
A Robust Front-Running Methodology
for Malicious Flash-Loan DeFi Attacks

Xun Deng
University of Toronto

xun.deng@mail.utoronto.ca

Zihan Zhao
University of Toronto

simonzihan@gmail.com

Sidi Mohamed Beillahi
University of Toronto

sm.beillahi@utoronto.ca

Han Du
Bank of Canada

hdu@bank-banque-canada.ca

Cyrus Minwalla
Bank of Canada

cminwalla@bank-banque-canada.ca

Keerthi Nelaturu
University of Toronto

keerthi.nelaturu@mail.utoronto.ca

Andreas Veneris
University of Toronto

veneris@eecg.utoronto.ca

Fan Long
University of Toronto
fanl@cs.toronto.edu

Abstract—This paper presents FrontDef, a security system to
detect and front-run malicious transactions to mitigate financial
loss caused by smart contract attacks. FrontDef monitors each
transaction in the pending transaction pool to detect potential
attacks. For each suspicious transaction, FrontDef analyzes the
bytecode of the contract the transaction attempts to interact and
assembles a sequence of mimic transactions to replicate the attack
strategy. FrontDef then uses the assembled transactions to front-
run the suspicious attack transaction to prevent financial loss.
Empirical results show that FrontDef can successfully detect and
assemble mimic transactions for all of the 24 benchmark cases
that includes 21 historical attacks that occurred on Ethereum and
Binance Smart Chain (BSC). They also confirm that FrontDef
can process up to 1230 transactions per second, which currently
is greater than the maximum throughput of Ethereum and BSC.

Index Terms—Smart Contracts, Decentralized Finance Smart
Contracts, Smart Contracts Analysis, Smart Contracts Security,
Real-Time Monitoring, Front-Running.

I. INTRODUCTION

Decentralized Finance (DeFi) has become one of the most
important applications of blockchain technology. A DeFi pro-
tocol encodes sophisticated transaction rules as smart contract
programs to manage digital assets. Smart contracts enable
users to interact with the protocol to perform various finan-
cial activities such as trading, lending, and investing in a
completely decentralized and trustless way. DeFi contracts on
blockchain platforms are now managing digital assets worth
tens of billions of dollars [1].

One critical challenge for the further adoption of DeFi and
blockchain technology is smart contracts security. Because
smart contracts are software modules that encode transaction
rules, just like any other programs they may also contain bugs
and/or errors. Errors in DeFi contracts are particularly severe
because attackers may craft malicious transactions to exploit
and/or steal the underlying digital assets managed by those
contracts, hence causing significant financial losses [2], [3].

Researchers have developed many program analysis [4]–
[16], verification [17]–[20], and runtime validation [21], [21]–
[23] techniques to detect and prevent such smart contract
errors. In practice, however, these techniques cannot fully
stop increasingly complicated attacks against modern DeFi

protocols. Among other, they are often not accurate enough
to handle sophisticated DeFi contracts, not scalable enough to
reason about interactions between multiple contracts, and/or
require too much engineering overhead to be practically useful.

This paper presents FrontDef, a security system to detect
and front-run malicious transactions to prevent financial loss
caused by smart contract attacks. While one way to eliminate
errors is to perform formal verification, it is unrealistic to
expect one to formally verify every single contract deployed on
a blockchain. Therefore, FrontDef attempts to stop malicious
attacks as they occur in “real-time”.

FrontDef first monitors pending transactions in the mem-
pool (i.e., pending transaction pool) of the blockchain to detect
potentially malicious attack transactions on the fly. FrontDef
locally executes pending transactions and analyzes tokens
flows in the execution traces to flag suspicious transactions
with prohibitive large profits. FrontDef then analyzes a flagged
transaction and its associated contracts to assemble mimic
(replica) transactions that copy the attacker’s strategy. It then
attempts to front-run the attack transaction with its replica
transactions to secure the digital assets at risk before the
malicious entity gets access to those assets.

FrontDef provides an easy to integrate mechanism that al-
lows entities managing blockchain platforms to protect against
malicious attacks that caused hundreds of millions of dollars
in losses in recent years [2]. As another use-case, FrontDef
allows central banks that experiment with Central Bank Digital
Currencies (CBDC) using permissioned blockchains [24], [25]
to monitor transactions before adding them to the chain.

One challenge FrontDef faces is that as attack strategies
against DeFi protocols become increasingly complicated, at-
tackers often develop and deploy their own smart contracts to
initiate their attacks. Therefore, directly copying the detected
malicious transactions will not work because these transactions
depend on prior initialization transactions. Naively copying
both the transactions and the associated attack contract may
also fail because the attack contract may contain control
flow statements to prevent unauthorized usage of the contract.
To address those challenges, FrontDef analyzes the depen-
dencies of a suspicious transaction to identify its associated

38

2023 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS)

979-8-3503-3535-4/23/$31.00 ©2023 IEEE
DOI 10.1109/DAPPS57946.2023.00015

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 D

ec
en

tr
al

ize
d

Ap
pl

ic
at

io
ns

 a
nd

 In
fr

as
tr

uc
tu

re
s (

DA
PP

S)
 |

 9
79

-8
-3

50
3-

35
35

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
DA

PP
S5

79
46

.2
02

3.
00

01
5

Authorized licensed use limited to: The University of Toronto. Downloaded on February 14,2024 at 19:31:49 UTC from IEEE Xplore. Restrictions apply.

attack contract and all prior related initialization transactions.
FrontDef then generates a sequence of mimic transactions to
appropriately copy the strategy from the attacker. FrontDef
also operates with a novel Ethereum Virtual Machine (EVM)
code analysis to detect any hidden access control checks in
the attack contract and modifies the contract accordingly to
nullify the checks automatically.

This paper also presents empirical results as we evaluate
FrontDef on a benchmark set constituted of 21 past DeFi
protocol attacks that occurred on the Ethereum network and
the Binance Smart Chain (BSC) and three attacks exploiting
vulnerabilities in DeFi protocols that were described in [26],
[27]. Our results show that FrontDef can successfully detect
and assemble replica transactions for all the 24 cases.

In particular, this paper makes the following contributions:
• FrontDef: We present FrontDef, a generalized front-

running defense platform for attacks against DeFi proto-
cols that steal digital assets.

• Replica Transaction Generation: We present novel
techniques to generate a sequence of replica transactions
from a suspicious attack transaction.

• Generalized Front-running Defense: Our results
demonstrate the effectiveness of FrontDef and validate
generalized front-running as a new defense mechanism
against DeFi protocol attacks.

The rest of the paper is organized as follows. We give an
overview of DeFi protocols and characteristics of the DeFi
ecosystem in Section II. We provide an overview of FrontDef
in Section III. Sections IV and V describe the algorithms
implementing FrontDef that are devised to detect attacks and
generate counter transactions. We present the experimental
results in Section VI, discuss related work in Section VII,
and conclude the paper in Section VIII

II. BACKGROUND

Blockchain networks, such as Ethereum, that support soft-
ware modules to manage complex transactions (i.e., smart
contracts) have become very popular [28]. In particular, the
invention of smart contracts enables the execution of compli-
cated transactions that power Decentralized Finance (DeFi).
DeFi is one of the most important applications of blockchain
networks as it involve financial transactions on assets that
often are in the hundreds of billions of dollars. DeFi proto-
cols have various functionalities [29], including Decentralized
EXchange (DEX) platforms that exchange between digital
assets. A popular application of DEXes are Automated Market
Maker (AMM) algorithms. More specifically, in an AMM
protocol, the exchange rate between two digital assets X and
Y is determined by a mathematical formula based on the
amounts of X and Y held by the protocol. Like in traditional
finance, DeFi includes protocols that offer loaning services,
known as Protocols for Loanable Funds (PLF). An PLF
protocol supports over-collateralized loans where borrowers
place assets as collateral.

In recent years, a new type of loan evolved in the DeFi
ecosystem called flash loans. A flash loan is characterized

by no upfront collateral and atomicity. In particular, with no
collateral one can borrow via a flash loan as long as they
will pay the loan transaction fee/interest within the same
transaction. The lenders are protected as well since if the loan
is not repaid, the flash loan transaction is reverted and the
lenders get their funds back. Flash loan has boosted financial
activities in DeFi and increased the popularity of DeFi as it
allows anyone to participate with minimal cost(s).

With the increasing popularity of DeFi, the number of
attacks exploiting the vulnerabilities present in the smart
contracts has increased as well. In particular, in recent years
several DeFi attacks caused severe losses in hundreds of
millions of dollars using flash loans to provide the attackers
with large amounts of initial capital to manipulate the states
of smart contracts to their advantage.

III. METHODOLOGY OVERVIEW

In this section, we present an overview of our proposed
approach to front-run attacks on DeFi protocols. In a standard
blockchain network, pending transactions in the network are
added to a mem-pool (transaction pool) and later get packed
by miners into blocks and appended to the main chain.
Our approach proposes a policing system (monitor program)
in the mem-pool to identify potential malicious transactions
exploiting DeFi protocols and front-run them. If a transaction
is flagged as an “attack transaction,” we assemble a counter-
transaction to replicate and “front-run” the attack. We call this
counter-transaction as front-run transaction.

The proposed detection and replication mechanisms are
modular and can be applied in both permissioned and permis-
sionless blockchain networks. For instance, in a permissioned
network, the controlled validator nodes can run the detection
algorithm on pending transactions and if needed, pack the
front-run transaction into the next block. On the other hand,
in a permissionless network, a white-hat entity can use the
detection mechanism to flag a suspected attack transaction and
broadcast the counter-transaction with a higher gas fee to the
peers to get priority. The goal is to increase the chances of
getting the counter-transaction packed before the attack one.

In Fig. 1, we depict an overview of our proposed system to
detect and front run attacks on DeFi protocols. For instance,
for the case of a flash loan attack transaction Tx, once the
transaction is received in the pending transaction pool, we
run the detection algorithm. In particular, in the detection
algorithm we analyze token flows to find whether the trans-
action exhibits a flash loan pattern. For instance, whether the
transaction takes and repays a loan from a flash loan provider
address. Furthermore, we also use the token-flow analysis to
check whether an account controlled by the attacker, e.g.,
the attacker’s account, or the account of the contract used
to launch the attack transaction, gains large amount of profit
while the flash loan providers, or other victim accounts, yield
great losses in cases where the profit exceeds a parameterized
threshold. Note that our proposed approach is also able to
detect the case where the attacker moves stolen assets to
another account which they control.

239

Authorized licensed use limited to: The University of Toronto. Downloaded on February 14,2024 at 19:31:49 UTC from IEEE Xplore. Restrictions apply.

Tx Pool

Tx1

Attack Tx

Txn

Run detection
on new Tx Attack? Yes

Broadcast Txs to peers
OR

 Mine with Front Run Tx ahead

Front Run
Tx Main

Blockchain
Attack Tx

Packed Txs

Query

Assemble
Front Run Tx

Contract
DatabaseStore

Fig. 1: Overview of the monitor system
When a transaction Tx is marked as an attack transaction,

we next proceed to assemble a replica transaction Tx′ to
front run Tx. To create the replica transaction, we may need
to deploy a replica of the contract used to launch Tx and
initialize it before launching Tx′. For this purpose, we build
a contract database and store the parameters used in the
creation of the contract associated with Tx, and a potential
initialization call to it. During the replication of Tx, we
query the database and copy the contract creation transaction,
initialization call, and the attack transaction Tx, replacing any
hard-coded attacker address with our an account address that
we control. We first locally execute the above transactions
in the following order: contract creation, initialization call,
and the replica of Tx (i.e., Tx′). We then verify that Tx′

replicates the original attack transaction Tx by gaining the
same amount of profit. Further, we make sure that receiver
of the profit is the account address we control. Note that for
some attack cases, the attacker protects their contract against
white hat entities using some guard mechanism. To disable
this guard mechanism, we analyze and modify the bytecode
of the contract before deploying it. Once we confirm that Tx′

is working, we broadcast it to the network with higher gas fee
than Tx to gain priority over Tx. If our transaction is packed
before the attack transaction, then this will recover the assets
and eliminate the losses caused by the attack.

In the following sections, we describe in detail how the
detection algorithm analyzes token flows to identify potential
attack transactions. We then describe the front-run algorithm
to replicate attack transactions and front-run them.

IV. DETECTION ALGORITHM

In this section, we first outline the detection procedure
to find transactions performing flash loan attacks. We then
describe an extension of this procedure to protect against
attacks on Non-Fungible Token (NFT) contracts.

A. Detection of Flash Loan Attacks

In a nutshell, our detection procedure, defined in Algorithm
1, consists of collecting and executing pending transactions in
the transaction pool then analyzing their execution traces. Par-
ticularly, we are interested in the transfer order and balances of
accounts involved. We use the above information to determine
whether a transaction took a flash loan and to calculate the
total amount of assets gained by the transaction.

Token flow. Since all existing token protocols follow some
type of logging mechanisms, we can use this as a criterion
to detect whether a transaction results in a profit. For in-
stance, in ERC-20 token standard, a Transfer event will
be triggered by token transfers [30], and it records the sender,

receiver, and the amount involved. Thus, we utilize event logs
to identify token flow. Specifically we track three types of
events: Transfer, Withdraw, and Deposit. For each
event, we record sender address, receiver address, amount
transferred, and token address. For this purpose, we define
a new data type to store the information for each token called
TransferInfo (line 1 in Listing 1.) Note that for the
Withdraw and Deposit events, the receiver (to) and sender
(from) address, respectively, are the 0x0 address.

We use a list data structure transfer in order (line 6
in Listing 1) to store the records of emitted events. To process
the data stored in transfer in order, we define two
new data types; TransferDir (line 7) to store information
about the direction of the transfer and TransferAmount
(line 10) to store the amounts involved and direction. We then
use the mapping balance traces (line 13 in Listing 1) to
map each tuple consisting of an account and a token addresses
to a list of TransferAmount that records all flows of
this token that the account is involved in. For each token
transfer, both the sender’s and the receiver’s balance -
traces will be updated. In the case of sender’s balance -
traces, we store receiver’s address in TransferDir and
the field transferDir is set to the value to. On the
other hand, when updating sender’s balance traces,
TransferDir will include the sender’s address and the
field transferDir is set to the value from. At line 3 in
Algorithm 1, we use the sub-procedure EXTTOKENSFLOW to
extract balance traces (BalTr) and transfer in -
order (TrsOrd) from the execution trace stored in val.

1 type TransferInfo struct {
2 address sender
3 address receiver
4 uint amt
5 address token }
6 transfer in order (TrsOrd) []TransferInfo
7 type TransferDir struct {
8 TransferDirection transferDir
9 address addr }

10 type TransferAmount struct {
11 TransferDir td
12 uint amt }
13 balance traces (BalTr) map[address,address][]TransferAmount

Listing 1: Data structures used to store token flows.

Finding flash loan patterns. We analyze whether the trans-
action performs a borrow action and repay action afterwards
to identify potential flash loans. For this analysis, we use data
stored in transfer in order and balance traces.
The borrow action can be characterized as a transfer from
a flash loan provider’s address with some borrowed amount.

340

Authorized licensed use limited to: The University of Toronto. Downloaded on February 14,2024 at 19:31:49 UTC from IEEE Xplore. Restrictions apply.

In particular, in our procedure (ISFLASHLOAN at line 4
in Algorithm 1) we use a register of flash loan providers’
addresses, FLPrvs, that we compare against. Then, a repay
action is a transfer to the same flash loan provider with the
borrowed amount plus interests.

Analyzing net profit. After determining that a transaction
takes a flash loan, we then use balance traces to calculate
the net profit of the transaction (procedure COMPPROFIT at
line 5). Since there can be different types of tokens involved
in the transfer, we calculate net profit in USD using USD
stablecoin tokens such as USDT and USDC [31], [32]. For
this reason, we keep a register containing tokens conversion
rates to USD stablecoins, i.e., CvRts. We then identify any
potential victim and beneficiary. If the transaction’s sender or
the contract used to send the transaction is the beneficiary, and
the net profit exceeds a fixed threshold that is parameterizable
(PftTh), we mark it as a flash loan attack transaction.

Algorithm 1 Detection procedure. It takes the candidate attack
transaction FLTx, list of flash loan providers FLPrvs, list of
tokens conversion rates CvRts, and the net profit threshold
PftTh. The procedure returns true if FLTx is a flash loan
attack.

1: procedure DETECALGO(FLTx, FLPrvs, CvRts, PftTh)
2: val← EXECUTE(addr,FLTx)
3: (BalTr,TrsOrd,AtAds)← EXTTOKENSFLOW(val)
4: if ISFLASHLOAN(AtAds,BalTr,TrsOrd,FLPrvs)
5: NetPft← COMPPROFIT(AtAds,BalTr,TrsOrd)
6: if NetPft > PftTh
7: return true
8: end procedure

Remark 4.1: In certain cases, attackers may move their
profit to other accounts of their control to complicate tracing
the attack. Thus, to account for those cases we check if an
account’s address is a beneficiary, and it only receives transfers
from the transaction’s sender or the contract used to launch
the flash loan transaction. If this is the case we mark the
transaction as a flash loan attack transaction as well.

B. Detection of NFT Attacks

Here, we extend our detection procedure to find attacks on
NFT contracts. Specifically, we monitor NFT tokens transfer
flows. Similar to ERC-20 standard for regular tokens, in
ERC-721 standard for NFT tokens, when an NFT token is
transferred a Transfer event must be triggered [33]. Thus,
we can detect any NFT transfer event without payment, e.g.,
no ERC-20 tokens transfer to the seller. This will allow us to
monitor and detect different types of NFT exploitations such
as selling NFT without payment, unauthorized change of NFT
ownership, and unauthorized NFT minting/burning.

For instance, in Listing 2, we show a case of an NFT ex-
ploitation extracted from the Damn Vulnerable Defi challenge
benchmark set [26]. In this case, the NFT token is transferred
before the seller is paid. Line 5 transfers the ownership of the
NFT token from the seller to the buyer. Thus, the owner of the

token becomes the buyer, i.e., tokenOwner[tokenID]:=
msg.sender. Then, the payment occurs in line 7. However,
the receiver of the payment is the current owner of the
NFT, i.e., tokenOwner[tokenID], which is the buyer,
i.e., msg.sender, because of the ownership transfer that
happened at line 5. Obviously, line 7 should be placed before
line 5, otherwise the buyer will get the NFT token for free.
Our detection system would be able to detect the transfer of
the NFT token and also that no payment has been made to
the seller’s address, thus marking those types of transactions
as suspicious.

1 function buy(uint tokenID) public payable {
2 ...
3 //transafer the token to buyer
4 transferFrom(tokenOwner[tokenID], msg.sender, tokenID);
5 //pay seller
6 tokenOwner[tokenID].transfer(msg.value);
7 }

Listing 2: Free buyer.

V. FRONT-RUN TRANSACTION ASSEMBLY ALGORITHM

When it is determined that a pending transaction is an attack
transaction, we generate a replica transaction to front-run the
attack. Here, we describe how to do this. In summary, we
first check whether the attack transaction was originated from
some contract created by the adversary. If it is not, to replicate
the attack transaction it is enough to copy it and replace the
beneficiary’s address with our own address in the transaction
call data field. On the other hand, if the attack transaction
originates from an adversary contract, which is the actual
case for most attacks in practice, the replication process is
a bit more involved. In particular, the attacker usually creates
a contract and later calls this contract to attack. In this case,
we first find the bytecode of this contract so we can be able to
deploy a replica of it. To achieve this, we maintain a contract’s
database to store the data of contract creation (deployment)
transactions. In Algorithm 2, we give the procedure for front-
running flash loan transactions that are flagged as malicious
by our detection procedure.

A. Contract Database
Each contract is added to the database at the time of

creation. We store the data of the contract creation transaction
such as gas price, gas limit, value, and call data. In Listing 3,
we show an excerpt of the structure of the fields stored in
the database. The database maps each contract address to the
corresponding fields shown in Listing 3.

1 gas price //32 bytes
2 gas //32 bytes
3 gas fee cap //32 bytes
4 gas tip cap //32 bytes
5 value //32 bytes
6 is create //1 bytes
7 caller address //20 bytes
8 offest //32 bytes
9 deployment data //variable length

10 init call fields...

Listing 3: Contract database.

441

Authorized licensed use limited to: The University of Toronto. Downloaded on February 14,2024 at 19:31:49 UTC from IEEE Xplore. Restrictions apply.

In certain attacks, the adversary makes an initialization
transaction call to the contract after its creation. To be able to
replicate those attacks, we also store the data of initialization
transaction call if they exist in the contracts database.

For each contract creation, the size of the deployment trans-
action fields is 213 Bytes plus the size of contract bytecode (in
Ethereum, the maximum bytecode size is 24 KBytes). We also
use 192 Bytes to store data of initialization transaction call.
We assume that the call data for an initialization transaction
is 32 Bytes.

B. Generating Front-Run Transactions

Before generating a front-run transaction that replicates the
attack transaction, we might need to generate two additional
transactions. The first transaction creates the attacker contract
that the attack transaction is launched through. The second
transaction initializes the attacker contract. To generate those
transactions (shown in Listing 4), we query the contract
database to get the parameters used for contract creation and
initialization if there is an initialization transaction. To ensure
the success of our front-running mechanism, we analyze byte-
code to find hardcoded beneficiary’s address that the attacker
uses and replace it with our own front-run address. We then
generate the front-running transaction that calls the newly
created and if needed initialized contract.

1 new contract creation transaction (CCTx)
2 contract init transaction (CITx)
3 flash loan transaction (FLTx)

Listing 4: Front-runnig transactions.

C. Front-Running Algorithm

Before broadcasting the front-run transaction, we first lo-
cally execute the transaction and verify whether our replica-
tion exhibits the same behavior as the original transaction.
In particular, if the transaction does not call a contract,
we only execute the flash loan transaction (line 3
in Algorithm 2). We then call the detection algorithm to
identify flash loan pattern and beneficiary (line 4). If our
address is the beneficiary, we conclude that our replication
is successful and we broadcast the new transaction (line 5).
If the transaction interacts with another contract, we first
deploy a copy of the contract and if needed we add the
contract init transaction before the flash loan
transaction (lines 7-8 in Algorithm 2).

D. Disabling Guard System

Recent flash loan attacks use sophisticated mechanisms
to prevent unauthorized interactions, e.g., white hats front-
running the attack. A popular mechanism used for this purpose
is the usage of a guard mechanism in a smart contract, e.g., if
owner != caller then revert, or require(owner == caller). This
allows the attacker to specify its address in the field owner.
Then, when the caller address which is stored in the field caller
is different from the owner the execution halts.

When the attacker’s address is hard-coded in the smart
contract code, replacing it with our own address will disable

Algorithm 2 Front-running procedure. It takes the attack
transaction FLTx, our front-running address addr, and the
contract database DB.

1: procedure FRONTRUNALGO(FLTx, addr, DB)
2: if ISNOCONTRACTINVOLVED(FLTx)
3: val← EXECUTE(addr,FLTx)
4: if ISSUCCFLASHLOANREPLICA(addr, val)
5: BROADCAST(addr,FLTx)
6: else
7: (CCTx,CITx)← FINDPREDTXS(DB,FLTx)
8: val← EXECUTE(addr,CCTx,CITx,FLTx)
9: if ISREVERT(val)

10: CCTx← FINDDISGUARDSTMS(CCTx)
11: val← EXECUTE(addr,CCTx,CITx,FLTx)
12: if ISSUCCFLASHLOANREPLICA(addr, val)
13: BROADCAST(addr,CCTx,CITx,FLTx)
14: end procedure

the check during front-running. However, some attackers use
more sophisticated mechanisms to protect the transaction by
computing the value of the owner address during the execution.
For instance, we show in Listing 5 an example where the
attacker passes some arguments from which the owner (signer)
address is recovered. The contract calls a function to recover
the signer address (line 3) and compares it with the caller
(line 4). In this case a simple search and replace of the owner
address in the bytecode will not work.

1 func attack rountine(param1, param2, param3...) {
2 ...
3 signer= erecover(param1, param2, param3) //address recovery
4 if address(signer) != caller:
5 revert with 0, ’invalid signature’
6 ...
7 }
8

9 //The generated bytecode
10 ...
11 SHL
12 SUB
13 AND
14 EQ
15 PUSH 0x284
16 JUMPI
17 PUSH1 0x40

Listing 5: Attacker’s address recovered from an encrypted
signature.

Our proposed solution for those cases, implemented in
the sub-procedure FINDDISGUARDSTMS at line 10 in Al-
gorithm 2, is based on an analysis and instrumentation of
the byte-code and replacing some instructions with others. In
particular, at the bytecode level, the not-equal condition at
line 4 in Listing 5 is compiled to an equal operation (line 14
in Listing 5) followed by a conditional jump (line 16). For
the front-running transaction to not revert, we need the equal
operation to be always true to continue execution, i.e, jump
to address 0x284. Intuitively, if two values A and B are not
equal, then A should be less than or greater than B. Thus,

542

Authorized licensed use limited to: The University of Toronto. Downloaded on February 14,2024 at 19:31:49 UTC from IEEE Xplore. Restrictions apply.

our proposed instrumentation idea is to record the last equal
operation and its operands, and change the equal operation
to either less than or greater than operation by changing
the bytecode of the operation. We assume that if the check
failed, execution reverts but does not return; and there is no
equal operator in the revert routine, so that we can locate the
failed condition. One advantage of this solution is that it does
not introduce large overhead, compared with comprehensive
stack and byte-code analysis. We only need to perform one
additional execution as we can locate the failed EQ operation
and do the fix in the first retry.

VI. EMPIRICAL EVALUATION

In this section, we present an evaluation of the effectiveness
of FrontDef. We perform two core experiments. First, we
simulate past attacks on smart contracts. Second, we perform
a real-time front-running experiment.

A. Implementation

We implement FrontDef in clients of two popular
blockchain platforms: BNB Smart Chain [34], the client of
Binance Smart Chain (BSC), and OpenEthereum [35], a client
of Ethereum. Experiments in the BNB Smart Chain are in
Go programming language while those in OpenEthereum are
in Rust. We extend the module responsible for executing
the EVM codes in both clients to record the metadata of
tokens flow and contract database. To implement the contract
database in OpenEthereum, we use the Rust library sled1. For
BNB Smart Chain, we use the Go library Bitcask2. We also
extend the EVM module client to record equal operations and
operands in order to implement the mechanism to disable
guard statements. In order to perform a real-time front-run
experiment on BNB Smart Chain, we implement real-time
monitoring and modify the transaction broadcast strategy in
the client to improve front-running success rate.

B. Benchmark

To facilitate experimentation, we collect a benchmark set
of historical flash loan attacks. In particular, the set contains
12 attacks that occurred on Ethereum and nine attacks that
occurred on BSC between February 15th, 2020 and August
31st, 2022, listed in the first column of Tables I, II, and IV.
The benchmark set covers a wider variety of flash loan attacks
and vulnerabilities including re-entrancy (OriginDollar) price
manipulation (ElephantMoney), oracle manipulation (Harvest-
USDC), pump/arbitrage (bZx1), design flaw of total supply
(Eminence), forced investment (Yearn), design flaw in the
reward minting process (ApeRocket), and design flaw in fund
withdrawal and shares burning (ElevenFinance). On the other
hand, existing works can only handle three kinds of design
flaws and vulnerabilities; re-entrancy, oracle manipulation and
arbitrage. Note that several attacks in our benchmark set,
e.g., Harvest, bZx, Eminence, and Yearn, have caused news
headlines with over 50 millions dollars in crypto assets lost.

1http://sled.rs/
2https://git.mills.io/prologic/bitcask

C. Experimental Setup

To perform the first experiment, we use an archive node to
download all previous states from the genesis block on both
chains. This is because to evaluate historical attacks we need to
sync to the states where those attacks occurred, and we could
not find old blockchain snapshots with timestamps close to
when the attacks occurred. To be able to simulate past attacks,
we modify the clients’ block syncing module. After syncing to
the block containing the flash loan attack transaction, we apply
FrontDef, i.e., run the detection and front-running algorithms.
We check whether FrontDef can successfully detect the attack
and generate a front-run transaction. We then execute the
newly assembled transaction and verify that it replicates the
attack and measure the overhead introduced by our detection
mechanism.

Two important components of the detection algorithm are
the detection of a flash loan pattern and the analysis of net
profit. For the first component, we monitor a list of 180 flash
loan providers, collected from Pancake Swap V1 and V2, for
BSC and eight flash loan providers for Ethereum. For the
second component, we store the exchange rates for 76 ERC-
20 tokens in BSC and 1733 ERC-20 tokens in Ethereum that
cover popular token pairs.

The BSC experiments are run on an AWS EC2 m5.2xlarge
instance with 16 vCPU, 32 GB memory, and 4TB SSD storage.
The Ethereum experiments are run on an AWS EC2 m5.2xlarge
instance with 16 vCPU, 32 GB memory, and 8TB SSD storage.

D. Flash Loan Attacks

In the first experiment, we evaluate the algorithms on the
set of 21 flash loan attacks benchmarks without implementing
the procedure FINDDISGUARDSTMS. In Table I and II, we
report the results of the experiment. In particular, we measure
5 metrics in our evaluation: old transaction execution time
(OFLTxExT column), contract deployment time (CDepT col-
umn), new flash loan transaction execution time (NFLTxExT
column), the total overhead of the system (ToOvHd column),
total execution time of the system (ToExT column). We are
able to front-run 19 out of the 21 benchmarks. For the 12
Ethereum benchmarks, the total overhead (ToOvHd column)
shows that the overall overhead of FrontDef, i.e., analysis of
the old transaction execution trace, new contract deployment,
and creation of new init and flash loan transaction, is less than
300ms for all benchmarks. Note that the block generation time
is around 12s on Ethereum chain.

In all benchmarks, the total execution time of FrontDef,
including the old flash loan transaction execution, is less
than 2.1s. On average, the overhead introduced by FrontDef
is around 7% of the old transaction execution time. Thus,
our mechanism will not significantly adversely affect the
processing time of transactions and there will be enough time
period to broadcast the front-run transactions. We also observe
similar results on Binance chain in Table II. More specifically,
in Binance the total overhead introduced is less than 80ms for
all benchmarks and the total execution is less than 200ms.
Given that the block generation time on Binance is around

643

Authorized licensed use limited to: The University of Toronto. Downloaded on February 14,2024 at 19:31:49 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Ethereum benchmarks results.

Benchmark OFLTxExT
[s]

CDepT
[µs]

NFLTxExT
[ms]

ToOvHd
[ms]

ToExT
[s]

bZx1 [36] 0.9311 2.5762 45.7699 71.3572 1.0239

bZx2 [37] 0.5037 3.6906 87.5521 106.3972 0.6194

Balancer-STA [38] 0.3465 3.4394 82.3610 101.3880 0.4529

Balancer-STONK [39] 0.1738 3.6385 34.2710 53.2027 0.2356

Eminence [40] 0.0998 N/A 25.6289 32.9568 0.1468

Harvest-USDC [41] 1.1029 3.9546 23.2480 42.0973 1.1519

ValueDeFi [42] 0.9970 3.7680 63.4882 81.6281 1.0863

CheeseBank [43] 0.5242 3.4939 85.2817 112.0340 0.6498

OriginDollar [44] 1.6827 28.3736 110.7969 154.2283 1.8623

WarpFinance [45] 0.5504 3.8863 53.9494 71.7541 0.6269

Yearn [46] 1.1146 71.6744 147.7280 235.2005 1.3763

xToken [47] 1.7638 24.3256 252.6508 290.6131 2.0714

TABLE II: Binance benchmarks results.

Benchmark OFLTxExT
[ms]

CDepT
[µs]

NFLTxExT
[ms]

ToOvHd
[ms]

ToExT
[ms]

BoggedFinance [48] 68.3082 447.9683 67.5360 79.7665 156.4862

JulSwap [49] 7.1878 1019.6620 1.7426 10.0940 29.9626

BeltFinance [50] 56.9382 1084.4376 42.9525 52.6918 119.3485

ElevenFinance [51] 5.6641 292.2740 5.6486 12.8426 25.5922

ApeRocket [52] 7.9224 319.8738 5.6693 13.3542 40.9196

GymNetwork [53] 2.4141 649.9098 3.8667 14.9547 26.6054

ElephantMoney [54] 42.7627 504.5196 40.0271 53.0831 111.9332

3s, it is possible for FrontDef to front-run attacks as there is
enough time period to broadcast the front-run transactions.

Remark 6.1: We note that the time overhead between the
original flash loan transaction execution time (OFLTxExT
column) and the new flash loan transaction execution time
(NFLTxExT column) for the Ethereum benchmarks exists pri-
marily due to the OpenEthereum client. Ideally, since the new
flash loan transaction is just a copy with minor modifications
of the original one, the execution times of the two should
be similar. However, this is not the case for the Ethereum
benchmarks. On the other hand, for Binance benchmarks the
two execution times are similar. Note that Binance client is
based on an optimized version of Go Ethereum (geth) [55].

We believe the overhead in the execution time of the original
transaction in OpenEthereum is caused by the time consumed
to load contract data into memory from storage. Since the
contract data which the replica transaction interacts with are
cached (the same contracts as the original transaction), then
during the execution of this transaction there is no storage ac-
cess overhead like in the execution of the original transaction.
To validate our observation, we run an experiment where we
execute the same transaction twice sequentially for a set of six
benchmarks on OpenEthereum. In particular, we select bench-
marks with considerable execution times overheads in Table I.
In Table III, we report the results of this experiment where we
measure the execution time of the second transaction. Indeed,
the execution time decreased significantly in the second run
as shown in Table III as we expected.
Benchmarks with a caller check. For the two cases that are

TABLE III: Transaction re-execution time on OpenEthereum.
Benchmark second run execution time [ms]

bZx1 [36] 13.126375

Harvest Finance(USDC) [41] 5.471455

Value DeFi [42] 26.813386

Original Dollar (OUSD) [44] 78.08366233

Yearn Finance [46] 69.1817

xToken [47] 52.5130

not handled because the procedure FINDDISGUARDSTMS is
not implemented correspond to cases with caller check in the
contract code. In particular, for those two cases simple search-
replace of hard coded attacker address is not enough. Thus,
with the procedure FINDDISGUARDSTMS implemented our
system is able to successfully disable the caller check and han-
dle the two benchmarks. The generated front-run transactions
result in the same profit as the original transaction. In Table IV,
we report the results of the experiment. Notice that the total
overhead increased slightly as we perform two attempts. In
the first attempt we only perform simple search-replace of
hard coded attacker address as in previous benchmarks. In the
second, we apply the bytecode analysis and transformation
implemented in the procedure FINDDISGUARDSTMS. Note
that since the first attempt of execution the flash loan trans-
action reverted, it took less than 1ms. The main reason for
the increase in time overhead in the code logic. However, the
increase is still reasonable, and the time overhead is less than
250ms and is in an acceptable range for Binance chain.

TABLE IV: Binance benchmarks with a caller check results.

Benchmark OFLTxExT
[ms]

CDepT
[ms]

NFLTxExT
[ms]

ToOvHd
[ms]

ToExT
[ms]

WienerDOGE [56] 12.9818 0.1709 8.4872 20.4124 43.2572

Cupid [57] 54.2658 0.1713 43.5031 181.0046 233.614

E. Attacks on NFT contracts

We evaluate the extension of FrontDef to front-run attacks
on NFT smart contracts. In addition to the free buyer bench-
mark described in Section IV, we also evaluate our algorithms
on the unsafe TransferFrom and unsafe Mint benchmark cases
described in [27]. In the unsafe TransferFrom benchmark, an
attacker can exploit a missing check of a flag to transfer a
NFT token ownership without payment to the original NFT
token owner. In the unsafe Mint benchmark, a missing check
results in an unauthorized entity minting NFT tokens. In this
experiment, we set up a private chain using the Go-Ethereum
client [55]. We then deploy the NFT contracts with the vul-
nerabilities described above. Since the attack can be achieved
through a simple call to the vulnerable function in the NFT
contract, then deploying a new contract specific for the attack
routine is not needed. Our detection algorithm is successfully
able to detect the three benchmarks. In Table V, we give the
old NFT transaction execution time (ONFTTxExT column),
the new NFT transaction execution time (NNFTTxExT col-

744

Authorized licensed use limited to: The University of Toronto. Downloaded on February 14,2024 at 19:31:49 UTC from IEEE Xplore. Restrictions apply.

umn), the total front-run overhead (TFROvHd column), and
the total execution time of the system (ToExT column).

TABLE V: NFT benchmarks results.

Benchmark ONFTTxExT
[ms]

NNFTTxExT
[ms]

TFROvHd
[ms]

ToExT
[ms]

Free Buyer 113.7424 76.4197 164.9435 343.0717

Unprotected Mint 98.0351 64.3193 147.0057 307.8673

UnsafeTransferFrom 113.6202 75.7253 166.5651 391.7890

F. Real time front-running

In this experiment, we test in a real time setting on BSC the
practicality of a front-running mechanism with time overheads
similar to the ones we obtained in the previous experiments.
In particular, we front-run an arbitrary transaction. This is
because attacks are rare compared to normal transactions, thus
it is simpler to test the front-running success rate in real time
on an arbitrary transaction. In the experiment, we randomly
pick a transaction and mark it as ”target”. We try to front-
run it with a simple transfer transaction with a higher gas fee.
This is to ensure that the execution of the front-run transaction
will not alter the execution of the original transaction. We
introduce a delay period before the front-run transaction. This
delay period is to account for the front-run overhead we would
have for running the detection and front-running algorithms.
If the front-run transaction appears before the ”target” on the
chain, we conclude that the front-running succeeds. On the
other hand, if the front-run transaction is dropped or mined
after the ”target”, we conclude that front-running failed.

An important factor that impacts the success rate of real time
front-running is the number of peers our node is connected to.
The higher the number of peers, the higher the probability
our front-run transaction will be picked up first. On average,
we perform the experiment with around 150 peers connected
and we use five values for the delay period between 0ms and
200ms. For each delay period, we try the front-running 50
times. In Table VI, we report the success rates obtained in the
experiment. The results show that when the delay period is
less than 50ms, the success rate is around 50%. For 200ms
delay period, the success rate drop to around 24%.

TABLE VI: Real-time front-running performance analysis.
delay [ms] # peers connected success rate (percent)

0 171 50%

25 158 48%

50 156 46%

100 154 32%

200 167 24%

Another factor for consideration is the time interval between
receiving the ”target” transaction and the next block generation
time. Indeed, the more time we have the higher the chances of
the front-running succeeding. On the other hand, if we receive
the ”target” transaction late, for example, if we receive the
transaction 3s or more later than its generation time, then

most likely the transaction will appear before the front-run
transaction. Thus, connecting more peers will also help us
to receive new transactions early and broadcast the front-run
transactions in time. For instance, as shown in Fig 2, suppose
the next block k will be generated at a time instant t. On
Binance chain, validators will pick transactions received before
t−3s and pack them into the block k. Assume the transaction
we would like to front-run is generated at t1 in the time
interval [t − 6, t − 3], and normally it would be packed into
the block k. Suppose we receive the transaction at t2, where
t − 6 ≤ t1 < t2 < t − 3. If (t2 +∆processing) < t − 3, where
∆processing is the time delay period to process a transaction
and generate a front-run transaction, then the front-running is
possible. The interval [t2 + ∆processing, t − 3] represents the
time period we have to broadcast the front-run transaction
to the network. Thus, the success probability of the front-
running is proportional to the length of this interval. In the
experiment, we pick random ”target” transactions to front-run
that include late-received transactions that cannot be front-run
(i.e., (t2+∆processing) > t−3). Experiments show that we can
achieve a 50% front-run success rate when ∆processing ≤ 50ms.

Fig. 2: Transaction generation timeline

G. FrontDef Throughput

In this experiment, we estimate the throughput of FrontDef
on BSC to show that FrontDef is practical and will not
affect existing blockchains throughputs. In the experiment, we
measure the time to run the detection algorithm on mined
blocks of transactions. On average, we are able to process 1230
transactions per second, which is greater than the maximum
throughput of Binance chain (around 300 transactions per sec-
ond). Therefore, deploying our system in a Binance validator
node client to monitor the mem-pool is practical and will not
influence the performance and functioning of the client.

VII. RELATED WORK

Analysis of Smart Contracts Pre-Deployment. There is
plenty of prior art that proposes methodologies for the analysis
and verification of smart contracts, including using static
analysis methods to detect vulnerabilities in smart contracts,
e.g., [4]–[8]. The above techniques are ideal to identify bugs in
smart contracts before deployment, however, their soundness
and completeness predominantly depends on the level of
complexity of those contracts. For complicated contracts, they
usually resort to over/under-approximations that may either
lead to false positives or to miss bugs. Other alternative
techniques to identify bugs in smart contracts before deploy-
ment use symbolic execution engines [9]–[15] or dynamic
analysis [16]. However, for programs like DeFi contracts,

845

Authorized licensed use limited to: The University of Toronto. Downloaded on February 14,2024 at 19:31:49 UTC from IEEE Xplore. Restrictions apply.

those techniques may suffer from the path explosion and
the complicated logics implemented in those contracts, thus,
they resort to incomplete analysis and can only establish
correctness for bounded executions. Therefore, a detection
technique likes ours that bypasses the complexity of DeFi
contracts by focusing on the analysis of token flows is crucial
and complements the above mentioned techniques.
Securing Smart Contracts Post-Deployment. An alternative
approach to the above techniques is run time validation.
Existing works in this area, , e.g., [21]–[23], analyze contract
execution traces to enforce state invariants. For instance, [21]
proposes a tool to enforce invariants with quantifiers on the
state of smart contract. The work in [22] monitors data flows
during execution and analyzes state changes to prevent re-
entrancy attacks at the EVM level, while [23] implements a
transaction monitor that inserts instructions at the start and
end of a transaction to enforce invariants. Our work follows the
dynamic analysis approach and analyzes transaction execution
traces. However, we do not enforce any invariants or add run
time checks (instrumentation) in the original smart contract.
Thus, it can be applied to varieties of logic and design bugs
in DeFi contracts that are susceptible to exploitation.
Front-Run. Front-running is a well studied mechanism in the
crypto and security community [58]–[63]. This is because
there are several types of popular attacks that use front-
running as the attack mechanism such as DEX arbitrage
bots and sandwich attacks [58], [62]. There are also works
that propose mitigation mechanisms to prevent front-running
attacks [61], [63]. The above works study front-running as an
attack mechanism and how to defend against it. In this paper,
front-running is used as a defense mechanism to stop attacks
on Defi protocols. This is also a useful tactic for permissioned
networks such as CBDC platforms.
Flash Loan and DeFi Attacks. There are works that study
flash loan attacks and DeFi attacks in general, e.g., [64]–
[69]. In [64], the authors recover DeFi contracts semantics
from raw transactions and pattern matches price manipulation
attacks. In [69], the author uses anomaly detection based
on assets flows in a transaction and then use front-running.
However, both works are limited to price or oracle manip-
ulation, while our proposed approach can be used for all
types of vulnerabilities that are exploitable. For instance, in
the evaluation we applied FrontDef to detect and front-run
flash loan attacks that exploit various kinds of design flaws in
smart contracts including five types of vulnerabilities never
addressed in previous works (Section VI-B). In [67], the
authors propose a framework to automatically synthesize flash
loan attacks against vulnerable protocols. While most work
focus on analyzing the logic behind such attacks and finding
vulnerabilities in smart contracts to fix before deployment, we
propose a solution to mitigate flash loan attacks.

VIII. CONCLUSION

Malicious attacks against DeFi contracts often cause signif-
icant financial loss. FrontDef detects malicious attack trans-
actions in the pending transaction pool and then assembles

transactions to front-run the attack. Our evaluation results
demonstrate that FrontDef’s approach based on detect-and-
front-run is a promising strategy to mitigate DeFi attacks. In
a permissioned blockchain platform, e.g., a CBDC network,
FrontDef can be easily integrated by the entity managing the
platform. However, in a permissionless blockchain where we
cannot guarantee front-running will always succeed, FrontDef
may fail to replicate the attack transactions if attackers use
new techniques to protect their transactions from replication
and front-running. Furthermore, FrontDef may not have full
access to transactions in the mem-pool because of the presence
of Flashbots and face extremely high transactions fee. In the
future we might extend our detection mechanism with a more
involved analysis of transaction execution traces and bytecode
to complement the token flow analysis.

REFERENCES

[1] “Defillama dashboard.” 2022. [Online]. Available: https://defillama.com/
[2] J. McKay, “Defi-ing cyber attacks,” 2022.
[3] “10 most common attacks,” 2022. [Online]. Available: https:

//hacked.slowmist.io/en/statistics/?c=all&d=al
[4] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework

for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB).
IEEE, 2019, pp. 8–15.

[5] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis, “Madmax: surviving out-of-gas conditions in ethereum smart
contracts,” Proc. ACM Program. Lang., vol. 2, no. OOPSLA, pp. 116:1–
116:27, 2018.

[6] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: analyzing safety
of smart contracts,” in 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California, USA, February
18-21, 2018. The Internet Society, 2018.

[7] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in 1st IEEE/ACM International Workshop
on Emerging Trends in Software Engineering for Blockchain, WET-
SEB@ICSE 2018, Gothenburg, Sweden, May 27 - June 3, 2018. ACM,
2018, pp. 9–16.

[8] P. Tsankov, A. M. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and
M. T. Vechev, “Securify: Practical security analysis of smart contracts,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018. ACM, 2018, pp. 67–82.

[9] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2019, pp. 1186–1189.

[10] ConsenSys, “Mythril,” https://github.com/ConsenSys/mythril, 2022,
accessed: 2022-06-06.

[11] J. He, M. Balunovic, N. Ambroladze, P. Tsankov, and M. T. Vechev,
“Learning to fuzz from symbolic execution with application to smart
contracts,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019, London, UK,
November 11-15, 2019. ACM, 2019, pp. 531–548.

[12] J. Krupp and C. Rossow, “teether: Gnawing at ethereum to automatically
exploit smart contracts,” in 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018. USENIX
Association, 2018, pp. 1317–1333.

[13] L. Luu, D. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October
24-28, 2016. ACM, 2016, pp. 254–269.

[14] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the
greedy, prodigal, and suicidal contracts at scale,” in Proceedings of the
34th Annual Computer Security Applications Conference, ACSAC 2018,
San Juan, PR, USA, December 03-07, 2018. ACM, 2018, pp. 653–663.

946

Authorized licensed use limited to: The University of Toronto. Downloaded on February 14,2024 at 19:31:49 UTC from IEEE Xplore. Restrictions apply.

[15] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer bugs in
ethereum smart contracts,” in Proceedings of the 34th Annual Computer
Security Applications Conference, ACSAC 2018, San Juan, PR, USA,
December 03-07, 2018. ACM, 2018, pp. 664–676.

[16] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky,
M. Sagiv, and Y. Zohar, “Online detection of effectively callback free
objects with applications to smart contracts,” Proc. ACM Program.
Lang., vol. 2, no. POPL, pp. 48:1–48:28, 2018.

[17] L. P. A. da Horta, J. S. Reis, M. Pereira, and S. M. de Sousa,
“Whylson: Proving your michelson smart contracts in why3,” arXiv
preprint arXiv:2005.14650, 2020.

[18] M. Di Angelo and G. Salzer, “A survey of tools for analyzing ethereum
smart contracts,” in 2019 IEEE international conference on decentralized
applications and infrastructures (DAPPCON). IEEE, 2019, pp. 69–78.

[19] T. Dickerson, P. Gazzillo, M. Herlihy, V. Saraph, and E. Koskinen,
“Proof-carrying smart contracts,” in International Conference on Finan-
cial Cryptography and Data Security. Springer, 2018, pp. 325–338.

[20] W. Duo, H. Xin, and M. Xiaofeng, “Formal analysis of smart contract
based on colored petri nets,” IEEE Intelligent Systems, vol. 35, no. 3,
pp. 19–30, 2020.

[21] A. Li, J. A. Choi, and F. Long, “Securing smart contract with runtime
validation,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI 2020.
New York, NY, USA: ACM, 2020, pp. 438–453.

[22] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting
existing smart contracts against re-entrancy attacks,” 2018.

[23] M. Capretto, M. Ceresa, and C. Sánchez, “Transaction monitoring of
smart contracts,” in Runtime Verification - 22nd International Confer-
ence, RV 2022, Tbilisi, Georgia, September 28-30, 2022, Proceedings,
ser. LNCS, vol. 13498. Springer, 2022, pp. 162–180.

[24] J. Lovejoy, C. Fields, M. Virza, T. Frederick, D. Urness, K. Karwaski,
A. Brownworth, and N. Narula, “A High Performance Payment Process-
ing System Designed for Central Bank Digital Currencies,” MIT, Tech.
Rep., February 2022.

[25] F. Reserve, 2022. [Online]. Available: https://www.federalreserve.gov/c
entral-bank-digital-currency.htm

[26] Damn Vulnerable DeFi, https://www.damnvulnerabledefi.xyz/, 2022,
accessed: 2022-11-30.

[27] BlockSec and NFTGO, “NFT Security Report 2022: Risk Detection,
Quantifying and Solutions,” BlockSec, Tech. Rep., September 2022.

[28] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” 2017, https://ethereum.github.io/yellowpaper/paper.pdf.

[29] S. M. Werner, D. Perez, L. Gudgeon, A. Klages-Mundt, D. Harz, and
W. J. Knottenbelt, “Sok: Decentralized finance (defi),” 2021.

[30] F. Vogelsteller and V. Buterin, “Eip-20: Token standard,” 2015.
[Online]. Available: https://eips.ethereum.org/EIPS/eip-20

[31] T. Limited, “Tether token,” https://tether.to/en/, 2022.
[32] CENTRE Consortium, “USD Coin (USDC),” https://www.circle.com/e

n/usdc, 2022.
[33] W. Entriken, D. Shirley, J. Evans, and N. Sachs, “Eip-721:

Non-fungible token standard,” 2018. [Online]. Available: https:
//eips.ethereum.org/EIPS/eip-721

[34] “BNB Smart Chain,” https://github.com/bnb-chain/bsc.
[35] “OpenEthereum,” https://github.com/openethereum/openethereum.
[36] “bZx Attack Transaction (case 1),” https://etherscan.io/tx/0xb5c8bd94

30b6cc87a0e2fe110ece6bf527fa4f170a4bc8cd032f768fc5219838, 2020.
[37] “bZx Attack Transaction (case 2),” https://etherscan.io/tx/0x762881b0

7feb63c436dee38edd4ff1f7a74c33091e534af56c9f7d49b5ecac15, 2020.
[38] “Balancer Pool (STA) Attack,” https://etherscan.io/tx/0x013be97768b7

02fe8eccef1a40544d5ecb3c1961ad5f87fee4d16fdc08c78106, 2020.
[39] “Balancer Pool (STONK) Attack,” https://etherscan.io/tx/0xeb008786a7

d230180dbd890c76d6a7735430e836d55729a3ff6e22e254121192, 2020.
[40] “Eminence Attack,” https://etherscan.io/tx/0x35f8d2f572fceaac9288e5

d462117850ef2694786992a8c3f6d02612277b0877, 2020.
[41] “Harvest Finance (USDC) Attack,” https://etherscan.io/tx/0x35f8d2f572

fceaac9288e5d462117850ef2694786992a8c3f6d02612277b0877, 2020.
[42] “Value DeFi Attack,” https://etherscan.io/tx/0x46a03488247425f845e4

44b9c10b52ba3c14927c687d38287c0faddc7471150a, 2020.
[43] “Cheese Bank Attack,” https://etherscan.io/tx/0x600a869aa3a2591583

10a233b815ff67ca41eab8961a49918c2031297a02f1cc, 2020.
[44] “Origin Dollar (OUSD) Attack,” https://etherscan.io/tx/0xe1c76241dd

a7c5fcf1988454c621142495640e708e3f8377982f55f8cf2a8401, 2020.
[45] “Warp Finance Attack,” https://etherscan.io/tx/0x8bb8dc5c7c830bac85

fa48acad2505e9300a91c3ff239c9517d0cae33b595090, 2020.

[46] “Yearn Finance Attack,” https://etherscan.io/tx/0xf6022012b73770e7e2
177129e648980a82aab555f9ac88b8a9cda3ec44b30779, 2021.

[47] “xToken Attack,” https://etherscan.io/tx/0x7cc7d935d895980cdd905b2a
134597fb91004b5d551d6db0fb265e3d9840da22, 2021.

[48] “Bogged Finance Attack,” https://bscscan.com/tx/0xa9860033322aefa
39538db51a1ed47cfae7e4b161254d53dbf735f1f16502710, 2021.

[49] “JulSwap Attack,” https://bscscan.com/tx/0x1751268e620767ff117c5c2
80e9214389b7c1961c42e77fc704fd88e22f4f77a, 2021.

[50] “Belt Finance Attack,” https://bscscan.com/tx/0x50b0c05dd326022cae7
74623e5db17d8edbc41b4f064a3bcae105f69492ceadc, 2021.

[51] “Eleven Finance Attack,” https://bscscan.com/tx/0x16c87d9c4eb3bc6c4
e5fbba789f72e8bbfc81b3403089294a81f31b91088fc2f, 2021.

[52] “ApeRocket Attack,” https://bscscan.com/tx/0x16c87d9c4eb3bc6c4e5fb
ba789f72e8bbfc81b3403089294a81f31b91088fc2f, 2021.

[53] “GymNetwork Attack,” https://bscscan.com/tx/0xa5b0246f2f8d238bb56
c0ddb500b04bbe0c30db650e06a41e00b6a0fff11a7e5, 2022.

[54] “ElephantMoney Attack,” https://bscscan.com/tx/0xec317deb2f3efdc1d
bf7ed5d3902cdf2c33ae512151646383a8cf8cbcd3d4577, 2022.

[55] “Go Ethereum (geth),” https://geth.ethereum.org/.
[56] “Wiener DOGE Attack,” https://bscscan.com/tx/0x4f2005e3815c15d1a

9abd8588dd1464769a00414a6b7adcbfd75a5331d378e1d, 2022.
[57] “Cupid Attack,” https://bscscan.com/tx/0xed348e1d6ef1c26e0040c6c3f

933ea51f953bdbafad7fb11c593f6837909c079, 2022.
[58] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,

and A. Juels, “Flash boys 2.0: Frontrunning in decentralized exchanges,
miner extractable value, and consensus instability,” in 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA,
May 18-21, 2020. IEEE, 2020, pp. 910–927.

[59] C. F. Torres, R. Camino, and R. State, “Frontrunner jones and the raiders
of the dark forest: An empirical study of frontrunning on the ethereum
blockchain,” in 30th USENIX Security Symposium, USENIX Security
2021, August 11-13, 2021. USENIX, 2021, pp. 1343–1359.

[60] S. Eskandari, S. Moosavi, and J. Clark, “Sok: Transparent dishonesty:
front-running attacks on blockchain,” Springer, pp. 170–189, 2019.

[61] C. Baum, J. H. yu Chiang, B. David, T. K. Frederiksen, and L. Gentile,
“Sok: Mitigation of front-running in decentralized finance,” Cryptology
ePrint Archive, Paper 2021/1628, 2021.

[62] L. Zhou, K. Qin, C. F. Torres, D. V. Le, and A. Gervais, “High-frequency
trading on decentralized on-chain exchanges,” in 42nd IEEE Symposium
on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May
2021. IEEE, 2021, pp. 428–445.

[63] I. Bentov, Y. Ji, F. Zhang, L. Breidenbach, P. Daian, and A. Juels,
“Tesseract: Real-time cryptocurrency exchange using trusted hardware,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019, London, UK, November 11-15,
2019. ACM, 2019, pp. 1521–1538.

[64] S. Wu, D. Wang, J. He, Y. Zhou, L. Wu, X. Yuan, Q. He, and K. Ren,
“Defiranger: Detecting price manipulation attacks on defi applications,”
CoRR, vol. abs/2104.15068, 2021.

[65] B. Wang, H. Liu, C. Liu, Z. Yang, Q. Ren, H. Zheng, and H. Lei,
“BLOCKEYE: hunting for defi attacks on blockchain,” in 43rd
IEEE/ACM International Conference on Software Engineering: Com-
panion Proceedings, ICSE Companion 2021, Madrid, Spain, May 25-28,
2021. IEEE, 2021, pp. 17–20.

[66] K. Qin, L. Zhou, B. Livshits, and A. Gervais, “Attacking the defi
ecosystem with flash loans for fun and profit,” in Financial Cryptography
and Data Security - 25th International Conference, FC 2021, Virtual
Event, March 1-5, 2021, Revised Selected Papers, Part I, ser. Lecture
Notes in Computer Science, vol. 12674. Springer, 2021, pp. 3–32.

[67] Z. Chen, S. M. Beillahi, and F. Long, “Flashsyn: Flash loan at-
tack synthesis via counter example driven approximation,” CoRR, vol.
abs/2206.10708, 2022.

[68] Y. Cao, C. Zou, and X. Cheng, “Flashot: a snapshot of flash loan attack
on defi ecosystem,” arXiv preprint arXiv:2102.00626, 2021.

[69] Y. Xue, J. Fu, S. Su, Z. A. Bhuiyan, J. Qiu, H. Lu, N. Hu, and Z. Tian,
“Preventing price manipulation attack by front-running,” in Advances
in Artificial Intelligence and Security. Cham: Springer International
Publishing, 2022, pp. 309–322.

1047

Authorized licensed use limited to: The University of Toronto. Downloaded on February 14,2024 at 19:31:49 UTC from IEEE Xplore. Restrictions apply.

