
On Tokenizing Securities in Contemporary
Decentralized Finance Ecosystems
Reina Ke Xin Li∗, Srisht Fateh Singh∗, Andreas Park†, Andreas Veneris∗§

∗ Department of Electrical and Computer Engineering, University of Toronto
§ Department of Computer Science, University of Toronto
† Rotman School of Management, University of Toronto

{reinakx.li, srishtfateh.singh}@mail.utoronto.ca, andreas.park@rotman.utoronto.ca, veneris@eecg.toronto.edu

Abstract—This paper presents a securities tokenization solu-
tion allowing real-world securities to benefit from the accessibil-
ity, transparency, efficiency, and innovation of blockchain and
decentralized finance. While existing solutions limit their scope
to specific types of securities, our solution is generalizable to
the tokenization of any securities with any holding rights by
representing the security by a fungible token and using separate
smart contracts for shareholders to redeem the holding rights.
Furthermore, unlike existing solutions, our solution addresses the
complications regarding ownership accounting that arise from
the decentralized nature of liquidity pools, a pivotal component
of the decentralized finance ecosystem. Our solution achieves
this by performing accounting off-chain with additional logic
for liquidity pools. In this paper, we implement our solution on
Ethereum, measuring its gas costs to demonstrate that it is 27%
cheaper than existing solutions. We also analyse the liquidity logic
of over 90% of liquidity pools on Ethereum, confirming their
compatibility with our solution. Moreover, we demonstrate the
application of our solution for three use cases: dividend-paying
stocks, common stock, and mergers and acquisitions.

Index Terms—tokenization, blockchains, finance, smart con-
tracts, decentralized applications

I. INTRODUCTION

Blockchain technology is a powerful tool promoting fair-
ness, transparency, accessibility, efficiency, and security, prop-
erties desirable in finance. These advantages have led to the
development and enthusiastic adoption of various decentral-
ized finance (DeFi) protocols leveraging blockchain with the
goal of democratizing finance, removing intermediaries, and
promoting innovation [1]. As such, today’s DeFi ecosystem
provides viable on-chain alternatives for traditional financial
systems and infrastructures.

Bringing real-world securities onto the blockchain, a process
called tokenization, allows investors to take advantage of the
accessibility and transparency of blockchains, and has the
potential to eliminate intermediaries in the custody, man-
agement, and trading of the underlying assets. It can also
provide access to secondary markets and on-chain liquidity
through DeFi protocols. The process of tokenization is akin
to the issuance of American Depositary Receipts (ADRs),
exchange-tradable certificates issued by a U.S. depositary
bank representing a share of a foreign company’s stock [2].
Similarly, a tokenization scheme entails a deposit of shares
with a “trusted” custodian issuer, who issues on-chain tokens
representing these shares so that they may be traded on

blockchain markets, creating an on-chain representation of a
traditional financial instrument.

One asset of interest is publicly traded stocks because
traditional stock exchanges have direct on-chain DeFi analogs:
decentralized exchanges. Decentralized exchanges are online,
open, and eliminate the need for brokers, clearinghouses,
custodians, market makers, and other intermediaries necessary
for traditional stock trading [3]. Thus, with stock tokenization,
the functions of traditional stock exchanges can be trans-
lated seamlessly on-chain while improving accessibility, trans-
parency, and efficiency for investors. In fact, the authors in [4]
argue that investors could save 30% of trading costs if stock
trading was organized using optimally designed, blockchain-
based automated market makers.

A major challenge faced by stock tokenization in DeFi
ecosystems is ownership attribution. A stock is an investment
contract that provides the owner with different rights, such
as the right to vote in shareholder meetings and the right to
dividends [5], [6]. The issuer of tokenized shares of a stock
must be able to distribute the rights associated with the stock
to the correct owners. Although tokens on blockchains have
well-defined holding accounts, in some cases, the account may
be a smart contract which is only holding the tokens on behalf
of their owners [7]. Furthermore, some DeFi protocols, such
as lending protocols and decentralized exchanges, hold assets
in liquidity pools, and the ownership of each token is not
well-defined. Previous works on securities tokenization fail to
adequately address this challenge, as they either ignore assets
held by smart contracts [8]–[14], or restrict the tokenized
asset’s use to custom permissioned DeFi protocols with addi-
tional functionalities [15], thereby eliminating key advantages
of DeFi such as the inter-operability with most decentralized
applications. Meanwhile, existing security token standards face
the same problems and focus only on compliance enforcement
and regulated transfers [16], [17].

This paper presents a solution for tokenizing stocks that
translates the stock’s holding rights on-chain and addresses
the challenges of ownership accounting. Our solution involves
three parts: (i) a Stock Token Contract which provides a liquid
tokenized representation of the stock on-chain; (ii) the Off-
Chain Accounting procedure which calculates the ownership of
tokenized shareholdings; and, (iii) a Rights Redemption Con-
tract which allows tokenized shareholdings to be redeemed

for rights on-chain. Although the work presented here focuses
on stocks, it also applies to other forms of securities such as
options, bonds, etc.

A Stock Token Contract implements a fungible and liquid
token, making it operable with general DeFi protocols. The
Off-Chain Accounting eliminates the gas costs involved in the
accounting, allowing for the complex calculations required for
dealing with smart contracts such as liquidity pools and for
supporting an unbounded number of on-chain shareholders.
It works by calculating both shareholders’ wallet balances
and their contributions to DeFi pools at a particular block
using blockchain event queries. Furthermore, it is adaptable
to the evolving regulatory landscape as the off-chain nature
allows the accounting procedure to be easily upgraded, in
case, for example, it is decided that shareholders do not
own tokens they contribute to DeFi pools. The result of
accounting is brought on-chain by a signed message from
the issuer that allows on-chain shareholders to redeem rights
through a Rights Redemption Contract that performs signature
verification, which can be customized to distribute arbitrary
holding rights.

The proposed solution has low gas costs, costing at least
27% less gas than other solutions for tokenizing dividend-
paying stocks presented in [8] and [18]. Furthermore, as
opposed to the solutions in [8] and [18], our solution is not
limited to dividend-paying stocks—it can represent stocks with
arbitrary holding rights such as voting rights. Crucially, our
solution allows inter-operability with general DeFi protocols
including over 90% of liquidity pools, and it can upgrade its
accounting procedure without incurring additional costs of on-
chain smart contract updates.

The remainder of the paper is organized as follows: Section
II provides a background of the relevant tools and concepts,
Section III details the proposed solution, Section IV presents
an evaluation of the proposed solution and a comparison
against other solutions, Section V discusses the assumptions
and use cases of the proposed solution, and Section VI
provides an overview of the related works.

II. BACKGROUND

This sections presents the blockchain concepts relevant
to the proposed solution, including the token standards and
cryptographic algorithms used in the solution, and the DeFi
protocols that the solution is designed to operate with.

A. Ethereum Request for Comment Token Standards
Ethereum Request for Comment (ERC) token standards

provide standardized APIs for interacting with specified token
types, such as ERC20 and ERC721. An ERC20 token is a
fungible token smart contract that tracks the balances of its
holders [19]. An ERC721 token is a Non-Fungible Token
(NFT) smart contract, where each token has a unique tokenId
that is mapped to its owner and other additional data [20].

B. Elliptic Curve Digital Signature Algorithm
Elliptic Curve Digital Signature Algorithm (ECDSA) is

built upon elliptic curve cryptography, a form of public-
key cryptography that leverages the algebraic structure of

elliptic curves over finite fields [21]. It is the algorithm used
to generate Ethereum public and private keys and to sign
and verify Ethereum transactions [22]. OpenZeppelin provides
an audited library for the safe implementation of ECDSA
signatures on-chain [23].

C. EIP-712

EIP-712 defines a procedure for hashing and signing typed
structured data [24]. In EIP-712, “\x19\x01” is prepended
to messages before they are signed, followed by a domain
separator and the hash struct. The domain separator encodes
the name and version of the signing domain (e.g. name
and version of the application), the active chain ID, and
the verifying contract’s address. The hash struct encodes the
structured message datatypes and data.

D. DeFi Protocols

The DeFi protocols of interest in this work are lending
protocols and Automated Market Makers (AMMs), which have
liquidity pools in which users deposit tokens.

1) Lending: Decentralized lending platforms replace
lenders with liquidity providers, who provide liquidity to a
lending pool by depositing tokens. They are issued ERC20
liquidity pool tokens representing their deposits, which they
can burn to make withdrawals from the pool. A liquidity
provider’s ownership of tokens in the pool is proportional to
the amount of liquidity they provide. For instance, on Aave,
Spark, and Morpho, liquidity providers can withdraw the same
amount of tokens as they deposited [25]–[28]. Meanwhile, on
Compound and Fluid, the amount is scaled by the platform’s
exchange rate [29]–[31].

2) AMMs: AMMs are decentralized exchanges that replace
traditional order book pricing with liquidity pools and algo-
rithmic pricing. Liquidity providers deposit tokens into an
AMM’s liquidity pool at a rate determined by the AMM’s
invariant function, which are then used by exchange users to
swap against. The pool can be structured as a uniform liquidity
pool or as a concentrated liquidity pool.
Uniform liquidity AMMs: In these AMMs, liquidity is
distributed uniformly across the entire price range. Liquidity
providers are issued ERC20 liquidity pool tokens to represent
their positions, which they can burn to withdraw tokens from
the pool. Their ownership is, again, proportional to the amount
of liquidity they provide [32]. Protocols such as Uniswap V2,
Sushiswap V2, and PancakeSwap V2 use a Constant Product
AMM (CPAMM), wherein the product of token balances in the
pool is fixed [3], [33], [34]. Other protocols like Balancer [35]
use a constant geometric mean invariant with support for
multiple tokens per pool, while Bancor [36], [37] extends the
CPAMM model with single-sided liquidity provision.
Concentrated liquidity AMMs (CLAMMs): CLAMMs al-
low liquidity providers to distribute their liquidity along a
selected price interval [38]. The price interval and the liq-
uidity distributed along it is called a liquidity position and
is represented by an ERC721 NFT. CLAMMs maintain an
invariant for each position, L = f(x, y), where L is the
liquidity amount, and x, y are the (virtual) token balances [39].

The price is represented as a function of ticks, p(i), where i
is the tick, and is equal to dy

dx . Then, the invariant can be
rewritten as y = g(p, L) and x = h(p, L) for some functions
g and h. For instance, in Uniswap V3, Sushiswap V3, and
Pancakeswap V3, the invariant is L =

√
xy, the price is p = y

x ,
the tick-to-price mapping is p(i) = 1.0001i, and x = L√

p and
y = L

√
p [33], [34], [38]. In general, Equations (1) and (2)

show the ownership of x and y tokens in the pool for a position
with L liquidity in the interval (p(il), p(iu)), when the current
price is p(ic).

∆x = max{h(max{p(ic), p(il)}, L)− h(p(iu), L), 0} (1)

∆y = max{g(min{p(ic), p(iu)}, L)− g(p(il), L), 0} (2)

E. Homemade Dividends

In traditional finance, Modigliani-Miller Dividend Irrele-
vance implies that, instead of being paid dividends, sharehold-
ers can, equivalently, create homemade dividends by selling
portions of their shares for cash [6]. This concept can be
used for the tokenization of dividend-paying stocks, wherein
the tokenized stock is an ERC20 token pegged to a reserve
of physical shares of the stock. When dividends are paid,
the issuer uses the dividend to buy physical shares of the
stock from a traditional exchange and adds these shares to the
reserve. After the reserve is increased, each ERC20 token’s
pegged value increases to the new ratio of shares in reserve
to tokens in circulation. Any on-chain price not reflecting
this value increase creates an arbitrage opportunity where one
can buy the token on-chain for less and redeem it off-chain
for more. Thus, arbitrageurs will ensure price responsiveness
in on-chain markets, allowing the token’s value to increase
monotonically with every dividend payment. As a result of
the value increase and the divisibility of ERC20 tokens,
shareholders wanting cash dividends may create homemade
dividends on-chain.

For instance, let x be the number of tokens in circulation and
s be the shares in the reserve, so that one token represents s

x

shares. A cash dividend of d per share (and thus sd
x per token)

is paid out, and the issuer receives sd in dividends and buys
sd
p shares, adding them to the reserve, where p is the off-chain

share price after dividend payout. Then, the token represents
s
x + sd

px shares. The value of the token on-chain converges
to sp+sd

x due to arbitrage, so shareholders can sell sd
px tokens

on an exchange like Uniswap V3 to get sd
x in cash (ignoring

fees), which is the original cash dividend per token.
This solution is lightweight and inexpensive: dividend pay-

ments only require gas costs if shareholders choose to create
homemade dividends. It also does not disrupt liquidity pools
as the reserve increases are agnostic to any on-chain DeFi
infrastructures. However, it can be expensive to swap small
amounts on DeFi exchanges as the gas costs do not scale with
transaction value. Furthermore, the solution cannot generalize
to stocks that guarantee its holders rights other than dividends,
such as voting.

<<abstract>>
ERC20Burnable

<<abstract>>
Ownable

StockTokenContract
+ stockname : string
+ stocksymbol : string
+ decimals : uint8
mint(to : address, amount: uint256) : bool
rename(newstockname : string, newstocksymbol :
string) : bool

Fig. 1. StockTokenContract class conforming with ERC-20 standard

III. TOKENIZING STOCK SECURITIES

The proposed solution allows stocks to be represented and
traded on the blockchain, tapping into the resources and
liquidity available on-chain and enabling investors to take ad-
vantage of DeFi efficiencies and decentralization. Meanwhile,
the solution does not sacrifice a stock’s real-world properties
such as the holding rights with which it is associated, nor does
it compromise the tokenized stock’s usability on-chain. This
section presents the proposed solution in detail in its three
parts: the Stock Token Contract, the Off-Chain Accounting
procedure, and the Rights Redemption Contract.1

A. Stock Token Contract

The Stock Token Contract, deployed by the issuer, extends
the OpenZeppelin ERC20 token smart contract, enabling com-
patibility with DeFi protocols described in Section II-D. While
standard ERC-20 tokens have just a name and symbol, this
contract also includes a stockname and stocksymbol,
which can be updated to allow for changes in the stock’s name
and symbol. The contract class is depicted in Figure 1.

B. Off-Chain Accounting

Accounting share ownership at a block (called the cut-
off block) is done by querying the blockchain’s events off-
chain. First, each shareholder’s wallet balance at the cutoff
block is calculated by querying the Stock Token’s logged
Transfer events, which are emitted upon transfer of any
ERC20-compatible token, up to the cutoff block. The wallet
balance is the net of incoming and outgoing transfer amounts
of that wallet address. Next, the shareholders’ balances held
in liquidity pools must be accounted for. These tokens may
be held in lending pools or uniform liquidity AMMs (uniform
liquidity pools), or CLAMMs. To do this, the issuer will de-
termine the proportion of total liquidity that each shareholder
can withdraw from the pool at the cutoff block. The issuer
maintains a whitelist of valid liquidity pools in each category
by keeping a list of addresses of these pools, and performs
accounting for these pools.

1) Uniform Liquidity Pools: For each lending pool and
uniform liquidity AMM, the issuer first calculates the pool’s
Stock Token balance at the cutoff block by querying the Stock
Token’s logged Transfer events and netting the transfers

1The contracts can be found at https://github.com/reinali07/tokenization

involving the pool. Then, for each shareholder, the issuer
determines the shareholder’s balance of the liquidity pool’s
token, this time querying the liquidity pool token’s Transfer
events. Finally, the amount of Stock Tokens attributed to
each shareholder is their proportion of liquidity pool tokens,
multiplied by the pool’s Stock Token balance. This procedure
is summarized in Algorithm 1.

Algorithm 1 Procedure for calculating attributed Stock Token
for uniform liquidity pools.

1: B ← pool’s Stock Token balance
2: for each shareholder, i do
3: Li ← i’s liquidity pool token balance
4: end for
5: L←

∑
i Li

6: for each shareholder, i do
7: resulti ← Li

L B
8: end for

2) CLAMMs: As in the previous case, the pool’s Stock
Token balance at the cutoff block is first calculated. However,
calculating shareholder pool proportions is more complicated
in CLAMMs. In CLAMMs, each position may have a different
rate of conversion from liquidity to tokens, depending on the
position’s tick interval. Thus, dealing with CLAMMs requires
more exchange-specific information than the previous case,
which was easily generalized. First, the issuer must include
in its whitelist the address of the NFT position manager
associated with each CLAMM, as well as the factory contract
(wherein one can lookup pools by token pairs and specified
fee). Next, we require knowledge of the pool’s invariant
functions, g, h in Equations (1) and (2). Finally, we require
that shareholders report, before the cutoff block, the liquidity
pools they contribute to and the corresponding tokenId of
any concentrated liquidity positions they hold.

The issuer first confirms the ownership of each on-chain
shareholder’s reported NFTs by querying the NFT con-
tract’s Transfer events, which are emitted upon transfer
of any ERC721-compatible NFT, and confirming that the
net incoming and outgoing transfers of the token to the
shareholder is 1. The issuer then calls the NFT contract’s
positions() method to determine the tick interval of
the position. The positions() method also returns the
token0 and token1 address, and the pool fees, which al-
lows the issuer to call the Pool Factory contract’s getPool()
method to confirm the NFT corresponds to the reported pool.
It also allows the issuer to determine whether the Stock Token
is token0 or token1 in the pool. Note that calling the
positions() method requires that the shareholder does
not burn their NFT before the accounting is completed. This
constraint does not affect the shareholder, as positions can be
closed out without burning their associated NFT. Then, the is-
suer determines the NFT’s liquidity by querying the NFT con-
tract’s IncreaseLiquidity and DecreaseLiquidity
events for the tokenId, which are emitted upon liquidity
position updates, and netting these updates.

Next, the issuer determines the pool’s tick, ic, at the cutoff
block. To do this, it will query the Pool contract’s Swap events
to find the last swap prior to the cutoff block, which contains
the tick after the swap. Then, for each NFT, the issuer uses
Equation (1) or Equation (2) (if token0 or token1 is the
Stock Token, respectively) to determine the number of Stock
Tokens attributed to the on-chain shareholder. The procedure
for accounting for one shareholder’s concentrated liquidity
position is summarized in Algorithm 2.

Algorithm 2 Procedure for calculating attributed Stock Tokens
for a on-chain shareholder’s concentrated liquidity position.

1: Confirm position NFT ownership
2: token0, token1, fee, il, iu ← NFTContract.positions(nft)
3: Check pool == PoolFactory.getPool(token0,token1,fee)
4: L← position liquidity
5: ic ← tick before cutoff
6: if Stock Token is token0 then
7: result ← max(h(max(p(ic), p(il), L)− h(p(iu), L), 0)
8: else if Stock Token is token1 then
9: result ← max(g(min(p(ic), p(iu)), L)− g(p(il), L), 0)

10: end if

C. Rights Redemption Contract

On-chain shareholders are attributed the same rights as their
off-chain counterparts, which they can redeem or exercise on-
chain. Rights on-chain can be tokenized and thus represented
by different token types. In this work, we consider three
types of tokens: native tokens (e.g. Ether), ERC20 tokens
(e.g. cryptotokens), and NFTs (e.g. DAO membership). A
discussion on the use cases of rights represented by these token
types is provided in Section V-B.

The Rights Redemption Contract allows on-chain share-
holders to redeem the rights they are owed after their share
ownership is accounted off-chain by the issuer (Section III-B).
The contract extends the OpenZeppelin EIP-712 contract [23]
and the data structure being signed depends on the type of
token being distributed. The base Rights Redemption Contract
allows shareholders to redeem tokens by providing a message
with a valid ECDSA signature. The message is constructed and
signed by the issuer after accounting, and distributed to on-
chain shareholders off-chain on a public channel. The message
data structure is shown in Figure 2, where the value is the
amount of the tokenized rights the shareholder can claim. In
the case of native tokens, no additional data is required. ERC20
token redemption requires messages to include the address of
the ERC20 token in which the right is denominated. For NFT-
denominated rights, the message can also include additional
structured data.

The base contract is depicted in Figure 3. It keeps track
of messages that have been redeemed by mapping unique
message IDs to their redemption status to ensure that a
message cannot be redeemed more than once. This replaces the
single incrementing nonce typically used in ECDSA contracts
as message IDs allow the issuer to issue indefinitely many
messages at once that may be redeemed in any order. When

RedemptionMessage
+ messageId : uint256
+ holder : address
+ value : uint256
+ signature : bytes

ETHMessage

ERC20Message
+ erc20Token : address

NFTMessage
+ nftData : abstractStruct

Fig. 2. Signed redemption message data structures for Ether, ERC-20 tokens,
and NFTs.

<<abstract>>
EIP712

<<abstract>>
Ownable

struct Message
+ redeemed : uint256

<<abstract>>
RightsRedemptionContract

+ messages : mapping(messageId : uint256 => Message)
- messageTypeHash : bytes32

+ redeem(message : RedemptionMessage) : bool
- verify(message: RedemptionMessage) : bool
- releaseTokens(message : RedemptionMessage) : bool

Fig. 3. Base Rights Redemption Contract class

a message is being redeemed, the contract first checks that
the message’s ID has not yet been redeemed. It then uses the
message and the signature to recover the signer address and
verifies that it belongs to the issuer. This recovery procedure
also confirms the correct redeemer and signature domain.
Upon successful signature verification, the contract transfers
the recipient the tokens specified by the message. The im-
plementation of the redeem() and verify() methods are
depicted in Figure 4.

1) Native Tokens and ERC20 Token: When shareholder
rights are distributed in the form of native tokens or
ERC20 tokens, there is no additional functionality
required for the Rights Redemption Contract. However,
for native tokens, the contract must include an empty
receive() function to receive native tokens so that it can
eventually distribute them. The messageTypeHash for
these contracts are keccak256("Redeem(uint256
messageId,address holder,uint256
value)") and keccak256("Redeem(uint256
messageId,address holder,uint256
value,address erc20Token)"), for native tokens
and ERC20 tokens respectively.

2) NFTs: When shareholder rights are distributed
in the form of NFTs, the Rights Redemption Contract
also extends the Openzeppelin ERC721 contract.
Additionally, it may have data members mapping NFTs
to structured data. It may also implement additional
methods for the usage of the NFT. An example of such
is given in Section V-B. The messageTypeHash for

fn redeem(
uint256 messageId,uint256 value,...,
uint8 v, bytes32 r, bytes32

) external {
verify(messageId,value,...,signature);
releaseTokens(msg.sender,value,...);

}
fn verify(

uint256 messageId,uint256 value,...,
uint8 v, bytes32 r, bytes32 s

) internal {
Message storage message =

messages[messageId];
require(message.redeemed == 0,"Already

redeemed");
message.redeemed = 1;

bytes32 structHash =
keccak256(abi.encode(messageTypeHash,
messageId,msg.sender,value,...));

bytes32 h =
EIP712._hashTypedDataV4(structHash);

address signer = ECDSA.recover(h,v,r,s);
require(signer == owner,"Invalid Signature");

}

Fig. 4. RightsRedemptionContract’s redeem() and verify() methods.

these contracts is keccak256("Redeem(uint256
messageId,address holderAddress,uint256
value,abstractStruct nftData)"), where the
nftData is optional NFT data of type abstractStruct.

IV. EVALUATION

The performance of the proposed solution is evaluated
against the four metrics introduced in Section III: gas cost,
the ability to generalise to stocks with arbitrary holding rights,
the ability to operate seamlessly with general DeFi protocols
without disruption, and the ability to adapt to arbitrary ac-
counting methods. We also measure the time required to run
the accounting procedure. Furthermore, a comparison against
these metrics with other stock tokenization solutions presented
in [8], [18], and Section II-E is presented.

A. Performance

Gas cost: The gas cost of the proposed solution is realized
in the on-chain components: the Stock Token Contract and
the Rights Redemption Contract. The gas costs are measured
by deploying the contracts on a local Ethereum network. The
Stock Token Contract is an extension of ERC20 and the gas
costs associated with calling its methods are equal to the
standard ownable and burnable ERC20 contract. Deployment
of the Stock Token Contract costs 400k more gas as it
implements one extra function and two extra data members.

Table I summarizes the gas cost for the Rights Redemption
Contract’s deployment, redeeming a message, and reverted
redemption attempts. The order of operations is checking (and
updating) whether a message has already been redeemed,
verifying the message signature, and finally, releasing tokens.
Based on this order, Table I indicates, roughly, that checking
and updating whether a message has been redeemed costs 26-
27k gas, verifying a signature costs 28k gas, and releasing
tokens takes 9k, 18k, and 62k gas for ETH, ERC20, and NFTs
respectively. In comparison, transferring ETH costs 21k gas,

TABLE I
GAS USED FOR TOKEN REDEMPTION

Contract Token Type
Action ETH ERC20 NFT

Deployment 1,187k 1,168k 2,735k
Redeem 63k 73k 116k

Failed: already redeemed 26k 27k 26k
Failed: invalid signature 54k 55k 54k

55.8 %

Aave

14.9 %

Spark

13.9 %

Compound

9.5 %

Morpho

1.5 %

Fluid

Fig. 5. Compatible lending proto-
cols by TVL, 95.6% of total.

75.2 %

Uniswap

11.0 %

Balancer

3.1 %

Sushiswap

1.1 %

Bancor

1.1 %

Pancakeswap

Fig. 6. Compatible AMMs by
TVL, 91.5% of total.

transferring standard ERC20 tokens costs 30k gas, and minting
standard mintable ERC721 NFTs costs 57k.
Generalizing to arbitrary holding rights: The proposed
solution is able to handle any holding rights that can be
represented as ETH, ERC20 tokens, or NFTs. This includes
rights such as dividend payments and voting in shareholder
meetings, which are discussed in Section V-B. Moreover,
it is possible to extend the Rights Redemption Contract to
accommodate rights that come in other forms, as long as
they can be represented as on-chain tokens that may be
transferred or minted by the Rights Redemption Contract to
the shareholder.
Operability with DeFi: The Stock Token Contract imple-
ments the ERC20 API, making it operable with DeFi protocols
using ERC20 tokens. The accounting procedure is also flexible
in its operability as the off-chain nature allows it to be
upgraded to maintain compatibility with potential new DeFi
liquidity pool logic. As it is, the procedure is compatible
with the top DeFi protocols. The top five DeFi protocols
on Ethereum by total volume locked (TVL) in the lending
category and the AMM category are shown in Figures 5
and 6, respectively [40], [41]. These protocols are compatible
with the accounting procedure as they are lending pools,
uniform liquidity AMMs, or CLAMMs. They make up 95.6%
of lending pools and 91.5% of AMMs by TVL. These are
not exhaustive in terms of compatibility—for instance, other
protocols forked from Uniswap are also compatible due to the
liquidity pool logic.
Adapting to arbitrary accounting methods: The off-chain
nature of the accounting procedure allows it to adapt to
accommodate evolving regulations or decisions regarding the
ownership accounting of tokenized stocks. For instance, if it

TABLE II
ACCOUNTING PROCEDURE RUNNING TIME

Wallet balances Uniswap V2 Uniswap V3
Number of users 380k1 3k2 1k3

Time per user 0.04 ms 5.05 ms 4 s4

Total time 14 s5 16 s6 4000 s
1 From https://etherscan.io/token/0x1f9840a85d5af5bf1d1762f925bdadd

c4201f984 (accessed May 11, 2024).
2 From https://etherscan.io/token/0xd3d2E2692501A5c9Ca623199D3882

6e513033a17 (accessed May 11, 2024).
3 From https://etherscan.io/advanced-filter?eladd=0x1d42064Fc4Beb5F8

aAF85F4617AE8b3b5B8Bd801&eltpc=0x7a53080ba414158be7ec69b
987b5fb7d07dee101fe85488f0853ae16239d0bde&mtd=0x88316456%7
eMint&age=2021-01-01%7e2024-05-11.

4 From https://dune.com/queries/3715137.
5 From https://dune.com/queries/3713463.
6 From https://dune.com/queries/3708748.

is decided that on-chain shareholders do not own any tokens
they contribute to liquidity pools, the accounting procedure
can simply skip the accounting for liquidity pools.
Running time: The time required to perform accounting,
taking the Uniswap token (UNI) as the share token, is sum-
marized in Table II. The running time is measured as the
time to retrieve the necessary event logs to account for the
wallet balances of the holders of UNI, the liquidity providers
of a Uniswap V2 UNI/ETH pool, and the liquidity positions
of a Uniswap V3 UNI/ETH pool. The log queries are done
using Dune SQL’s free tier. For dividend payments, the record
date, the date at which the shareholders’ holdings are recorded
for payment, is typically several weeks prior to the actual
payment [6]. For shareholder voting, the record date is on
or before the day that notice of a meeting is issued, which
typically occurs several weeks prior to the meeting [42], [43].
As the accounting for each pool takes less than two hours in
the most complex case, there is more than enough time to
complete accounting.

B. Comparison
The proposed solution is compared with three other so-

lutions against the metrics discussed. These solutions are:
Automatic dividend distribution [18], where a smart contract
sends dividends to each holding address; Homemade divi-
dends where dividends can be created by holders by swapping
portions of their shares on-chain for cash; and the work on
dividend-paying tokenized asset by Zhitomirskiy et al. [8],
where holders redeem dividends through a contract that calcu-
lates their dividend payment based on the amount of tokenized
stock they are holding and the amount of time for which they
held them. Specifically, the solutions are qualitatively assessed
in terms of their ability to generalize to arbitrary holding
rights, operatibility with DeFi, and adaptability to arbitrary
accounting methods. The gas costs for each token holder for
receiving dividend payments is also measured based on 380k
holders, the number of holders of UNI.

The results are summarized in Table III, which shows that
no other solution performs adequately against the metrics.
These solutions are fit only for paying dividends, and cannot
accommodate other rights, such as voting. Crucially, even

TABLE III
COMPARISON OF SOLUTIONS

Automatic Homemade Zhitomirskiy Our
dividends dividends et al. solution

Arbitrary
holding rights

✗ ✗ ✗ ✓

DeFi
operability

✗ ✓ ✗ ✓

Adaptable ac-
counting

✗ ✗ ✗ ✓

Gas cost per
shareholder

✗1 127k2 100k 73k

1 Automatic dividend distribution for 380k holders costs >100B gas, which
exceeds the Ethereum block gas limit of 30M [44], making the distribution
transaction fail.

2 Average gas used for Uniswap V3’s exact input single swap method from
https://dune.com/queries/3694112.

for the payment of dividends, the alternate solutions do not
make considerations for tokens held in DeFi protocols and
require on-chain shareholders to be holding their tokens in
order to receive dividends. The exception is the homemade
dividends solution, where the token values scale regardless
of where they are on-chain. Furthermore, no solution is able
to adapt to other accounting methods, as the accounting is
either encoded into smart contracts, as is the case for the
automatic dividend distribution solution and Zhitomirskiy et
al.’s [8] solution, or is encoded in the token value scaling in
the case of the homemade dividends solution. Despite failing
against the metrics, these alternate solutions are also more
costly, with Zhitomirskiy et al’s solution being the cheapest
one at 27k more gas per shareholder compared to our solution.

V. DISCUSSION & USE CASES

This section presents a discussion on the trust assumptions
related to off-chaining calculations as well as details how
the proposed solution is applied in three use cases: dividend
payments, shareholder voting, and mergers/acquisitions.

A. Trust Assumptions

In general, tokenization schemes require a high level of trust
in the issuer, as the issuer has custody of the physical shares
and is responsible for relaying holding rights. As such, issuers
should be strictly regulated. Thus, as long as the off-chain ac-
counting results can be verified by other parties, the proposed
solution does not require stronger trust assumptions compared
to other tokenization schemes, such as those examined in Sec-
tion IV-B. In the proposed solution, an individual shareholder
can verify the issuer’s accounting results by simply redoing
the calculation. This is possible as the procedure for one’s
accounting requires only publicly available blockchain data
and knowledge of one’s own CLAMM positions. Similarly,
third parties can also verify the calculations when shareholders
provide their CLAMM positions.

B. Use Cases

Dividend Payments: For a dividend-paying stock, the issuer
deploys, along with the Stock Token Contract, a dividend
Rights Redemption Contract, in which the issuer will deposit

fn castVote(uint256 tokenId, uint256 value, uint8
choice) public {
VotingNFT storage vote = tokenData[tokenId];
require(owners[tokenId] == msg.sender,

"Unauthorized voter");
require(value <= vote.value,"Not enough

votes");

vote.value = vote.value - value;
emit Voted(vote.voteId, choice, value);

}

Fig. 7. Implementation of simple vote casting for shareholder voting.

the dividends as ETH or ERC20 tokens to be redeemed by
on-chain shareholders.

1) The company declares a future dividend payment.
2) The issuer notifies on-chain shareholders of the account-

ing cutoff, e.g. the first block after the record date.
3) On-chain shareholders report, off-chain, a list of pools

and NFTs, as in Section III-B, prior to the cutoff.
4) After the cutoff, the issuer accounts for each on-chain

shareholder using the procedure in Section III-B, multi-
plying the result by the dividends per share.

5) The issuer writes, signs, and sends (off-chain) to each
shareholder a message with the number of dividends to
pay and the shareholder’s address. If the dividend is paid
in ERC20 tokens, the message also contains the address
of that ERC20 token.

6) The shareholder passes the message to the dividend
Rights Redemption Contract to claim their dividends.

Shareholder Voting: For common stock, the issuer deploys,
along with the Stock Token Contract, a voting Rights Re-
demption Contract, which mints voting NFTs to on-chain
shareholders and acts as a general purpose voting contract.

1) The company announces a shareholder’s meeting.
2) The issuer notifies on-chain shareholders of the account-

ing cutoff, e.g. the first block after the record date.
3) On-chain shareholders report a list of pools and NFTs

(Section III-B) prior to the cutoff.
4) After the cutoff, the issuer performs accounting (Section

III-B).
5) The issuer writes, signs, and sends (off-chain) to each

shareholder a message with the number of votes, the
shareholder’s address, and a vote ID specifying the vote
the shareholder may partake in.

6) The shareholder passes the message to the voting Rights
Redemption Contract and is issued an NFT containing
the vote ID and the number of votes, which they can
cast to the same contract (Figure 7), emitting an event
with the vote ID, choice, and number of votes cast.

7) After the vote deadline, the issuer queries the event logs
to tally the vote. This tally can be verified by any party,
including the Company holding the vote.

Mergers and Acquisitions: When a merger occurs, there are
several possibilities: shareholders are paid out for their shares,
shareholders exchange their shares of the old stock with shares
of the new stock, or a mix of the two [45]. If shareholders
exchange their shares, the issuer’s physical holdings will be

swapped. The issuer will then invoke the rename() function
of the Stock Token Contract, updating the stockname and
stocksymbol in Figure 1. However, this information may
not be updated on blockchain explorers, such as Etherscan.
To avoid confusion, the Stock Token Contract’s name and
symbol can be initially set to a unique identifier instead of the
stock’s actual name and symbol. If, instead, shareholders are
paid out, on-chain shareholders send their tokens to a burning
contract, which transfers them ETH or ERC20 tokens for every
Stock Token it burns. In the case of a mixture of swapping
and payout, the Stock Token can be renamed and the dividend
payment process takes place to execute the payout.

VI. RELATED WORK

The tokenization of securities has been explored both in the
literature and in the financial industry. The literature to date
focuses on regulatory compliance and dividend distribution,
but provides inadequate consideration for the feasibility of
dividend distribution in terms of gas costs, the accounting of
tokens held in DeFi protocol liquidity pools, and the potential
for other types of holding rights. The industry projects focus
on regulatory compliance and cost efficiency, but have the
same shortcomings as the works in the literature. Furthermore,
these industry projects are opaque and provide little detail on
technical implementation or empirical results.

A. Literature Review

In 2020, [18] proposed a blockchain-based solution for
tokenizing revenue-generating real estate. The distribution of
revenue to the real estate token holders is executed by a
smart contract that calculates the proportion of tokens held
by each address and transfers the dividends to each token
holder. This is an expensive operation for the operator of
the smart contract, as the number of transfers scales with the
number of token holders. Furthermore, transferring dividends
to indefinitely many token holders may cause the distribution
transaction to exceed the Ethereum block gas limit and fail.
The ERC1400 Security Token and the ERC3643 T-REX - To-
ken for Regulated EXchanges standards were created in 2018
and 2021, respectively, to provide Ethereum token APIs for the
regulatory compliance of security tokens by requiring identity
management and/or compliant transfers [16], [17]. These token
standards are designed to address the legal requirements of
securities tokens, and do not consider functionality such as
the distribution of holding rights. In 2023, [8] described an
asset tokenization system for dividend-paying assets, where
dividend payments are calculated based on the amount of time
the token spends in the holder’s wallet. In this work, assets
with holding rights other than dividends were not considered
and paying dividends to liquidity providers was left as a
challenge for future adoptions.

B. Industry Projects

Several projects for the tokenization of securities or other
real-world assets helmed by major banks, securities trading
firms, and regulatory bodies are in the works. A collaboration
named Project Guardian between policymakers UK’s FCA,

Switzerland’s FINMA, Japan’s FSA, and Singapore’s MAS
and industry groups including JP Morgan, Citibank, and
HSBC, aims to develop and pilot the policies and technolo-
gies necessary for secure, interoperable, and innovative asset
tokenization [46]. The project’s focus thus far has been on
identity and trust management, regulatory innovation, payment
automation, and portfolio management [47]. It wrapped up
its first pilot program for the trading of tokenized bonds
and foreign exchange against permissioned liquidity pools in
2022 [15]. Swiss securities firm Taurus provides a platform for
the tokenization of assets, and was approved by the FINMA
to offer tokenized securities of unlisted Swiss firms to retail
investors in January 2024 [9]. Private Swiss bank Cité Gestion,
along with a handful of other firms used the Taurus platform
to tokenize its own shares to be available to professional
investors in 2023 [10]. In 2022, Hamilton Lane announced it
would be tokenizing three of its funds using Securitize, another
firm offering asset tokenizaton services [11]. In 2022, UBS
launched a digital bond that is tradeable on the blockchain,
as well as in traditional exchanges [12]. The BIS, along with
the Swiss National Bank and the World Bank announced in
2024 Project Promissa, a pilot initiative for the tokenization of
promissory notes [13]. HSBC, partnering with Goldman Sachs
and the EIB, has launched in 2023 a digital bond that uses the
blockchain as a record of ownership [14]. These projects are
limited in scope, as they focus on specific types of assets, such
as bonds and notes. Moreover, while they aim for efficiency
gains through blockchain’s accessibility and automation, they
do not consider the potential arising from inter-operability with
DeFi, as they either require limitations on compatible DeFi
protocols or do not address DeFi compatibility at all.

VII. CONCLUSION

This paper presents a stock tokenization solution that is
gas-efficient, generalizes to arbitrary holding rights, operates
with DeFi without friction, and can be adapted to arbitrary
accounting methods or decisions. We show that these re-
quirements are not adequately addressed by existing solutions.
Our solution comprises three components: a Stock Token
Contract, the Off-Chain Accounting procedure, and a Rights
Redemption Contract. The Stock Token Contract is operable
with DeFi by design and the Off-Chain Accounting works for
lending pools, uniform liquidity AMMs, and CLAMMs as it is
designed around their liquidity provision and pool ownership
logic. Specifically, the accounting procedure is able to account
for at least 90% of lending pools and AMMs, by TVL. We
demonstrate that our solution can accommodate stocks with
any rights that can be represented by ETH, ERC20 tokens, or
NFTs, and give three explicit use cases: dividend payments,
voting rights, and mergers/acquisitions.

In future work, further gas optimizations in the Rights
Redemption Contract should be performed to further lower
the cost of redeeming rights. Currently, reading and writing
the message redemption status are expensive operations that
could be improved by, for instance, using different data
types or structures. Moreover, the time required to run the
accounting procedure could be reduced by using other methods

to query event logs. Furthermore, while we have shown the
representation of voting rights as tokens, the peripheral utilities
required for other types of rights can be explored. Finally,
for real-world implementation, our solution should incorporate
regulatory compliance solutions, which are discussed in the
related works [8], [16], [17]. These works can be adopted
by our solution, as they can be realized as modifications or
additions to the Stock Token Contract.

REFERENCES

[1] Top DeFi Tokens by Market Capitalization, CoinMarketCap, Feb. 21,
2024. [Online]. Available: https://coinmarketcap.com/view/defi/

[2] “Investor Bulletin: American Depositary Receipts,” SEC Office of
Investor Education and Advocacy, Aug. 2012. [Online]. Available:
https://www.sec.gov/investor/alerts/adr-bulletin.pdf

[3] H. Adams, N. Zinsmeister, and D. Robinson, “Uniswap v2 Core,”
Uniswap. Mar. 2020. [Online]. Available: https://uniswap.org/whitep
aper.pdf

[4] K. Malinova and A. Park, “Learning from DEFI: Would automated
market makers improve equity trading?,” Nov. 2023. [Online]. Available:
https://ssrn.com/abstract=4531670

[5] J. B. Berk and P. M. DeMarzo, “The Corporation and Financial
Markets,” in Corporate Finance, Fifth Global Edition., Pearson, 2019,
ch. 1, sec. 1, pp. 32–55.

[6] J. B. Berk and P. M. DeMarzo, “Payout Policy,” in Corporate Finance,
Fifth Global Edition., Pearson, 2019, ch. 17, sec. 5, pp. 635–675.

[7] K. Malinova and A. Park, “Tokenized Stocks for Trading and Capital
Raising,” Feb. 8, 2023. [Online]. Available: https://ssrn.com/abstract=
4365241

[8] E. Zhitomirskiy, S. Schmid, and M. Walther, “Tokenizing assets with
dividend payouts—a legally compliant and flexible design,” Digital
Finance, vol. 5, no. 3, pp. 563—580, Dec. 2023, doi: 10.1007/s425
21-023-00094-w.

[9] I. Allison. “Crypto Custody Specialist Taurus Brings Tokenized Secu-
rities to Retail Customers in Switzerland.” CoinDesk. https://www.coin
desk.com/business/2024/01/23/crypto-custody-specialist-taurus-brings-t
okenized-securities-to-retail-customers-in-switzerland/ (accessed Apr.
22, 2024).

[10] A. Sanon-Jules. “Swiss Bank Cité Gestion Becomes First Private Bank
to Tokenize Its Own Shares.” CoinDesk. https://www.coindesk.com/bus
iness/2023/01/24/swiss-bank-cite-gestion-becomes-first-private-bank-t
o-tokenize-its-own-shares/ (accessed Apr. 22, 2024).

[11] J. Crawley. “Investment Manager Hamilton Lane to Tokenize 3 Funds
Through Securitize.” CoinDesk. https://www.coindesk.com/business/20
22/10/05/investment-manager-hamilton-lane-to-tokenize-3-funds-throu
gh-securitize/ (accessed Apr. 22, 2024).

[12] “UBS AG launches the world’s first ever digital bond that is publicly
traded and settled on both blockchain-based and traditional exchanges.”
UBS Global. https://www.ubs.com/global/en/media/display-page-ndp/e
n-20221103-digital-bond.html (accessed Apr. 22, 2024).

[13] “BIS Innovation Hub, Swiss National Bank and World Bank launch
Project Promissa to test tokenisation of financial instruments.” Bank of
International Settlements Innovation Hub. https://www.bis.org/about/bi
sih/topics/fmis/promissa.htm (accessed Apr. 22, 2024).

[14] “Hong Kong confirms first $100m tokenized green bond.” Ledger
Insights. https://www.ledgerinsights.com/hong-kong-tokenized-gre
en-bond/ (accessed Apr. 22, 2024).

[15] L. Alan et al., “Project Guardian: Enabling Open and Interoperable
Networks,” Monetary Authority of Singapore and Bank of International
Settlements, June 2023. [Online]. Available: https://www.mas.gov.sg/-/
media/mas-media-library/development/fintech/project-guardian/projec
t-guardian-open-interoperable-network.pdf

[16] Security Token Standard, ERC-1400, A. Dossa, P. Ruiz, F. Vogelsteller
and S. Gosselin, Sep. 9, 2018. [Online]. Available: https://github.com/e
thereum/EIPs/issues/1411

[17] T-REX - Token for Regulated EXchanges, ERC-3643, J. Lebrun, T.
Malghem, K. Thizy, L. Falempin, and A. Boudjemaa, Jul. 9, 2021.
[Online]. Available: https://eips.ethereum.org/EIPS/eip-3643

[18] A. Gupta, J. Rathod, D. Patel, J. Bothra, S. Shanbhag, and T. Bhalerao,
“Tokenization of Real Estate Using Blockchain Technology,” in Applied
Cryptography and Network Security Workshops, 2020, pp. 77—90, doi:
10.1007/978-3-030-61638-0 5.

[19] Token Standard, ERC-20, F. Vogelsteller and V. Buterin, Nov. 19, 2015.
[Online]. Available: https://eips.ethereum.org/EIPS/eip-20

[20] Non-Fungible Token Standard, ERC-721, W. Entriken, D. Shirley, J.
Evans, and N. Sachs, Jan. 24, 2018. [Online]. Available: https://eips.eth
ereum.org/EIPS/eip-721

[21] S. Nakov, “Digital Signatures,” in Practical Cryptography for Develop-
ers, Nov. 2018. [Online]. Available: https://cryptobook.nakov.com/

[22] Ethereum.org. Ethereum Glossary: ECDSA (2024). [Online]. Available:
https://ethereum.org/en/glossary/#ecdsa

[23] OpenZeppelin. Contracts - OpenZeppelin Docs. [Online]. Available: ht
tps://docs.openzeppelin.com/contracts/

[24] Typed structured data hashing and signing, EIP-712, R. Bloemen, L.
Logvinov, and J. Evans, Sep. 12, 2017. [Online]. Available: https://eips
.ethereum.org/EIPS/eip-712

[25] Avara. Aave v2 Developers Documentaton: aTokens. [Online]. Available:
https://docs.aave.com/developers/v/2.0/the-core-protocol/atokens

[26] Avara. Aave v3 Developers Documentation: AToken. [Online]. Available:
https://docs.aave.com/developers/tokens/atoken

[27] MakerDAO. Spark Developer Documentation. [Online]. Available: https:
//devs.spark.fi/

[28] P. Frambot, M. G. Delaunay, V. Danos, A. Husson, and K. Babbar,
“Morpho Optimizer: Optimizing Decentralized Liquidity Protocols,”
Morpho, Apr. 2022. [Online]. Available: https://whitepaper.morpho.xyz/

[29] Compound Labs, Inc.. Compound V2 Docs: cTokens. [Online]. Avail-
able: https://compound.finance/docs/ctokens

[30] Compound Labs, Inc.. Compound III Docs: Collateral & Borrowing.
[Online]. Available: https://docs.compound.finance/collateral-and-borro
wing/

[31] Instadapp. Fluid Contracts overview. [Online]. Available: https://docs.f
luid.instadapp.io/introduction/contracts-overview

[32] Y. Zhang, X. Chen, and D. Park, “Formal Specification of Constant
Product (x y = k) Market Maker Model and Implementation,” Runtime
Verification, Inc. Oct. 24, 2018. [Online]. Available: https://github.com
/runtimeverification/verified-smart-contracts/blob/master/uniswap/x-y-k
.pdf

[33] Sushi. SushiSwap Docs. [Online]. Available: https://docs.sushi.com/
[34] PancakeSwap. PancakeSwap Developer Docs. [Online]. Available: https:

//developer.pancakeswap.finance/
[35] Balancer. Balancer Docs. [Online]. Available: https://docs.balancer.fi/
[36] Bancor. Bancor Network V2.1. [Online]. Available: https://bancor-net

work.gitbook.io/v2.1/master
[37] Bancor. Banor V3 Technical Docs. [Online]. Available: https://docs.ban

cor.network/
[38] H. Adams, N. Zinmeister, M. Salem, R. Keefer, and D. Robinson,

“Uniswap v3 Core,” Uniswap. Mar. 2021. [Online]. Available: https:
//uniswap.org/whitepaper-v3.pdf

[39] Uniswap. Uniswap V3 Protocol Technical Reference. [Online]. Avail-
able: https://docs.uniswap.org/contracts/v3/reference/overview

[40] “Lending TVL Rankings,” DefiLlama. [Online]. Available: https://defil
lama.com/protocols/Lending/Ethereum (accessed May 1, 2024).

[41] “Dexes TVL Rankings,” DefiLlama. [Online]. Available: https://defilla
ma.com/protocols/Dexes/Ethereum (accessed May 1, 2024).

[42] “Share structure and shareholders.” Government of Canada Innovation,
Science and Economic Development. https://ised-isde.canada.ca/site/c
orporations-canada/en/business-corporations/share-structure-and-share
holders (accessed May. 10, 2024).

[43] Companies act 2006: Notice of meetings. UK Public General Acts 2006,
ch. 46, sec. 13, pp. 144–146.

[44] Ethereum.org. Ethereum Development Documentation: Gas and fees
(2024). [Online]. Available: https://ethereum.org/en/developers/docs/gas/

[45] J. B. Berk and P. M. DeMarzo, “Mergers and Acquisitions”, in Corpo-
rate Finance, Fifth Global Edition, Pearson, 2019, ch. 28, sec. 10, pp.
1000–1030.

[46] “Project Guardian.” Monetary Authority of Singapore. https://www.ma
s.gov.sg/schemes-and-initiatives/project-guardian (accessed Apr. 22,
2024).

[47] T. Lobban et al., “The Future of Wealth Management: Ultra-efficient
portfolios of traditional and alternative investments powered by tok-
enization,” J.P. Morgan Chase & Co. and Apollo Global Management,
Inc., 2023. [Online]. Available: https://www.jpmorgan.com/onyx/docu
ments/portfolio-management-powered-by-tokenization.pdf

