each put’s delta,426

while a finer ∆K better resolves the continuous weight. The trade-off between the capital427

cost of a large q and the operational cost of a finer strike mesh can be balanced according to428

the LP’s precision requirements.429

8 Volatility Calibration for Perpetual CI Put Options430

Perpetual CI put pricing requires a constant volatility parameter σ. Market quotes instead431

supply a term structure σ̂(τ) of implied volatility with time to expiration τ . In the following,432

we derive the effective implied volatility σeff(q) for a perpetual American CI option with433

funding fee q using the market-implied term structure of at-the-money options.434

8.1 Effective time horizon435

For a CI put with rate q, the continuation band is (Sℓ(q), Su(q)). It stays alive as long as the436

underlying spot price St remains within the continuation band. Otherwise, when St = Sl,437

the option is dropped, or when St = Su, it is exercised by the holder.438

Define the first-exit time439

τ(q) := inf
{

t > 0 : St /∈ (Sℓ(q), Su(q))
}

,440
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Figure 4 Log-Max absolute and RMSE delta-replication error versus installment rate q under
different parameter settings.

i.e., the random horizon at which the CI position terminates. In probabilistic terms, E[τ(q)] =441

τ̄(q) is the mean first-exit time of a GBM between two absorbing boundaries.442

▶ Theorem 7. The closed-form solution of τ̄(q) is443

τ̄(q) =


1

σ2 ln
(

S0
Sl(q)

)
ln

(
Su(q)

S0

)
if a = 0

1
a

[
ln

(
Sl(q)

S0

)
+ ln

(
Sl(q)
Su(q)

)
Sκ

0 −Sl(q)κ

Sl(q)κ−Su(q)κ

]
if a ̸= 0

(17)444

where a = r − σ2

2 and κ = − 2a
σ2 .445

Figure 5 plots the distribution of the first-exit time, τ for a CI put with r = 2%, σ = 67%,446

S0 = K = 100, and q = 5. Here, τ̄ = 1.6 months,
√

Var(τ) = 0.11, and E[|τ − τ̄ |] = 0.08.447

8.2 Practical estimation from ATM IVs448

Given At-The-Money (ATM) implied volatilities σ̂(T ) for fixed terms T1 < . . . < Tn and449

a desired effective time horizon τ ∈ [Ti, Ti+1), the squared constant volatility implied by450

the perpetual contract can be approximated by linearly interpolating the total variances451

(T σ̂2(T )) derived by the market implied volatilities:452

σ2
effτ ≈ σ̃2

effτ = σ̂2(Ti)Ti + σ̂2(Ti+1)Ti+1 − σ̂2(Ti)Ti

Ti+1 − Ti
(τ − Ti) ≡ w(τ) (18)453
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Figure 5 Distribution of first-exit time τ for r = 2%, σ = 67%, K = 100, q = 5.

The effective squared volatility can be estimated ex ante for a desired first-exit time distribu-454

tion:455

E[σ̃2
eff ] = E

[
w(τ)

τ

]
≈ w(τ̄)

τ̄
(19)456

When τ̄ is a function of σ2
eff , the problem becomes a fixed-point equation. Specifically,457

Eq. (19) must be solved for σ2
eff as a function of itself: σ2

eff = w(τ̄(σ2
eff))

τ̄(σ2
eff) .458

▶ Theorem 8. The estimate σ̃2
eff ≈ w(τ̄)

τ̄ yields root mean squared error and mean absolute459

deviation460

RMSE ≤ M
√

Var(τ) (20)461

MAD ≤ ME[|τ − τ̄ |] (21)462

where M = maxi supτ∈[Ti,Ti+1)

∣∣∣ d
dτ

(
w(τ)

τ

)∣∣∣.463

Hence, when the total variance derived from market-implied volatilities (which are464

approximately linear in log-Moneyness log(K/S)) has a small slope, the approximation error465

is small. Figure 6 plots the distribution of σ̃2
eff , its mean, and the approximation w(τ̄)

τ̄ (for the466

same CI put as in Figure 5) using ETH ATM 7-day, 30-day, 90-day, and 180-day IVs. Figure 7467

plots the RMSE and MAD (as a percentage of w(τ̄)
τ̄ ) for the approximation σ̃2

eff ≈ w(τ̄)
τ̄ for468

the period of Jan 2024-Feb 2024.469

8.3 Interpretation for Liquidity Providers470

The volatility calibration framework enables liquidity providers (LPs) to estimate future471

loss-versus-rebalancing (LVR) of a concentrated AMM position using observable option472

market information. By associating the funding fee q of a perpetual CI put with its expected473

lifetime τ̄(q), and mapping this to market-implied volatilities, LPs can extract an estimate474

for the effective squared volatility σ̃2
eff that governs the dynamics of the position and its475

underlying asset.476

As the funding rate q increases, the continuation band [Sℓ(q), Su(q)] narrows, leading to477

shorter expected lifetimes τ(q) for the CI put. Conversely, smaller q implies wider bands and478
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Figure 6 Distribution of σ2 for r = 2%, σ = 61%, K = 100, q = 5 using ETH ATM IVs.
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Figure 7 MAD and RMSE for r = 5%, K = 100, q = 40, where σ2
eff is derived by fixed point

methods. IV data is from ETH ATM IVs for Jan-Feb 2024.

longer-lived options. Since market-implied volatilities are typically flatter at long durations,479

we can observe that:480

Short durations (high q) correspond to low maturity implied volatilities, where the IV481

curve is more curved and error-prone. More fine-grained market data is required here for482

better estimates.483

Long durations (low q) correspond to long-dated IVs, where the volatility curve is484

typically flatter. The estimate σ̃2
eff = w(τ)

τ is then less sensitive to the exact value of τ , so485

M is small and the approximation of the mean is more robust to variation in τ . Long486

durations also tend to have a tighter concentration of realised σ̃2
eff around its mean for487

the same reason, meaning the mean is a good ex ante estimate.488

If a liquidity band is chosen to replicate the delta of a single perpetual CI put—using489

the squared volatility estimate—then the LP incurs a predictable LVR almost equal to490

the funding rate q. This transforms an otherwise stochastic adverse-selection cost into a491
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Table 1 Funding fee q, resulting CFAMM band (Sl, Su), and residual bound rK, for r = 0.05,
for desired τ̄ under varying σeff exposures.

% of K % of q
τ̄ σeff q (token1/yr) Sl(q) Su(q) Width rK

1 d 60% 284% 97% 103% 6% 2%
1 d 80% 380% 96% 104% 8% 1%
1 d 100% 475% 95% 105% 10% 1%

1 wk 60% 106% 92% 109% 17% 5%
1 wk 80% 142% 90% 112% 22% 4%
1 wk 100% 178% 87% 115% 28% 3%

2 wk 60% 74% 89% 113% 24% 7%
2 wk 80% 99% 86% 118% 32% 5%
2 wk 100% 125% 83% 123% 40% 4%

1 mo 60% 49% 85% 120% 35% 10%
1 mo 80% 66% 80% 128% 47% 8%
1 mo 100% 84% 76% 136% 60% 6%

2 mo 60% 34% 79% 130% 51% 15%
2 mo 80% 46% 74% 142% 69% 11%
2 mo 100% 58% 68% 157% 88% 9%

1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00% 4.50% 5.00%
r (risk-free rate)
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Figure 8 Residual upper bound rK as a percentage of q for various time horizons and σeff
exposures.

predictable fixed cost per unit time, simplifying the LP’s decision-making. For instance,492

given a desired expected time-horizon, an LP can estimate the effective term volatility,493

which in turn informs the liquidity band selection. Table 1 shows the different band widths494

corresponding to expected time horizons and effective term volatilities and Figure 8 shows495

the LVR − q residual term upper bound. Conversely, given a liquidity band, an LP can496

estimate the position’s expected effective time horizon using numerical fixed point methods.497
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Combined with the results of Section 6, the effective term volatility estimation provides a498

practical framework for LPs to choose bands that realize a desired holding period τ(q) and499

predictable LVR, or to estimate expected forward-looking LVR for a desired liquidity band.500

9 Conclusion501

This work introduces a novel decomposition of a concentrated CFAMM position into a502

continuum of perpetual American continuous-installment (CI) put options, offering the first503

closed-form equivalence between the funding mechanics of perpetual American CI options and504

the loss-versus-rebalancing cost faced by concentrated AMM liquidity providers, providing505

as option-theoretic interpretation of LVR.506

By exploiting the limiting behavior of CI option valuations as the installment rate grows507

large, the paper constructs delta-replicating portfolios that match the AMM exposure exactly.508

The analysis shows that the funding income from this replicating portfolio, absent in the509

AMM, is analytically equal to the LVR cost borne by the LP in the AMM. This time-invariant510

correspondence permits a forward-looking estimation of LVR and provides actionable design511

rules for selecting position width and shape.512

Beyond theoretical insight, the framework yields practical tools for LPs. The discrete513

error analysis confirms that a small collection of finite-q CI puts suffices to replicate AMM514

delta within tight error bounds, making implementation of the replicating portfolio feasible515

for LPs wishing to immunize against LVR. Crucially, the analysis also shows that if a liquidity516

band is chosen to replicate the delta of a single perpetual CI put, the LP incurs a predictable517

LVR equal approximately to the funding rate q. This converts a stochastic adverse-selection518

cost into a predictable fixed cost per unit time, simplifying LP decision-making when it519

comes to position shape and width: using market-implied volatility curves, LPs can calibrate520

the position shape, width, and implied volatility to a desired expected holding period and521

LVR, or conversely, estimate a position’s effective time horizon and LVR given a liquidity522

band.523

This framework opens several avenues for further research. While the present analysis524

focuses only on liquidity bands centered around the current price (ATM), LPs may, in practice,525

deploy liquidity asymmetrically about the spot price to expose their positions to greater or526

lesser volatility. A resulting mismatch of spot and the replicated strike requires extended527

analysis to capture the entire volatility surface, as opposed to only considering the ATM528

volatility curve. Alternatively, if on-chain markets for CI options were developed, they could529

serve as direct hedging instruments and sources of IV data. Furthermore, the Black-Scholes530

model assumes the underlying asset experiences a constant volatility, which is not supported531

by market data. In reality, volatilities may be time-dependent or even stochastic. Models like532

the Heston model or Hull-White model, which extend upon Black-Scholes, may be applied533

here for analysis under dynamic volatility surfaces and to assess the model’s sensitivity to534

deviations from constant volatility assumptions. Finally, the model assumes continuous-time535

trading and perfect liquidity. Future work will relax these assumptions to quantify the impact536

of transaction costs, slippage, and gas fees on the CI funding fee-LVR equivalence.537
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A Closed-Form of Perpetual American CI Put Option576

Below, we provide closed-form expressions for the perpetual American CI put option.577

Define578

γp := − 2r

σ2 , (22)579

g := 1 + rK

q
. (23)580

Then, the option price is581

Pq(S; K) = αpS + βpSγp + q

r
582

where the constants αp and βp are given by583

αp =
(
g1−1/γp − 1

)−1
, (24)584

βp = − 1
γp

(
q

r+σ2/2

)1−γp

αγp
p . (25)585

Let Xq(S; K) = ∂
∂S Pq(S; K) be the delta of put value, its expression is given by586

Xq(S; K) = αp + βpγpSγp−1.587
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Lastly, the lower and upper boundaries, Sℓ and Su respectively, have the following closed-form:588

Sℓ = q

r + σ2/2
[
g − g1/γp

]
,589

Su = q

r + σ2/2
[
g1−1/γp − 1

]
.590

B Proofs of Main Theorems591

Proof of Lemma 1. Boundary collapse. Let Sℓ(q) and Su(q) be the exercise and aban-592

donment boundaries in (11) and (12). We will prove that593

lim
q→∞

Sℓ(q) = lim
q→∞

Su(q) = K.594

Define ε := rK/q, so g = 1 + ε and ε ↓ 0 as q ↑ ∞. Consider the second-order expansion595

(1 + ε)a = 1 + aε + 1
2 a(a − 1)ε2 + O(ε3). Applying it to the two exponents in (11) and (12)596

yields597

Sℓ(q) = qε

r + σ2/2

(
1 − 1

γp

)
+ O

(
q−1)

,598

Su(q) = qε

r + σ2/2

(
1 − 1

γp

)
+ O

(
q−1)

.599

Because qε = rK and 1 − 1
γp

= 1 + σ2/(2r), both leading terms equal K. Therefore,600

lim
q→∞

Sℓ(q) = lim
q→∞

K + O
(
q−1)

601

= K,602

lim
q→∞

Su(q) = lim
q→∞

K + O
(
q−1)

603

= K.604

Step-delta limit. The smooth–fit conditions (continuous first order derivative) on the605

boundaries of the holding region of the option valuation curve from Section 2.3.1 give606

Xq(Sℓ; K) = −1 and Xq(Su; K) = 0. Because Xq is monotone increasing in S between the607

two boundaries and the interval Su(q) − Sℓ(q) collapses, we have the pointwise limit608

X∞(S; K) := lim
q→∞

Xq(S; K) = −1{S<K}. (26)609

Thus, as the funding fees of a continuous-installment put becomes large, it transforms into a610

unit-step-delta contract. ◀611

Proof of Theorem 2. For each K, the map S 7→ Pq(S; K) is continuously differentiable.612

Moreover, for fixed q, there exists a constant cq > 0 such that
∣∣∂SPq(S; K)

∣∣ ≤ cq(1 +613

K)−2|w(K)|. Hence, the integrand is point-wise dominated by an L1–function of K. Leibniz’s614

rule [11] yields615

∂SΠq(S) =
∫ ∞

0
w(K) Xq(S; K) dK,616

where Xq := ∂SPq is the CI–put delta. For every K, we have617

lim
q→∞

Xq(S; K) = X∞(S; K)618

= −1{S<K}619
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from Lemma 1. Let {qn} be a sequence such that qn → ∞. |Xqn(S; K)| ≤ 1 for all n, S620

and K, and Xqn
(S; K) → X∞(S; K) pointwise in K, so dominated convergence theorem [11]621

applies:622

∂SΠ(S) = lim
n→∞

∫ ∞

0
w(K)Xqn

(S; K)dK623

=
∫ ∞

0
w(K) X∞(S; K) dK624

= −
∫ ∞

S

w(K) dK625

= V ′(S) − V ′(∞)626

= V ′(S).627

Therefore, Π(S) − V (S) is delta-neutral.628

◀629

Proof of Lemma 3. Using closed forms for a CI put boundaries from Appendix A, g := 1+ε,630

ε = rK/q and γp = −2r/σ2:631

Sℓ(q) = q

r + σ2/2
[
g − g1/γp

]
,632

Su(q) = q

r + σ2/2
[
g1−1/γp − 1

]
.633

Setting α := 1/γp = −σ2/(2r) and expanding to second order:634

gα = 1 + αε + 1
2 α(α − 1)ε2 + O(ε3),635

g1−α = 1 + (1 − α)ε − 1
2 (1 − α)αε2 + O(ε3).636

Substituting the above into the closed forms of Sℓ and Su cancels the first-order terms and637

the second-order coefficient becomes α(α − 1). Therefore, one obtains638

Su(q) − Sℓ(q) = α(α − 1)r2K2

(r + σ2/2) q
+ O

(
q−2)

. (27)639

Hence,640

lim
q→∞

q
(
Su(q) − Sℓ(q)

)
= lim

q→∞

[α(α − 1)r2K2

(r + σ2/2) + O
(
q−1)]

641

= σ2K2

2642

◀643

Proof of Lemma 4. Point-wise convergence. Both Π̃q and Π vanish for all S ≥ b.644

Moreover, the CI–put delta satisfies 0 ≤ |Xq(S; K)| ≤ 1. Consequently |∂SΠ̃q(S)| =645 ∣∣∑
i wi Xq(S; Ki)

∣∣ ≤
∑

i |wi| = 1 for every q and S. Let i⋆ = i⋆(S, q) be the (unique)646

index with S ∈ [Sℓ(q; Ki⋆), Su(q; Ki⋆)]. By Lemma (1), Xq(S; Ki⋆) → −1{S<Ki⋆ }, while647

Xq(S; Ki) → 0 for i ̸= i⋆. Dominated convergence therefore gives648

lim
q→∞

∂SΠ̃q(S) = −
∫ b

a

w(K) 1{S<K} dK = X(S).649
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For any S ≤ b650

Π̃q(S) = Π̃q(b) −
∫ b

S

∂SΠ̃q(u) du.651

Because Π̃q(b) = 0 for all q and the integrands converge point-wise while being uniformly652

bounded by 1, dominated convergence implies Π̃q(S) → Π(S).653

Limit of wjq. From the statement of the Lemma,654

wj = X
(
Su(q; Kj)

)
− X

(
Sℓ(q; Kj)

)
655

Therefore,656

lim
q→∞

wjq = lim
q→∞

q
[
X

(
Su(q; Kj)

)
− X

(
Sℓ(q; Kj)

)]
657

= lim
q→∞

q(Su(q; Kj) − Sℓ(q; Kj))
X

(
Su(q; Kj)

)
− X

(
Sℓ(q; Kj)

)
(Su(q; Kj) − Sℓ(q; Kj))658

= lim
q→∞

q(Su(q; Kj) − Sℓ(q; Kj)) lim
q→∞

X
(
Su(q; Kj)

)
− X

(
Sℓ(q; Kj)

)
(Su(q; Kj) − Sℓ(q; Kj))659

= lim
q→∞

q(Su(q; Kj) − Sℓ(q; Kj))X ′(Kj)660

= σ2S2
t

2 X ′(St)661

◀662

Proof of Theorem 5. From Lemma 4, we can approximate the continuous portfolio by a663

discrete portfolio of CI puts. For a specific funding fee q, at each time t, there is only one664

active option j with weight wj , price Pq(St, Kj). The total funding fee accured over [t, t + dt]665

is:666

dFeeq
t = wjqdt667

Again from Lemma 4, we have lim
q→∞

wjq = σ2S2
t

2 X ′(St). This implies that668

lim
q→∞

dFeeq
t = lim

q→∞
wjqdt = σ2S2

t

2 X ′(St)dt669

This exactly matches Eq. (6). Hence,670

dFeet = dLVRt671

Integrating over t ∈ [0, T ], we get:672

Feet|T0 =
∫ T

0
dFeet =

∫ T

0
dLVRt = LVR|T0673

◀674

Proof of Theorem 6. Equation (7) gives675

1
2 σ2S2 ∂2Pq

∂S2 + rS
∂Pq

∂S
− r Pq = q, S ∈ (Sℓ, Su).676
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and677

dLVRt = 1
2 σ2S2 ∂2Pq

∂S2 dt678

= qdt − r(S ∂Pq

∂S
− Pq)dt679

Therefore, the residual term ϵ(t) = −r(S ∂Pq

∂S − Pq). Note that we use S instead of St for680

brevity. ϵ(·) is a function of t.681

Bounding |ϵ(t)|. In the region S ∈ (Sℓ, Su),682

∂ϵ(t)
∂S

= −rS
∂2Pq

∂S2683

Since ∂2Pq

∂S2 is always non-negative,684

∂ϵ(t)
∂S

= −rS
∂2Pq

∂S2 ≤ 0685

Therefore, ϵ(t) is monotonically decreasing with S. Moreover, when evaluated at S = Sℓ,686

ϵ(t) = −r((−1 · Sℓ) − (K∗ − Sℓ))687

= rK∗.688

and when S = Su,689

ϵ(t) = 0.690

Hence, |ϵ(t)| ≤ rK∗. ◀691

C Effective Time Horizon τ̄(q)692

The proof of Theorem 7 can be found in the extended version [17].693

D Volatility Estimation Error Bounds694

Proof of Theorem 8. The root mean squared error of the estimate σ̃2
eff ≈ w(τ̄)

τ̄ is695

RMSE =

√√√√E

[(
σ̃2

eff − w(τ̄)
τ̄

)2
]

696

Let f(τ) = σ̃2
eff = w(τ)

τ , which is differentiable almost everywhere, with697

f ′(τ) = miτ − w(τ)
τ2 mi ≡ σ̂2(Ti+1)Ti+1 − σ̂2(Ti)Ti

Ti+1 − Ti
f(0) = m0698

f is Lipschitz continuous, so let M = maxi supτ∈[Ti,Ti+1) |f ′(τ)|. Then, |f(τ) − f(τ̄)| ≤699

M |τ − τ̄ | and700

RMSE =
√
E[(f(τ) − f(τ̄))2] ≤

√
E[M2(τ − τ̄)2] =

√
M2 Var(τ) = M

√
Var(τ) (28)701

Similarly, the mean absolute deviation is702

MAD = E [|f(τ) − f(τ̃)|] ≤ ME[|τ − τ̄ |] (29)703

◀704
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