
Safeguarding DeFi Smart Contracts against Oracle Deviations
Xun Deng

xun.deng@mail.utoronto.ca

University of Toronto

Toronto, Canada

Sidi Mohamed Beillahi

sm.beillahi@utoronto.ca

University of Toronto

Toronto, Canada

Cyrus Minwalla

cminwalla@bank-banque-canada.ca

Bank of Canada

Ottawa, Canada

Han Du

HDu@bank-banque-canada.ca

Bank of Canada

Ottawa, Canada

Andreas Veneris

veneris@eecg.toronto.edu

University of Toronto

Toronto, Canada

Fan Long

fanl@cs.toronto.edu

University of Toronto

Toronto, Canada

ABSTRACT
This paper presents OVer, a framework designed to automatically

analyze the behavior of decentralized finance (DeFi) protocols when

subjected to a "skewed" oracle input. OVer firstly performs symbolic

analysis on the given contract and constructs a model of constraints.

Then, the framework leverages an SMT solver to identify parame-

ters that allow its secure operation. Furthermore, guard statements

may be generated for smart contracts that may use the oracle values,

thus effectively preventing oracle manipulation attacks. Empirical

results show that OVer can successfully analyze all 10 benchmarks

collected, which encompass a diverse range of DeFi protocols. Ad-

ditionally, this paper illustrates that current parameters utilized in

the majority of benchmarks are inadequate to ensure safety when

confronted with significant oracle deviations. It shows that existing

ad-hoc control mechanisms such as introducing delays are often in-

sufficient or even detrimental to protect the DeFi protocols against

the oracle deviation in the real-world.

CCS CONCEPTS
• Software and its engineering→ Formal software verifica-
tion; Designing software; • Security and privacy→ Software
security engineering.

KEYWORDS
Blockchain, Decentralized Finance, Smart Contracts, Oracle Devia-

tion, Static Program Analysis, Code Summary, Parameter Optimiza-

tion

ACM Reference Format:
Xun Deng, Sidi Mohamed Beillahi, Cyrus Minwalla, Han Du, Andreas

Veneris, and Fan Long. 2024. Safeguarding DeFi Smart Contracts against

Oracle Deviations. In 2024 IEEE/ACM 46th International Conference on Soft-
ware Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3597503.3639225

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of the national govern-

ment of Canada. As such, the Government retains a nonexclusive, royalty-free right to

publish or reproduce this article, or to allow others to do so, for Government purposes

only. Request permissions from owner/author(s).

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0217-4/24/04

https://doi.org/10.1145/3597503.3639225

1 INTRODUCTION
Blockchain offers decentralized, programmable, and robust ledgers

on a global scale. Smart contracts, which are programs deployed on

blockchains, encode transaction rules to govern these blockchain

ledgers. This technology has been adopted across a wide range

of sectors, including financial services, supply chain management,

and entertainment. A notable application of smart contracts is in

the management of digital assets to create decentralized financial

services (DeFi). As of April 1st, 2023, the Total Value Locked (TVL)

in 1,417 DeFi contracts had reached $50.15 billion [17].

As the assets managed by smart contracts continue to grow, en-

suring their correctness has become a critical issue. In response,

researchers have developed numerous analysis and verification

tools to detect errors in contract implementation. However, beyond

the typical software challenges posed by implementation errors, the

correctness of many DeFi smart contracts often depends on oracle
values [4]. These are external values that capture vital environmen-

tal conditions under which the contracts operate. For instance, a

collateralized DeFi lending contract requires updated trading prices

of various digital assets to ensure that the value of the collateral

asset always exceeds the value of the borrowed asset for each user.

Smart contracts periodically receive updates to their oracle val-

ues from other contracts or external databases and APIs. Deviations

in these oracle values from their true values can lead to deviations

in the intended operations of the contracts [4, 9]. In the real world,

such deviations are common, often stemming from inaccuracies

in the value source or delays in transmission. DeFi protocols tradi-

tionally use a variety of empirical strategies to mitigate the risks

associated with oracle deviations and potential corruptions. For

instance, a leveraged DeFi protocol might set a safety margin for

user positions, liquidating a position if its asset price dips below a

specific threshold. Alternatively, a protocol might aggregate mul-

tiple oracle inputs from varied sources, calculating a median or

average for computational purposes. However, these mechanisms

and their parameters are often ad-hoc and arbitrary. The adequacy

and efficacy of these control mechanisms in real-world scenarios

remain uncertain.

This paper presents OVer, the first sound and automated tool for

analyzing oracle deviation and verifying its impact in DeFi smart

contracts. Given the source code of a smart contract protocol and

a deviation range of specific oracle values in the contracts, OVer

automatically analyzes the source code to extract a summary of the

protocol. For a safety constraint of the protocol, OVer then uses

the extracted summary to determine how to appropriately set key

https://orcid.org/0009-0003-9364-1412
https://orcid.org/0000-0001-6526-9295
https://orcid.org/0000-0002-9569-664X
https://orcid.org/0009-0005-0256-180X
https://orcid.org/0000-0002-6309-8821
https://orcid.org/0000-0001-7973-1188
https://doi.org/10.1145/3597503.3639225
https://doi.org/10.1145/3597503.3639225

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xun Deng, Sidi Mohamed Beillahi, Cyrus Minwalla, Han Du, Andreas Veneris, and Fan Long

control parameters in the contract. This ensures that the resulting

contract continues to satisfy the desired constraint, even in the face

of oracle deviations.

One of the key challenges OVer faces is the sophisticated contract

logic of DeFi protocols. DeFi contracts often contain multiple loops

that iterate over map-like data structures. Each iteration typically

contains up to a hundred lines of code to handle the protocol logic

for one kind of asset or for one user account. Such code patterns

are typically intractable for standard program analysis techniques,

which often would have to make undesirable over-approximation

or to bound the number of loop iterations, leading to inaccurate or

unsound analysis results.

OVer tackles this challenge with its innovative loop summary

algorithm. Since the essence of loops computations in DeFi pro-

tocols consists of accumulators applied to maps data structures,

OVer operates with a predefined sum operator template for loops.

OVer extracts the summary formula of each iteration and then uses

a template-based approach to convert the extracted expressions

into an instantiation of the sum operator template to represent the

summary of the entire loop. Distinct from previous loop summary

algorithms that struggle with complex if-else branching or multi-

faceted folding operations with interdependencies [37], the OVer

algorithm adeptly manages these prevalent complexities in popular

DeFi contracts.

We have evaluated OVer on a set of nine popular DeFi protocols

and one fictional protocol in our experiments. OVer successfully

analyzes all the protocols, each taking less than nine seconds. In

comparison, a prior state-of-the-art loop summary algorithm can

only handle 0 out of 7 benchmarks that have loops.

With OVer, we study the history oracle deviation in real-world

blockchains. We investigate how oracle deviation would affect the

behavior of popular DeFi contracts and whether the existing ad-

hoc mechanisms are sufficient to neutralize the oracle deviations.

Our results show that for six out of the seven benchmark proto-

cols, the control mechanism was insufficient to handle the oracle

deviation for at least a certain period of time, leading to tempo-

rary exploitable vulnerabilities. Our results also surprisingly show

that existing ad-hoc mechanisms often exacerbate the security is-

sue caused by oracle deviation. For example, to protect against

potentially malicious oracle value providers, several DeFi protocols

introduce delays when using oracle value inputs in their calculation

(e.g., using the reported asset price one hour ago as the current ora-

cle price). When the digital asset price fluctuates, such mechanisms

fail to reflect the current market and artificially inject deviations,

which may make the resulting protocols more vulnerable.

In summary, this paper makes the following contributions.

• OVer: This paper presents OVer, the first sound analysis

and verification tool for analyzing oracle deviation in DeFi

protocols.

• Loop Summary Algorithm: This paper proposes a novel loop
summary algorithm to enable the analysis of the sophisti-

cated loops in DeFi smart contract source code.

• Results: This paper presents a systematic evaluation of OVer.

It also presents the first study of oracle deviation on popular

DeFi protocols. Our results show that the existing ad-hoc

control mechanisms are often insufficient or even detrimen-

tal to protect the DeFi protocols against the oracle deviation

in the real-world.

The remaining of the paper is organized as follows. Sections 2-3

introduce technical background and amotivating example. Section 4

presents the design of OVer. In Section 5, we study past oracle

deviations and evaluate OVer. We discuss related work and threats

to the validity in Sections 6-7 and conclude in Section 8.

2 BACKGROUND
Blockchain and smart contracts. Blockchains, operating as decentral-
ized distributed systems, offer a formidable architecture for resilient,

programmable ledgers. Numerous blockchain infrastructures, with

Ethereum as a prime example, provide support for smart contracts.

These are coded agreements residing on the blockchain, established

to administer transaction rules integral to ledger operations. Com-

monly scripted in sophisticated languages such as Solidity [29],

these smart contracts are later compiled into a lower-level machine

language like Ethereum Virtual Machine (EVM) bytecode [8]. For

consistent enforcement of these transaction rules, all participating

nodes within the blockchain network execute the bytecode of a

contract in a consensus-oriented fashion.

Decentralized finance protocols.A substantial application of block-

chain technology is visible in the form of DeFi protocols. DeFi pro-

tocols deploy smart contracts to manage digital assets, enabling

an array of financial services encompassing trading, lending, and

investment, all within a decentralized context. Predominantly, DeFi

applications consist of automatic market makers (AMMs) and lend-

ing protocols, with AMMs being a frequent component of decen-

tralized exchanges (DEXes).

Contrasting traditional exchanges that utilize order books for

trading operations, AMMs implement a mathematical model that is

contingent on the asset’s volume in the liquidity pool to ascertain

an asset’s price. Furthermore, a majority of DeFi lending protocols

mandate borrowers to provide over-collateralization, instigating liq-

uidation if a borrower’s position descends to under-collateralization.

To maintain functional efficiency, lending protocols integrate key

parameters such as collateralization or liquidation ratios.

Blockchain oracles.Oracles provide real-world data to blockchains
as they are tightly-closed systems and agnostic to such information.

Thus, oracles are critical for the smooth operation of DeFi protocols.

Specifically, price oracles furnish indispensable information that

has direct implications on both smart contract execution and their

results. For instance, lending protocols use exact collateral asset

prices to gauge user risk profiles, and outdated or imprecise data

may precipitate financial losses.

In relation to oracle inputs, two distinct types of deviations can

occur: accuracy and latency. Accuracy deviations emerge when a

value deviates from its actual or true value, while latency deviations

are identified when outdated values are reported, a phenomenon

that can, in turn, influence accuracy. These deviations can originate

from various sources such as intentional manipulation of oracles

to report distorted values, or unintentional data adjustments em-

bedded within smart contracts. Irrespective of their origins, such

deviations can result in incorrect operations within smart contracts.

Safeguarding DeFi Smart Contracts against Oracle Deviations ICSE ’24, April 14–20, 2024, Lisbon, Portugal

1 function borrowAllowed(address cToken , address bwr , uint
brwAmt) external returns (uint) {

2 ...

3 uint surplus = hypotheticalLiquid(bwr ,cToken ,0,brwAmt);

4 require(surplus > 0, "INSUFFICIENT_LIQUIDITY");

5 ...

6 return uint(Error.NO_ERROR); }

7

8 function hypotheticalLiquid(address acct , CToken cToken ,

uint redTok , uint brwAmt) internal returns (uint) {

9 AccountLiquidityLocalVars memory v;

10 // Iterate over each asset in the acct

11 CToken [] memory assets = accountAssets[acct];

12 for (uint i = 0; i < assets.length; i++) {

13 CToken asset = assets[i];

14 (, v.cTokenBal , v.brwBal , v.exchRt) =

15 asset.getAccountSnapshot(acct);

16 // Fetch asset price from oracle

17 v.oraclePrice = oracle.getUnderlyingPrice(asset);

18 v.collFact = markets[address(asset)]. collFact;
19 v.tokensToDenom= v.collFact*v.exchRt*v.oraclePrice;

20 v.sumColl = v.sumColl+ v.tokensToDenom* v.cTokenBal;

21 v.sumBrwEfct= v.sumBrwEfct+ v.oraclePrice* v.brwBal;

22 if (asset == cToken) {

23 v.sumBrwEfct= v.sumBrwEfct+ v.tokensToDenom*redTok;

24 v.sumBrwEfct= v.sumBrwEfct+ v.oraclePrice*brwAmt ;}}

25 return v.sumColl - v.sumBrwEfct; }

Figure 1: Compound protocol borrow logic simplified.

Complexity of DeFi smart contracts. Smart contracts implement-

ing DeFi protocols such as lending, DEXes, and derivatives [1, 3, 26]

can be complex since they generally include loops to iterate through

data structures representing various assets types or accounts man-

aged by the protocols and calculate a sum, e.g., total assets or debts.

This work highlights that a typical Solidity contract tends to include

one loop per 250 lines of cods and over 60% of loops perform an

accumulation [37].

3 EXAMPLE AND OVERVIEW
We present a motivating example of applying OVer to analyze

oracle deviation in Compound [13]. Figure 1 presents a simplified

code snippet from the Compound smart contracts. Compound is

a decentralized borrowing and lending protocol operating on the

Ethereum blockchain. To borrow assets from Compound, a user

deposits assets as collateral. The total value of the collateral has to

be significantly greater than the value of the borrowed assets at

any time. Whenever a user attempts to borrow assets, Compound
calls borrowAllowed (line 1 in Figure 1) to enforce this policy. The

function borrowAllowed in turn calls hypotheticalLiquid (line
8) to calculate the difference (i.e., surplus at line 4) between the

adjusted value of the collateral assets (i.e., v.sumColl at line 20) and
the total value of the borrowed assets (i.e., v.sumBrwEfct at line 21)
for the given account acct. In the function, Compound computes

these two values with the loop at lines 12-24. Each iteration of the

loop handles one kind of asset in Compound and updates the two

variables. Specifically, the loop computes v.sumColl as follows:∑︁
𝑎∈𝑎𝑠𝑠𝑒𝑡𝑠

(𝑐𝑜𝑙𝑙𝐹𝑎𝑐𝑡𝑎 ∗ 𝑒𝑥𝑐ℎ𝑅𝑡𝑎 ∗ 𝑝𝑎 ∗ 𝑐𝑇𝑜𝑘𝑒𝑛𝐵𝑎𝑙𝑎) (1)

where exchRt𝑎 is the exchange rate of the collateral asset 𝑎, 𝑝𝑎 is

the price of the asset 𝑎 fetched from an external oracle contract

(v.oraclePrice at line 20), cTokenBal𝑎 is the balance of the asset

𝑎, and collFact𝑎 is a control variable smaller than one to determine

the enforced over-collateralization ratio for the asset. The loop also

computes v.sumBrwEfct as follows:∑︁
𝑎∈𝑎𝑠𝑠𝑒𝑡𝑠

(𝑏𝑟𝑤𝐵𝑎𝑙𝑎∗𝑝𝑎+𝑐𝑎∗ (𝑝𝑏𝑟𝑤 ∗𝑏𝑟𝑤𝐴𝑚𝑡+𝑐𝑜𝑙𝑙𝐹𝑎𝑐𝑡𝑟 ∗𝑒𝑥𝑐ℎ𝑅𝑡𝑟 ∗𝑝𝑟 ∗𝑟𝑒𝑑𝑇𝑜𝑘)) (2)

where 𝑝𝑏𝑟𝑤 is the price of the asset brw that the user wants to

borrow, r is the asset the user wants to withdraw from its collateral,

brwBal𝑎 is the already borrowed balance of the asset 𝑎, brwAmt is
the amount of the asset brw a user wants to borrow, and redTok
is the amount of asset 𝑟 a user wants to redeem. 𝑐𝑎 = 𝐼𝑛𝑡 (𝑎 ==

𝑐𝑇𝑜𝑘𝑒𝑛) is a binary representation of the condition at line 22, where
𝑐𝑎 = 1 when the asset 𝑎 is 𝑐𝑇𝑜𝑘𝑒𝑛 and 𝑐𝑎 = 0 otherwise. Because

hypotheticalLiquid can be invoked when a user borrows assets

or redeems collaterals, there are two different cases. The second

term corresponds to the borrowing case, while the last term corre-

sponds to the redeem case.

Oracle values in Compound. The correctness of Compound de-

pends on the accuracy of the fetched oracle price of each asset

(line 17). Like many other DeFi protocols, Compound fetches oracle

prices from multiple sources, including centralized oracle service

providers such as Chainlink [28] and the trading price of the assets

in decentralized protocols such as Uniswap [32]. However, values

from these sources may deviate from ground truths. In fact, when

a digital asset price is volatile, obtaining the fair price of an asset is

typically impossible. For instance, if the prices in the equation 1 are

inaccurately reported as high, the value of users’ collateral would

increase, potentially leading the protocol to execute borrowing

transactions even when users are not sufficiently collateralized.

To tackle this issue, Compound enforces additional margins for

the positions of each collateral asset and the margin sizes are de-

termined by collFact. Compound empirically sets the collateral

factor value lower to enforce a larger margin on more volatile as-

sets and sets the factor higher on less volatile assets. Many other

DeFi protocols have similar ad-hoc control mechanisms to protect

against oracle deviations. But there is a difficult trade-off in how to

set these control parameters appropriately. On one hand, setting the

parameters too relaxed would make the contracts vulnerable when

facing oracle deviations. On the other hand, setting the parameters

too restrictive would place additional collateral burden on users

and make the protocol unattractive.

Utilizing OVer.Wenow showhowwe applyOVer to analyzeCom-
pound to determine optimal control parameter values such as the

collateral factor. The user first identifies the interested operations

in the source code. In our example, we identify borrowAllowed as

entry point and hypotheticalLiquid, which does critical checks

and computations when performing borrowing actions.

Code analysis. OVer first analyzes the source code in Figure 1 to

generate a symbolic expression for all variables in the constraint

at line 4. It starts with the entry function, replacing intermediate

variables with their computed expressions. For example, surplus
is the returned value of hypotheticalLiquid. It is computed by

subtracting v.sumBrwEfct from v.sumColl. The expressions ex-
tracted by OVer for v.sumColl and v.sumBrwEfct correspond to

the mathematical formulas in Equations 1 and 2, respectively.

OVer then generates the final symbolic expression for the safety

constraint at line 4 in Figure 2. Note that the terms in the final

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xun Deng, Sidi Mohamed Beillahi, Cyrus Minwalla, Han Du, Andreas Veneris, and Fan Long

keywordskeywords keywords1

∑
𝑎∈𝑎𝑠𝑠𝑒𝑡𝑠 (𝑐𝑜𝑙𝑙𝐹𝑎𝑐𝑡𝑎 ∗ 𝑒𝑥𝑐ℎ𝑅𝑡𝑎 ∗ 𝑝𝑎 ∗ 𝑐𝑇𝑜𝑘𝑒𝑛𝐵𝑎𝑙𝑎) − (

∑
𝑎∈𝑎𝑠𝑠𝑒𝑡𝑠 (𝑏𝑟𝑤𝐵𝑎𝑙𝑎 ∗ 𝑝𝑎 + 𝑐𝑎 ∗ (𝑝𝑏𝑟𝑤 ∗ 𝑏𝑟𝑤𝐴𝑚𝑡 + 𝑐𝑜𝑙𝑙𝐹𝑎𝑐𝑡𝑟 ∗ 𝑒𝑥𝑐ℎ𝑅𝑡𝑟 ∗ 𝑝𝑟))) > 0

Figure 2: Compound analysis summary.

expression are either loaded contract states (e.g., v.brwBal) or the
return values of external function calls (e.g., getUnderlyingPrice).

Loop summerization. OVer handles the loop at lines 12-26 as

follows. With the observation that most loops in DeFi contracts per-

form fold operations, particularly accumulation, OVer summarizes

the loop by identifying all accumulation performed and replacing

the loop with one or multiple compact expression(s). By replacing

the variables and loops with compact expressions, the code sum-

mary module returns a set of constraints to represent the smart

contract’s logic. Constraints that are not affected by oracles will

be ignored. In this example, the constraint at line 4 in Figure 1 will

be extracted as the summary shown in Figure 2. Note that, in this

summary, there are five vector variables and three scalar variables.

Formal model generation. The analysis results in Figure 2 are then
used to construct a sound model of the safety constraint. Suppose

we want to investigate the behavior of the borrowing function in

Compound and identify the price deviation limit when using the

default collateral factor (cf) 0.7, and a target collateral factor (cf ′)
0.75. Note that because of the deviation, the target value is always

greater than the one configured in the contract. From the expression

in Figure 2, we can derive the following simplified model:

min

𝛿
𝛿

s.t. ∀ 𝐶,𝐷,𝑏, 𝑃, 𝑝, 𝑃𝑏 , 𝑝𝑏 > 0,
|𝑃𝑖 − 𝑝𝑖 |

𝑃𝑖
< 𝛿,

|𝑃𝑏 − 𝑝𝑏 |
𝑃𝑏

< 𝛿,

𝑐 𝑓 ∗
𝑙𝑒𝑛∑︁
𝑖

(𝐶𝑖 − 𝐷𝑖) ∗ 𝑝𝑖 − 𝑝𝑏 ∗ 𝑏 > 0⇒ 𝑐 𝑓 ′ ∗
𝑙𝑒𝑛∑︁
𝑖

(𝐶𝑖 − 𝐷𝑖) ∗ 𝑃𝑖 − 𝑃𝑏 ∗ 𝑏 > 0

In this model, the variables C, D, b represent CollBal, brwBal and
brwAmt respectively. P and Pb stand for ground truth values while

p and pb stand for values reported by the oracle. Note that because

we are analyzing the borrowing case, the redeem amount is always

zero and therefore the redeem related terms are simplified away.

Formal SMT solution. Finally, we pass the model to the optimizer,

which iteratively calls an SMT solver to prove the constraint speci-

fied in the model above. Following, it returns the optimal 𝛿 if one is

found. Then we can insert proper require statements, for instance,

restricting oracle deviation to be less than the value found, into the

source code to ensure correct behavior.

4 DESIGN
First, we introduce a simplified Solidity language to help present

our proposed analysis framework. The language, shown in Listing 1,

captures variable declarations, assignments, control-flow structures,

and function calls.

Contract, State, and Function. A contract class has an identifier

(id) of String type (line 1 in Listing 1). It encompasses a set of global

states and functions. Each global state has a type and an identifier.

We specify a function with its name, parameters and body which

is constituted of a sequence of statements. The statements dec and
assign (line 8) allow to declare a local variable and assign value to

it, respectively. The statement load allows to read a contract’s state.

Control-Flow Structures. Conditional branches are represented by
IfThenElse construct. A for loop is constituted of the loop iterator i,

Extract
Functions
 Module

Dependency
Analysis

Function
Summary

Loop & IfElse
Summary

if encounter loops
or IfElse constructs

Code Summary Module

Model Building
Module

Optimizer
Module

Optimal Parameters

Extract
Constraints

Source
Code

Figure 3: Overview of the proposed framework.

upper-bound n (for simplicity we omitted lower-bound), and a se-

quence of statements representing the loop body. A phi instruction,
denoted as 𝜙𝑖𝑑 is used to select values based on the control flow for

a static single-assignment (SSA) smart contract. It can only appear

at the beginning in a loop body or after an IfThenElse construct.
The require statement enforces smart contract constraints and its

logic, and is crucial in our analysis.

Function Calls. Function calls are represented by the statement

call(𝑓 , E∗, 𝑖𝑑∗), where f identifies the function, E∗ denotes the
set of parameters, and id∗ represents the names of return values.

Some function calls represent queries of states and to oracle. In our

optimization problem, we consider those as free variables. Table 1

shows examples of statements from the Compound protocol.

1 Contract C ::= contract(𝑖𝑑 ,𝑆𝑡∗,F∗)
2 State 𝑠𝑡 ::= state(𝑡𝑦,𝑖𝑑)

3 Func F ::= func(𝑓 ,𝑖𝑑∗,S∗)
4 Type 𝑡𝑦 ::= Int|Bool|Struct|Map|Array|Bytes|Address

5 Id 𝑖𝑑 ::= String| 𝑓 ,𝑖 ∈ Id

6 Const 𝑐 ::= 𝑛 ∈ Int|Bool|Bytes|Address

7 𝑂𝑝 ::= + | - | × | / | >= | > | < | <= | =

8 Stmt S::= dec(𝑡𝑦,𝑖𝑑) | assign(𝑖𝑑 ,E) |

9 load(𝑖𝑑 ,𝑠𝑡) | require(E) |

10 phi(𝑖𝑑0,𝑖𝑑1,...) |

11 if(E𝑐)then{S∗
1
}else{S∗

2
}Φ∗ |

12 for(𝑖,𝑛){S∗} |

13 call(𝑓 ,E∗,𝑖𝑑∗) | return(E∗)
14 Expr E ::= 𝑐 | 𝑖𝑑 | 𝑖𝑑 [E] | 𝑖𝑑.𝑖𝑑 | ¬E | E1 𝑂𝑝 E2

Listing 1: Simplified Solidity language.

4.1 Code Summary Overview
Figure 3 presents an overview of the proposed framework. The

high-level procedure for the framework is shown in Algorithm 1.

The first step is to preprocess and simplify the source code to SSA

form using the module ExtractFunc. In ExtractFunc, we identify the

entry point of our analysis. Note that the entry point function must

be a public function. In the case of Compound, this entry-point is the
borrowAllowed function. Furthermore, the extracted functions are

pure functions, and they are invoked through the call mechanism
1
.

Then, CodeSummary module extracts concise summaries including

summaries of loops and conditionals and returns a list of constraints.

Next, BuildModel module constructs an optimization model from

the list of constraints for an SMT solver. Lastly, SolveOpt module

solves the optimization model using the SMT solver.

1
In our implementation, we parse the abstract syntax tree (AST) of smart contracts

and perform analysis on nodes in the extracted AST tree to identify pure functions.

Pure functions are functions that have no side effects, i.e., do not modify contract’s

global states.

Safeguarding DeFi Smart Contracts against Oracle Deviations ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Example statements from Compound smart contracts in Solidity and simplified Solidity.

Solidity Code require(surplus > 0, "INSUFFICIENT_LIQUIDITY") v.oraclePrice = oracle.getUnderlyingPrice(asset)

Simplified Solidity require(surplus > 0) call(oracle.getUnderlyingPrice, asset, v.oraclePrice)

Algorithm 1 Main procedure. It takes in source code 𝑠𝑐 of the benchmark.

1: procedure SummaryAnalysis(𝑠𝑐)
2: 𝐹𝑢𝑛𝑐𝑂𝑏 𝑗 ← ExtractFunc(𝑠𝑐)
3: 𝐶𝑜𝑛𝑠𝑡𝐿𝑠𝑡 ← CodeSummary(𝐹𝑢𝑛𝑐𝑂𝑏 𝑗)
4: 𝑀 ← BuildModel(𝐶𝑜𝑛𝑠𝑡𝐿𝑠𝑡)
5: 𝑂𝑝𝑡𝑉𝑎𝑟 ← SolveOpt(𝑀)
6: return𝑂𝑝𝑡𝑉𝑎𝑟

4.2 Code Summary Module
The main tasks of the code summary module are: loop and oracle

dependencies analysis, extraction of symbolic expressions for vari-

ables, and constraints extraction. To compute a concise symbolic

expression that can be passed to a solver, we summarize loops’

bodies using the accumulation operator. Towards our goal, we in-

troduce a domain-specific language (DSL) shown in Listing 2.

1 aop ::= +, -, *, / ; bop ::= >, >=, <, <=, =

2 Id, i ::= String ; lb, ub ::= Int

3 Const ::= Int | Bool | Bytes | Address

4 Val V ::= Id | Const | i | index(V1,V2) | V1(V2) |

5 V1 aop V2 | ret(V2, i)

6 Acc ::= sum(E, i, ub)

7 Expr E ::= Acc | V | E aop E
8 Constr C::= True | E bop E | ¬C

Listing 2: Code summary DSL.

The two main components of our DSL are E for expressions

and C for Boolean constraint expressions. The E type can either

be an accumulation value (Acc), a value (V), or an arithmetic op-

eration between two expressions. The C type can either be the

constant Boolean value True, a comparison operation between two

expressions, or a negation of another constraint.

Indexing and member-access.We use the index operator index(V1,
V2) to represent accessing an element from the array or map V1

with the keyV2. The type ofV1 must be either an array or map and

the type of V2 must be the same as the key’s type of V1. This defi-

nition of the index operator allows nested indexing. The member-

access operator V1(V2) is used to represent accessing the field V1

of the struct variable V2.

Accumulation value. To represent a loop’s summary in our DSL,

we use the accumulation operator sum(E, i, ub), where i is the iter-
ator and ub is the upper bound. The complexity of the summation

is captured in the term E, where it can be a complex mathematics

formula involving multiple index and member-access operators.

Return values of function calls. We utilize ret(V, i) to indicate

that V is the return value of a pure function which reads global

states. When V is a loop-dependent, i represents the loop iterator,

otherwise, i is null. For example, at line 18 in Figure 1, v.oraclePrice
gets the value from the function oracle.getUnderlyingPrice and the

function is loop-dependent because of the argument asset. The
generated summary is ret(oraclePrice(v), i).

4.2.1 Dependency Analysis. To determine expressions and require

statements to include in our optimization model, we need to find

which variables depend on the oracle price. Towards this, we pro-

pose a set of rules O1-O4 to infer this dependency and introduce the
rule O5 to find guard statements that are oracle dependent. More-

over, to compute the loop summary we need to find which variables

inside a loop body that depends on the loop iterator in order to

account for them in the accumulation operator of our DSL. Thus,

we also propose the set of rules L1-L4 to infer loop dependency.

OD denotes the set of expressions and statements that are oracle

dependent. We do not distinguish between the two in OD. The
union operation for sets is denoted as ⊎.
O1: If pure function reads from an oracle state then the identifier

it reads to is oracle dependent. If S := call(f, E, id) and Identifier(f)
= oracle where the helper function Identifier checks whether the
function is annotated as an oracle state getter, then id ∈ OD.

S := 𝑐𝑎𝑙𝑙 (𝑓 , E, 𝑖𝑑), 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 (𝑓) = 𝑜𝑟𝑎𝑐𝑙𝑒

𝑂𝐷 = 𝑂𝐷 ⊎ {𝑖𝑑, S}
O2: If a statement reads from a global state that is oracle dependent

and if a statement assigns an expression that is oracle dependent

to a variable then the variable is oracle dependent.

S := 𝑙𝑜𝑎𝑑 (𝑖𝑑, 𝑠𝑡), 𝑠𝑡 ∈ 𝑂𝐷
𝑂𝐷 = 𝑂𝐷 ⊎ {𝑖𝑑,S}

S := 𝑎𝑠𝑠𝑖𝑔𝑛(𝑖𝑑, E), E ∈ 𝑂𝐷
𝑂𝐷 = 𝑂𝐷 ⊎ {𝑖𝑑, S}

O3: For arithmetic and comparison expressions, if one of the

operands is oracle dependent then the result is oracle dependent.

E = E1 𝑜𝑝 E2, E1 ∈ 𝑂𝐷 ∨ E2 ∈ 𝑂𝐷
𝑂𝐷 = 𝑂𝐷 ⊎ {E}

O4: For a function f, if its parameter E or one of its statements is

oracle dependent, then the return value id is oracle dependent.

S := 𝑐𝑎𝑙𝑙 (𝑓 , E, 𝑖𝑑), 𝑓 := 𝑓 𝑢𝑛𝑐 (𝑓 ,, S′∗), E ∈ 𝑂𝐷 ∨ S′∗ ∈ 𝑂𝐷
𝑂𝐷 = 𝑂𝐷 ⊎ {𝑖𝑑, S}

O5: A require statement is oracle dependent if its expression is.

S := 𝑟𝑒𝑞𝑢𝑖𝑟𝑒 (E), E ∈ 𝑂𝐷
𝑂𝐷 = 𝑂𝐷 ⊎ {S}

We use L𝑖 to denote a for loop, with iterator i, and corresponds to

S = for(i, n, S∗). LD𝑖 is the set of expressions that depend on L𝑖 .
L1: If an expression with an index that corresponds to the loop

iterator or is loop dependent then the expression is loop dependent.

E = 𝑖𝑑 [E], E = 𝑖 ∨ E ∈ 𝐿𝐷𝑖

𝐿𝐷𝑖 = 𝐿𝐷𝑖 ⊎ {E}
L2: For arithmetic and comparison expressions, if one of the

operands is loop dependent then the result is loop dependent.

E = E1 𝑜𝑝 E2, E1 ∈ 𝐿𝐷𝑖 ∨ E2 ∈ 𝐿𝐷𝑖

𝐿𝐷𝑖 = 𝐿𝐷𝑖 ⊎ {E}
L3: If a statement assigns an expression to a variable and this

expression is loop dependent then the variable is loop dependent.

S := 𝑎𝑠𝑠𝑖𝑔𝑛(𝑖𝑑, E), E ∈ 𝐿𝐷𝑖

𝐿𝐷𝑖 = 𝐿𝐷𝑖 ⊎ {𝑖𝑑}

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xun Deng, Sidi Mohamed Beillahi, Cyrus Minwalla, Han Du, Andreas Veneris, and Fan Long

𝑝𝑐 (𝑓) := require E or 𝑝𝑐 (𝑓) := return E, S(𝑓) =⊥,E := 𝐶𝑜𝑛𝑣𝐷𝑆𝐿 (E)
S = S[𝑓 ↦→ E]

𝑝𝑐 (𝑓) := 𝑎𝑠𝑠𝑖𝑔𝑛 (𝑖𝑑, E), S(𝑓) = {E},E′ := E[𝑖𝑑/𝐶𝑜𝑛𝑣𝐷𝑆𝐿 (E)]
S = S[𝑓 ↦→ E′]

𝑝𝑐 (𝑓) := 𝑐𝑎𝑙𝑙 (𝑓 ′, E, 𝑖𝑑), S(𝑓) = E,E′ := E[𝑖𝑑/S(𝑓 ′ (E))]
S = S[𝑓 ↦→ E′]

𝑝𝑐 (𝑓) := 𝑓 𝑜𝑟 (𝑖, 𝑛) {S∗},E′ := 𝐿𝑝𝑆𝑚 (𝑖, 𝑛, S∗, S(𝑓))
S = S[𝑓 ↦→ E′]

𝑝𝑐 (𝑓) := 𝑖 𝑓 (E𝑐)𝑡ℎ𝑒𝑛{S∗
1
}𝑒𝑙𝑠𝑒 {S∗

2
},E′ := 𝐼 𝑓 𝑆𝑚 (E𝑐 , S∗

1
, S∗

2
,Φ∗, S(𝑓))

S = S[𝑓 ↦→ E′]
Figure 4: Function summary extraction rules.

L4: If a statement invokes a function f with a parameter E that is

loop dependent, then the return value id is loop dependent.

S := 𝑐𝑎𝑙𝑙 (𝑓 , E, 𝑖𝑑), E ∈ 𝐿𝐷𝑖

𝐿𝐷𝑖 = 𝐿𝐷𝑖 ⊎ {𝑖𝑑}

4.2.2 Symbolic Value Extraction. We now present a set of rules to

generate a function summary, shown in Figure 4. We use Extract-
Summary to refer to those rules. Specifically, ExtractSummary takes

a statement S and an expression E. It applies the effect of S on E
and returns the updated expression E′. We use S that maps a func-

tion f to its summary. Our approach uses a bottom-up algorithm

that begins from a return or a require statements. It adds the return

expression E of a function f to the initially empty summary S(𝑓).
For an assignment, id = E, we convert E to its DSL using the

procedure ConvDSL. We substitute all occurrences of id in S(f) = E
with its computed DSL value, denoted as E[𝑖𝑑/𝐶𝑜𝑛𝑣𝐷𝑆𝐿(E)].

For a function call, call(f’, E, id), we generate a summary of f’(E),
denoted as S(f’(E)), and replace symbol id with S(f’(E)).

The more involved summarization of loops and if-else statements

are handled in the LpSm and IfSm procedures that we describe next.

Loop Summary. In Algorithm 2, we present the procedure LpSm.

LpSm attempts to generate summaries for the symbols in the ex-

pression E, in the form of accumulation or nested accumulation.

For each symbol, we analyze the for loop body in a bottom-up man-

ner and perform symbolic substitution using ExtractSummary. We

enumerate the symbols following their order of dependency (line 4).

For instance, in Listing 3, since acc1 depends on acc we enumerate

acc1 before acc. We use ps to denote the "partial summary" of the

symbol’s value at an iteration i.
1 acc: acc_0 + sum(index(A, j),j,b)

2 acc1: acc1_0 + sum(acc_0 + sum(index(A, j),j,k),k,b)

3 for (i = 0; i < b; i ++) {

4 acc' = phi(acc_0 , acc𝑖−1)
5 acc1' = phi(acc1_0 , acc1𝑖−1)
6 acc𝑖 = acc' + A[i]

7 acc1𝑖 = acc1' + acc𝑖 }

Listing 3: Loop summary example.

We pattern match accumulation operations within ps at line 9
and check whether a 𝜙𝑚 statement appears in the right-hand-side

(rhs) precisely once. We also confirm that the rest of the expression,

E𝑠 , is loop dependent using the loop-dependency set computed at

line 8. If E𝑠 depends on m which means that the loop violates the

properties of an accumulation operation, we halt execution.

For handling nested summations, we consider every computed

symbol m1 with a summary v. We perform substitutions into the

current summary ps and adjust the inner-sum’s upper bound at

lines 18-20. We also adjust previous summaries computed at line 22.

Ifm is an accumulator (findSum is True), we remove assignments

to m from S∗ so that no substitution is performed for already com-

puted symbols (lines 25-26). Finally, to compute the full summary at

end of the loop, we set the upper bound of the outermost summation

to match the loop’s upper bound (line 28).

In Listing 3, we show an example of a nested sum and the com-

puted complete summaries for both acc and acc1.

Algorithm 2 LpSm procedure. It takes loop parameters and an expression

E and returns an expression E′. M stores symbols of E, ordered based on

S∗. V stores summaries of symbols in M. LD_i stores expressions that are
loop-dependent. ApplyLDRules updates LD_i using loop dependency rules.

1: procedure LpSm(𝑖, 𝑛, S∗,E)
2: 𝑉 ← {}, 𝐿𝐷𝑖 ← {}
3: E′ ← E
4: for each𝑚 ∈ 𝑀 in their order of dependency
5: 𝑝𝑠 ←𝑚

6: for each 𝑠𝑡𝑚𝑡 ∈ 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (S∗)
7: 𝑝𝑠 ← ExtractSummary(𝑠𝑡𝑚𝑡, 𝑝𝑠)
8: 𝐿𝐷𝑖 ← ApplyLDRules(𝑠𝑡𝑚𝑡, 𝐿𝐷𝑖) using the rules L1-L4
9: if 𝑝𝑠 ≡ ”𝜙𝑚 + E𝑠 ” ∧ E𝑠 ∈ 𝐿𝐷𝑖

10: if (E𝑠 depends on𝑚)
11: exit
12: else
13: 𝑖′ ← NewIndex()
14: 𝑝𝑠 ←𝑚0 + 𝑠𝑢𝑚 (E𝑠 [𝑖/𝑖′], 𝑖′, 𝑖)
15: 𝑓 𝑖𝑛𝑑𝑆𝑢𝑚 ← 𝑇𝑟𝑢𝑒

16: for each (𝑚1, 𝑣) ∈ 𝑉
17: if 𝑝𝑠 ≡ “𝑚0 + 𝑠𝑢𝑚 (E𝑠 , 𝑘, 𝑖)” ∧𝑚1 ∈ E𝑠∧ 𝑣 ≡ “𝑣0 + 𝑠𝑢𝑚 (E𝑣 , 𝑗, 𝑖)”
18: 𝑝𝑠 ← 𝑝𝑠 [𝑚1/𝑣 [𝑖/𝑘]]
19: if 𝑝𝑠 ≡ “𝑚0 + 𝑠𝑢𝑚 (E𝑠 , 𝑘, 𝑖)” ∧ 𝜙𝑚1 ∈ E𝑠∧ 𝑣 ≡ “𝑣0 + 𝑠𝑢𝑚 (E𝑣 , 𝑗, 𝑖)”
20: 𝑝𝑠 ← 𝑝𝑠 [𝜙𝑚1/𝑣 [𝑖/𝑘 − 1]]
21: for each (𝑚1, 𝑣) ∈ 𝑉
22: if 𝑝𝑠 ≡ “𝑚0 + 𝑠𝑢𝑚 (E𝑠 , 𝑘, 𝑖)” ∧ 𝜙𝑚 ∈ 𝑣

23: 𝑉 [𝑚1] ← 𝑣 [𝜙𝑚/𝑝𝑠 [𝑖/𝑖 − 1]]
24: 𝑉 [𝑚] ← 𝑝𝑠

25: if 𝑓 𝑖𝑛𝑑𝑆𝑢𝑚
26: 𝐴← 𝐴 \ 𝑎𝑠𝑠𝑖𝑔𝑛 (𝑚, _)
27: for each𝑚 ∈ 𝑀
28: 𝑣 ← 𝑉 [𝑚] [𝑖/𝑛]
29: E′ ← E′ [𝑚/𝑣]
30: return E′

Handling conditional branches.To account for the different branches
of an IfThenElse construct, our summarization includes the con-

dition in IfThenElse. Algorithm 3 describes the procedure to sum-

marize the effects of IfThenElse construct. Similar to loops, we

enumerate symbols in the order of dependency (line 4). We then

handle statements in reverse order and generate a summary for

each symbol. To combine summaries from both branches, we follow

the phi instruction and take the condition into account (line 11).

1 for(uint i = 0; i < b; i++) {

2 if (D[i]) { a1 = a1 + A[i] * B[i]; }

3 else { a2 = a2 + A[i] * C[i]; } }

Listing 4: If-else branch example.

In the example shown above, we generate the following summaries.

keywordskeywords keywords1 a1=a10+sum(index(A,j)*index(B,j)*Int(index(D,j)),j,b)

keywordskeywords keywords2 a2=a20+sum(index(A,k)*index(C,k)*(1-Int(index(D,k))),k,b)

Expressions in the if branch are multiplied by the Boolean flag, D[i],
while the ones in the else branch are multiplied by its complement.

Safeguarding DeFi Smart Contracts against Oracle Deviations ICSE ’24, April 14–20, 2024, Lisbon, Portugal

4.2.3 Constraint Extraction. Our optimization model will consist

of a set of constraints that are oracle-dependent or constraints over

symbols that appear in oracle-dependent constraints. The first set

of constraints corresponds to guard (require) statements that are

flagged as oracle-dependent using the oracle dependency analysis

rules O1-O5. The second set of constraints corresponds to guard

statements that only contain symbols that appear in the set of

oracle-dependent constraints.

Algorithm 3 IfSm procedure. It takes IfThenElse parameters and an ex-

pression E and returns an expression E′. 𝑝𝑡 and 𝑝𝑒 represent the partial

summary for the two branches.𝑀1 and𝑀2 stores the symbols of E. Sum-

maries of symbols in𝑀1 and𝑀2 are stored in V.

1: procedure IfSm(E𝑐 , S∗
1
, S∗

2
,Φ∗,E)

2: 𝑉 ← {}
3: E′ ← E
4: for each𝑚1 ∈ 𝑀1,𝑚2 ∈ 𝑀2 in their order of dependency
5: 𝑝𝑡 ←𝑚1, 𝑝𝑒 ←𝑚2

6: for each 𝑠𝑡𝑚𝑡𝑡 ∈ 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (S∗
1
), 𝑠𝑡𝑚𝑡𝑒 ∈ 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (S∗

2
)

7: 𝑝𝑡 ← ExtractSummary(𝑠𝑡𝑚𝑡𝑡 , 𝑝𝑡)
8: 𝑝𝑒 ← ExtractSummary(𝑠𝑡𝑚𝑡𝑒 , 𝑝𝑒)
9: 𝑉 [𝑚1] ← 𝑝𝑡 ,𝑉 [𝑚2] ← 𝑝𝑒
10: for each 𝜙𝑖𝑑 ≡ 𝑝ℎ𝑖 (𝑖𝑑1, 𝑖𝑑2) ∈ Φ∗
11: 𝑉 [𝑖𝑑] ← 𝑉 [𝑖𝑑1] × 𝐼𝑛𝑡 (E𝑐) +𝑉 [𝑖𝑑2] × (1 − 𝐼𝑛𝑡 (E𝑐))
12: for each𝑚 ∈ 𝑀
13: E′ ← E′ [𝑚/𝑉 [𝑚]]
14: return E′

Algorithm 4 BuildModel procedure. It takes in a list of constraints

𝐶𝑜𝑛𝑠𝑡𝐿𝑠𝑡 and returns a model𝑀 for the SMT solver.

1: procedure BuildModel(𝐶𝑜𝑛𝑠𝑡𝐿𝑠𝑡)

2: 𝐶𝑣, 𝑆𝑑, 𝑅𝑒,𝑈𝑏 ← ExtractVars(𝐶𝑜𝑛𝑠𝑡𝐿𝑠𝑡)
3: 𝐶𝑣, 𝑆𝑣, 𝑅𝑒,𝐺𝑡,Δ← InitVar(𝐶𝑣, 𝑆𝑣, 𝑅𝑒)
4: 𝐶0,𝐶1← InitConst(𝐶𝑣, 𝑆𝑣, 𝑅𝑒,𝐺𝑡,Δ)
5: 𝐶 ← [𝐶0,𝐶1]
6: for each 𝑐𝑜𝑛𝑠𝑡 ∈ 𝐶𝑜𝑛𝑠𝑡𝐿𝑠𝑡
7: [𝐶𝑅𝑒 ,𝐶𝐺𝑡] ← ConvertZ3(𝑐𝑜𝑛𝑠𝑡, 𝑅𝑒,𝐺𝑡,𝐶𝑣, 𝑆𝑣,𝑈𝑏)
8: append(𝐶, [𝐶𝑅𝑒 ,𝐶𝐺𝑡])
9: return𝑀 (Δ,𝐶𝑣, 𝑆𝑣, 𝑅𝑒,𝐺𝑡,𝐶,𝑈𝑏)

4.3 Model Generation
We build a model M from the extracted list of guard statements

constraints. M has 7 parameters: Oracle prices values (Re), ground
truth prices values (Gt), oracle deviation delta (Δ), the DeFi proto-
col’s control variables (Cv), e.g., margin ratio, state variables (Sv),
loops upper bounds (Ub), and the set of constraints extracted C.

To generate M from the guard statements, we first extract and

initialize variables (lines 2-3 in Algorithm 4). We also add two

additional constraints C0, and C1 to all models (lines 4-5). C0 states
that Sv, Re, Gt are greater than zero. C1 states that Re deviates

from Gt by at most Δ. For each guard statements, we generate two

constraints, one evaluated with ground truth values and the other

one with oracle values (lines 6-8).

4.4 Optimization
Ideally, we are interested in finding some oracle deviations Δ, or
control variables Cv, such that the smart contracts "always behave

correctly". In other words, for all inputs, given the deviated oracle

price, the smart contracts should exhibit the same behavior as when

given the ground truth price. For example, if we have a require

statement: require(a > b), the corresponding constraint is a > b, and
assuming that one of the variables a, b or both of them are functions

of oracle inputs. We need to prove the following.

𝑎 (𝑅𝑒) > 𝑏 (𝑅𝑒) ⇒ 𝑎 (𝐺𝑡) > 𝑏 (𝐺𝑡) (3)

𝑎 (𝑅𝑒) <= 𝑏 (𝑅𝑒) ⇒ 𝑎 (𝐺𝑡) <= 𝑏 (𝐺𝑡) (4)

Since we focus on the inputs when the transaction is not reverted,

thus we only need to prove equation 3 (the require statement will

revert the transaction if the lhs of equation 4 holds).

Algorithm 5 SolvOpt procedure. It takes in a model𝑀 , and returns the

optimum parameters if found.

1: procedure SolvOpt(𝑀)

2: 𝐶𝑜𝑛𝑠𝐿𝑖𝑠𝑡 ← simplifyConstraints(𝑀)
3: while Stop condition not met
4: 𝑟𝑒𝑠 ← Solv(𝐶𝑜𝑛𝑠𝐿𝑖𝑠𝑡)
5: 𝑂𝑝𝑡𝑉𝑎𝑟 ← Update(𝑟𝑒𝑠)
6: return𝑂𝑝𝑡𝑉𝑎𝑟

There are several optimization problems that can be derived

from the constraints. For example, we can solve for the maximum

oracle deviation the protocol can tolerate given some control pa-

rameters Cv, and Ub (equation 5). That is, we maximize the oracle

deviation delta such that for all inputs satisfying a > b, given some

predetermined control parameters. We can also give the model

an expected delta and solve the optimization problem to find the

optimum control parameters (equation 6). In Algorithm 4, we give

the procedure SolvOpt that takes a model M and iteratively queries

a solver to find optimum parameters, or it reaches a timeout.

max

Δ
Δ

s.t. ∀ 𝑆𝑣 > 0,
|𝑃𝑖 − 𝑝𝑖 |

𝑃𝑖
< 𝛿𝑖 ,

𝑎 (𝑅𝑒, 𝑆𝑣,𝐶𝑣) > 𝑏 (𝑅𝑒, 𝑆𝑣,𝐶𝑣) ⇒

𝑎 (𝐺𝑡, 𝑆𝑣,𝐶𝑣′) > 𝑏 (𝐺𝑡, 𝑆𝑣,𝐶𝑣′)

(5)

min

𝐶𝑣′
𝐶𝑣′

s.t. ∀ 𝑆𝑣 > 0,
|𝑃𝑖 − 𝑝𝑖 |

𝑃𝑖
< 𝛿𝑖 ,

𝑎 (𝑅𝑒, 𝑆𝑣,𝐶𝑣) > 𝑏 (𝑅𝑒, 𝑆𝑣,𝐶𝑣) ⇒

𝑎 (𝐺𝑡, 𝑆𝑣,𝐶𝑣′) > 𝑏 (𝐺𝑡, 𝑆𝑣,𝐶𝑣′)

(6)

5 EVALUATION
In this section, we evaluate the performance and effectiveness of

OVer, and present the evaluation results. Specifically, we aim to

answer the following research questions.

RQ1: Are current control parameters of Defi protocols safe under

large oracle deviations?

RQ2: Can OVer efficiently analyze various Defi protocols that use

oracles?

RQ3: Can OVer assist developers to design safe Defi protocols that

use oracles?

5.1 Implementation and Benchmarks
We implement OVer based on the Slither static analysis tool [40]
with 1160 lines of code in Python for Solidity based smart contracts.

To solve the optimization problems, we leverage the SMT solver Z3
[16]. Note that the constructs of the programming language in List-

ing 1 that we used to present the main components of OVer design

are commonly found in other programming languages. Thus, OVer

implementation can also be extended to handle smart contracts

written in other programming languages such as Vyper [45].

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xun Deng, Sidi Mohamed Beillahi, Cyrus Minwalla, Han Du, Andreas Veneris, and Fan Long

Table 2: Code summary module execution time.

Protocol #requires #loops CompileTime (s) TotalExecTime (s) #vectorVars #otherVars Branch Dependency Oracle

Aave (borrow) 3 1 1.0558 1.0572 6 4 ✓ ✓ Chainlink

Aave (liquidation) 1 1 0.6313 0.6350 5 1 ✓ ✓ Chainlink

Compound 1 1 4.8403 4.8413 5 5 ✓ ✓ OpenPriceFeed

Euler 1 1 2.4056 2.4063 5 2 ✓ ✓ Uniswap

Solo 2 1 0.4704 0.4714 5 2 ✓ ✓ Chainlink

Warp 1 2 1.5149 1.5156 4 2 ✓ ✓ Uniswap

dForce 1 2 1.3724 1.3746 6 2 ✓ ✓ Chainlink

Morpho 1 2 8.5961 8.6002 7 1 ✓ ✓ Chainlink

TestAMM 1 0 0.1989 0.1992 0 4 X ✓ AMM-based

xToken 0 0 1.7244 1.7247 0 4 X ✓ multiple source

Beefy 0 0 0.6730 0.6750 0 4 X ✓ depends on vault

We evaluate OVer on 9 DeFi protocols: Aave, Compound, Euler,
Solo, Warp, dForce, Morpho, Beefy, and xToken. Notably, this bench-
mark suite contains not only widely-used DeFi protocols according

to DeFi industry database DefiLlama [17] but also that fell victim

to oracle manipulation attacks. To the best of our knowledge, Aave,
Compound, Solo, Morpho, and Beefy have not been victims to oracle

manipulation attacks. The protocols that were victims to oracle

manipulation attacks are dForce,Warp, Euler, and xToken. We cover

a wide range of protocols, including different types of lending proto-

cols, yield aggregators, margin trading, and liquidity manager. We

excluded several DeFi protocols, e.g., Inverse Finance, CheeseBank,
JustLend, Venus, Benqi, and Radiant, that were forked from proto-

cols in our benchmarks, e.g., Compound and Aave. We also evaluate

OVer on a fictional DeFi protocol [10] developed to demonstrate

oracle manipulation, and we call it TestAMM. All experiments are

run on an AWS EC2 m5.2xlarge instance machine with 8vCPU, 32

GB memory, and 8TB SSD storage.

5.2 Protocols’ Response to Oracle Deviations
To motivate OVer and answer RQ1, we examine how oracle de-

viations impact the correctness of DeFi protocols. Specifically, we

study historical oracle price deviations and the maximum tolerance

of each protocol with their default control parameter settings.

To narrow the scope of our study, we focus on the oracle price

of ETH, the native token of Ethereum network. We gather price

updates for ETH/USD, USDT/ETH, USDC/ETH and DAI/ETH pair

on Chainlink and ETH/USDT pair on Uniswap, where USDT, USDC
and DAI are stable coins issued in Ethereum which stay closely one

to one with US dollar. We select Chainlink and Uniswap because

they are very widely used oracles among DeFi protocols [18], as

also highlighted in the oracle column of Table 2.

Because empirically oracle deviations often occur when a digital

asset is highly volatile, we study updates during the most volatile

days of ETH for the two pairs between 06/2020 and 09/2022. We

compute the deviation as the difference between two consecutive

updates on Uniswap. The rationale is that in normal settings, the

ground truth of an asset price is bounded by the values of two

consecutive updates. On Chainlink, we look for deviations within

33 minutes or 155 blocks window.

Table 3 shows the top five deviations found. The first and the

third columns give the block number when the deviation is observed

on Chainlink and Uniswap, respectively. The second and fourth

columns give the exact value of deviations.

Moreover, we study the maximum deviation allowed by each

protocol. Since the lending protocols require over-collateralization

to cover borrowed or leveraged positions, we define failure as when

the borrowed value is more than the collateral value of the user.

For Aave, Morpho, Warp, dForce, Euler, xToken, and Beefy we use

the default control parameters of each protocol.

Table 4 shows the maximum tolerance of each protocol. Specifi-

cally, the first column gives the name of the protocol. The second

column specifies the parameter used in the experiment. The last

column presents the maximum oracle deviation found.

Table 3: Top deviations observed on Chainlink and Uniswap.

Chainlink Deviation Uniswap Deviation

11631223 0.1390 10314022 0.4248

11631215 0.1293 10314022 0.3351

11631215 0.1260 10326501 0.2368

11631226 0.1159 10314022 0.2356

11631248 0.0994 10326310 0.1948

Table 4: Deviation limit given specific control variables.

Protocol CV delta

Compound cf = 0.7 0.17

Aave lth=0.85, ltv= 0.83 0.08

Solo mp= 0.15, mr = 0.1 0

Morpho ltv = 0.83 0.09

Warp cr = 2/3 0.20

dForce bf = 1, cf = 0.85 0.08

Euler bf = 0.91, cf = 0.9 0.09

testAMM cr = 0.7 0.42

xToken fee = 0.02 0.02

Beefy fee = 0 0

Answer to RQ1: We surprisingly found that the default control

parameters of the investigated protocols are not enough to protect

these protocols against history oracle deviation. Specifically, for

protocols relying on Chainlink price feed, e.g., Aave and dForce,
with deviation limits of 0.08, will suffer from under-collateralization

given the greatest deviation in Table 4. Morpho would encounter

safety issues in certain cases. Solo is consistently at risk given the

specific control parameters. Compound’s Open Price Feed module

relies on Chainlink to update the price and verify it by comparing

it with Uniswap’s average price. Thus, with a tolerance of 0.17, in

some extreme cases, Compound would execute incorrectly.Warp

Safeguarding DeFi Smart Contracts against Oracle Deviations ICSE ’24, April 14–20, 2024, Lisbon, Portugal

and Euler use Uniswap as price oracle and testAMM relied on AMM-

based oracles. Deviations on Uniswap are more significant, reaching

a maximum value of 0.4248. While testAMM would not suffer from

under-collateralization in most cases given the specific parameter,

neitherWarp nor Euler is safe given the oracle deviations.

This finding means that the oracle deviation caused these proto-

cols, at least temporarily, to violate basic safety constraints such as

over-collateralization. One consequence is, for example, that a ma-

licious attacker could send timely transactions during the deviation

to borrow or redeem assets with insufficient collaterals, extracting

profits at the cost of the protocol investors.

In the case of xToken and Beefy, where the protocol does not
mandate over-collateralization, any price deviation leads to an im-

mediate loss. The protocols charge fees for most operations pro-

portional to the transaction amount. xToken charges a maximum

fee of 2%, while there is no deposit or withdraw fee in Beefy vaults.

Consequently, if we employ the fee as a control parameter, the max-

imum oracle deviation the protocol can tolerate will correspond to

the percentage of the fee. Furthermore, in some cases, fees can be

exploited in an attack. An example is the fee adjustment from 0.5%

to 0%, contributing to the Yearn attack in 2021 [2, 25].

Effect of Introducing Delay. Introducing a delay is a widely recom-

mended approach to counteract oracle manipulation. An example of

this strategy can be found in MakerDao’s OSM layer, which imple-

ments a one-hour delay for price updates. This approach naturally

introduces a deviation to the reported oracle price. To evaluate this

method, we conduct simulations using Chainlink data and calculate
the deviation from the current timestamp when a one-hour delay

is introduced. For instance, for the block with deviation of 0.1260,

this strategy effectively reduces the deviation to 0.0779.

However, it is important to note that relying on a delayed price

does not guarantee a consistently smaller deviation. It may intro-

duce additional deviation due to the delay and therefore making

the underlying protocols more vulnerable. For instance, during the

period from block 11541949 to 11596096, we notice an increase in

the maximum deviation from 0.0329 to 0.1525 after applying the

delay method. This would make the deviation surpass the tolera-

ble thresholds of five benchmark protocols, Aave, Morpho, dForce,

Euler, and xToken shown in Table 4. This finding underscores the

complexity of defending against oracle manipulation and shows

that existing ad-hoc control mechanisms such as introducing de-

lays are often insufficient or even detrimental to protect the DeFi

protocols against the oracle deviation in the real-world.

5.3 Effectiveness of OVer
To answer RQ2 and assess the performance of OVer, we run OVer

to analyze the collected benchmarks. For the Aave protocol, we ap-
ply OVer to the safety constraint in both borrowing and liquidation

scenarios, which are listed in rows one and two in Table 2, respec-

tively. Notably, both Compound andWarp protocols share the same

set of constraints for their borrow and liquidation operations. For

Solo, we apply OVer on the safety constraint that verifies whether

a user’s position is adequately collateralized. The corresponding

check is utilized in all operations, including liquidation, within the

protocol. For Euler, we focus on the safety constraint responsible

for checking liquidity in actions such as minting and withdrawal.

As for dForce, Morpho, and TestAMM, we analyze the safety con-

straint of the borrow action. For xToken and Beefy, we focus on the

constraint of the mint/deposit and burn/withdraw actions.

Table 2 presents the results of the experiment. The second and

third columns present the number of "require" statements extracted

and the occurrences of loops, respectively. We also include Slither
compilation time in the fourth column and the total execution time

in the fifth column. Moreover, we measure the number of vector

variables and other variables (scalar) in the constraints (columns five

and six). We also present the features of each benchmark, including

branching and dependent statements.

Answer to RQ2: Our results highlight the capability of OVer. It

successfully analyzed all the protocols and their safety constraints

in less than 10 seconds. We manually validated all the generated

symbolic expressions. For 8 out of the 11 cases, the contract code

contains loops with dependencies or branch conditions. For 7 cases,

the code contains more than one loop. Although the code structures

are difficult for standard analysis techniques, our loop summary

algorithm enables OVer to handle all of them successfully. Our loop

summary algorithm is also fast, i.e., the majority of the execution

time is consumed by Slither to parse the code and generate AST.

5.4 Case Studies Analysis
To answer RQ3 and show how OVer can help developers to design

safe protocols, we present case studies of applying OVer on Com-
pound, Solo, dForce, and xToken. For each case, we show how a user

can use the symbolic expressions obtained by OVer to construct

models to determine appropriate values of control parameters when

facing different degrees of oracle deviations.

Timeout is set to be two minutes throughout the experiments.

Compound relies on the Open Price Feed module to access and

retrieve price information critical to its operations. As discussed in

Section 3, the protocol implements a one-side risk control mech-

anism, i.e., uses a single control variable to govern its behavior.

Specifically, the control variable is known as the collateral factor.

Normally, cf is set to a value smaller than 1, ensuring that the user’s

collateral value exceeds the borrowed value. When cf is greater

than 1, the protocol allows under-collateralization, a situation gen-

erally considered undesired for lending protocols. We set the cf to

be 0.7 in the experiment, and consider three different oracle devia-

tions. We run the search algorithm with a step size of 0.01 for Ub=1
and 0.05 for Ub=2. The results are shown in Table 5. The effective cf
achieved, i.e., cf ′, is given in the second column. The first column

lists the parameter assignments, the third column counts the num-

ber of free variables in the constraint and the optimization time is

shown in the last column. We time out when we set bound=1, 𝛿=0.1,
and when we increase the bound Ub to 3. We observe that the result

would be the same if we use the same step size. Furthermore, it is

reasonable to argue that the same cf ′ would be optimal for Ub=3
as the search result should be independent of loop bounds.

Based on the results, if we expect an oracle deviation of 0.1 and

set cf = 0.7 (equivalent to 30% safety margin), the actual margin will

be around 14%, i.e., cf ′ = 0.86. When there is no oracle deviation,

we would achieve the exact margin specified in the protocol. This

insight allows developers to understand how oracle deviations can

impact the safety margin and offers guidance on parameter settings

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xun Deng, Sidi Mohamed Beillahi, Cyrus Minwalla, Han Du, Andreas Veneris, and Fan Long

accordingly. Furthermore, developers can add the corresponding

constraint on oracle inputs which would guarantee the correctness.

Table 5: Compound borrow with cf = 0.7 and ex = 1.

Variables cf
′

NumVars Time (s)

𝛿 = 0.1, 𝑏𝑜𝑢𝑛𝑑 = 1 0.8600 5 4.5486

𝛿 = 0.01, 𝑏𝑜𝑢𝑛𝑑 = 1 0.7200 5 0.1194

𝛿 = 0.001, 𝑏𝑜𝑢𝑛𝑑 = 1 0.7100 5 0.0794

𝛿 = 0.1, 𝑏𝑜𝑢𝑛𝑑 = 2 NA 9 TO

𝛿 = 0.01, 𝑏𝑜𝑢𝑛𝑑 = 2 0.7150 9 0.3535

𝛿 = 0.001, 𝑏𝑜𝑢𝑛𝑑 = 2 0.7050 9 0.2316

Solo project[1] is a marginal trading protocol of dXdY, which
uses Chainlink as price oracle. A desired property in Solo protocol is
that for all operations, accounts remain in a collateralized position.

Besides, for liquidation operation, the protocol may not want to ex-

ecute unnecessary liquidation, thus verifies that the account being

liquidated is indeed under-collateralized before proceeding with the

action. Protocol developers employ two control parameters to safe-

guard operations: the margin ratio (mr) and the margin premium

(mp). For liquidation to safely happen, the following constraint

(simplified), extracted by OVer, must be met:

𝑠𝑝𝑙𝑦𝑉𝑎𝑙

(1 −𝑚𝑝) < 𝑏𝑟𝑤𝑉𝑎𝑙 ∗ (1 +𝑚𝑝) ∗ (1 +𝑚𝑟)

where splyVal represents the total collateral and brwVal represents
the total borrowed amount. These two variables are in the form of

summation and are functions of oracle price input.

In the experiment, we set mr to 0.1 and mp to 0.15. The results

are shown in Table 6, similar to Table 5, except columns two and

three presents themp andmr achieved. When the bound Ub is 1, we
achieve the margin set in the protocol. However, as Ub is increased
to 2, mr achieved, denoted as mr′, also increases, resulting in a

looser control effect. The experiment encountered a timeout when

the Ub was further increased to 3.

Table 6: Solo liquidation with mp = 0.15 and mr = 0.1.

Variables mp
′

mr
′

NumVars Time (s)

𝛿 = 0.1, 𝑏𝑜𝑢𝑛𝑑 = 1 0.15 0.10 5 0.0280

𝛿 = 0.01, 𝑏𝑜𝑢𝑛𝑑 = 1 0.15 0.10 5 0.0281

𝛿 = 0.001, 𝑏𝑜𝑢𝑛𝑑 = 1 0.15 0.10 5 0.0281

𝛿 = 0.1, 𝑏𝑜𝑢𝑛𝑑 = 2 0.15 0.35 10 1.1197

𝛿 = 0.01, 𝑏𝑜𝑢𝑛𝑑 = 2 0.15 0.13 10 0.1454

𝛿 = 0.001, 𝑏𝑜𝑢𝑛𝑑 = 2 0.15 0.11 10 0.0888

dForce [22] is also a pool-based lending protocol and uses Chain-
link as price oracle.While dForce alsomandates over-collateralization,

different from Compound, dForce designers enforce two-sided risk

control, using 2 control variables, the collateral factor (cf) and the

borrow factor (bf). OVer identifies the following safety constraint

(simplified) in the smart contract to ensure collateralization:

𝑐 𝑓 ∗
𝑐𝑙∑︁
𝑐=0

(𝑐𝑏 [𝑐] ∗ 𝑝𝑐 [𝑐]) >
𝑏𝑙∑︁
𝑏=0

(𝑏𝑏 [𝑏] ∗ 𝑝𝑏 [𝑏])
𝑏𝑓

(7)

where cb and bb represent collateral and borrow balances, and pc
and pb represent oracle prices. The constraint contains two sum-

mations, where bounds are represented by cl and bl, respectively.
While for most assets, the protocol did not use bf (bf=1), we

set cf =0.5 and bf =0.7 for the experiment purposes. As there are 2

control variables to optimize, we fix one and search for the optimal

value for the other. Table 7 shows the experiment results. Columns

cf ′ and bf ′ show the cf and bf achieved. We observe that the

results obtained are independent of the bounds for all cases cl > 1,
bl > 1.

Table 7: dForce borrow with cf = 0.5 and bf = 0.7.

Variables cf
′

bf
′

NumVars Time (s)

𝛿 = 0.1, 𝑐𝑙 = 1, 𝑏𝑙 = 0 0.5 0.7 3 0.0264

𝛿 = 0.01, 𝑐𝑙 = 1, 𝑏𝑙 = 0 0.5 0.7 3 0.0265

𝛿 = 0.001, 𝑐𝑙 = 1, 𝑏𝑙 = 0 0.5 0.7 3 0.0263

𝛿 = 0.1, 𝑐𝑙 = 1, 𝑏𝑙 = 1 0.5 0.8560 6 3.8853

𝛿 = 0.01, 𝑐𝑙 = 1, 𝑏𝑙 = 1 0.5 0.7150 6 0.3996

𝛿 = 0.001, 𝑐𝑙 = 1, 𝑏𝑙 = 1 0.5 0.7020 6 0.1091

𝛿 = 0.1, 𝑐𝑙 = 1, 𝑏𝑙 = 1 0.6120 0.7 6 2.7787

𝛿 = 0.01, 𝑐𝑙 = 1, 𝑏𝑙 = 1 0.5110 0.7 6 0.3082

𝛿 = 0.001, 𝑐𝑙 = 1, 𝑏𝑙 = 1 0.5020 0.7 6 0.0892

𝛿 = 0.1, 𝑐𝑙 = 2, 𝑏𝑙 = 1 0.5 0.8560 9 7.1360

𝛿 = 0.01, 𝑐𝑙 = 2, 𝑏𝑙 = 1 0.5 0.7150 9 0.4700

𝛿 = 0.001, 𝑐𝑙 = 2, 𝑏𝑙 = 1 0.5 0.7020 9 0.0875

𝛿 = 0.1, 𝑐𝑙 = 2, 𝑏𝑙 = 1 0.6115 0.7 9 3.8853

𝛿 = 0.01, 𝑐𝑙 = 2, 𝑏𝑙 = 1 0.5110 0.7 9 0.3996

𝛿 = 0.001, 𝑐𝑙 = 2, 𝑏𝑙 = 1 0.5020 0.7 9 0.1091

𝛿 = 0.1, 𝑐𝑙 = 2, 𝑏𝑙 = 2 0.5 0.8560 12 9.0215

𝛿 = 0.01, 𝑐𝑙 = 2, 𝑏𝑙 = 2 0.5 0.7145 12 0.3842

𝛿 = 0.001, 𝑐𝑙 = 2, 𝑏𝑙 = 2 0.5 0.7015 12 0.1010

𝛿 = 0.1, 𝑐𝑙 = 2, 𝑏𝑙 = 2 0.6115 0.7 12 1.8996

𝛿 = 0.01, 𝑐𝑙 = 2, 𝑏𝑙 = 2 0.5105 0.7 12 0.6305

𝛿 = 0.001, 𝑐𝑙 = 2, 𝑏𝑙 = 2 0.5015 0.7 12 0.1676

xToken [24] serves as a liquidity manager protocol, and it was

the victim of an oracle manipulation attack. Specifically, the at-

tacker was able to arbitrage because the protocol utilizes different

price sources. The common attack vector involves three steps: first,

minting or depositing the token; second, inflating the price of the

minted token; and finally, withdrawing or burning the token. Other

protocols such as yield aggregators are susceptible to such attacks.

Tomitigate these attacks, we propose an interface that compares the

price at the time of withdrawal to the price at the time of minting.

The equation we suggest for this comparison is as follows:

|𝑝𝑟𝑖𝑐𝑒𝐴𝑡𝑊 𝑖𝑡ℎ𝑑𝑟𝑎𝑤 − 𝑝𝑟𝑖𝑐𝑒𝐴𝑡𝐷𝑒𝑝𝑜𝑠𝑖𝑡 |
𝑝𝑟𝑖𝑐𝑒𝐴𝑡𝐷𝑒𝑝𝑜𝑠𝑖𝑡

≤ tol (8)

Many existing protocols rely on a fixed tolerance ratio, which is

ineffective when a big volume of tokens is traded. Thus, it is crucial

to parameterize the variable tol in order to take the amount of tokens

traded into consideration. For example, we can parameterize tol as
𝑝𝑟𝑜 𝑓 𝑖𝑡𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒

𝑡𝑜𝑘𝑒𝑛𝑉𝑜𝑙𝑢𝑚𝑒
, which restricts the profit of a single transaction.

We use OVer to examine mint, burn, deposit, and withdraw, and

automatically extract the expression that approximates the price

at withdraw and deposit, shown in Table 8. The price at deposit

is approximated as the value transferred to the protocol and the

token minted. Similarly, the withdraw price is represented by the

value transferred to the user divided by token burned.

Table 8: Expressions extracted for xToken.

Protocol mint burn NumVars Time (s)

𝑥𝑇𝑜𝑘𝑒𝑛 𝑒𝑡ℎ𝑒𝑟𝐶𝑜𝑛𝑡𝑟
𝑚𝑖𝑛𝑡𝐴𝑚𝑡

𝑣𝑎𝑙𝑇𝑜𝑆𝑒𝑛𝑑
𝑡𝑜𝑘𝑇𝑜𝑅𝑒𝑑𝑒𝑒𝑚

4 1.7247

Answer to RQ3: Our study shows that the analysis results of OVer
can soundly capture the logic of the target safety constraints for

Safeguarding DeFi Smart Contracts against Oracle Deviations ICSE ’24, April 14–20, 2024, Lisbon, Portugal

various kinds of DeFi protocols. Given an oracle deviation ratio cap,

a user can use the results of OVer to construct models to find optimal

control parameters to guarantee the desired safety property.

6 RELATEDWORK
Automatic Analysis. A significant body of research has been dedi-

cated to the automatic auditing of smart contracts, utilizing clas-

sic methods such as fuzzing [12, 30, 39, 43, 49], symbolic execu-

tions [14, 34, 35, 38, 53], and static analysis [27, 31, 46, 48] to iden-

tify various vulnerabilities. Researchers have also built verification

tools that use formal models to describe the intricate nature of these

protocols and their interactions [7, 44, 47]. All the above work fo-

cus on eliminating or nullifying implementation errors in smart

contracts. Furthermore, runtime validation techniques are adopted

to enforce security constraints during the execution of smart con-

tracts [23, 33, 42]. In contrast, we focus on the oracle deviation

issue, which is the input aspect of the contract. We propose the first

sound analysis tool to analyze oracle deviation in DeFi protocols.

Bartoletti, Massimo et. al. [6] propose a simulation-based ap-

proach for lending protocols, searching for optimal parameters to

minimize non-repayable loans. In contrast, OVer works with ex-

isting require statements in the code, eliminating the need for

explicit safety property specifications.

Oracle Design and Runtime Mechanisms. Extensive research has

been conducted on DeFi protocols and the associated attacks, with

recent emphasis on flash loan attacks, as highlighted in the work

[11, 21, 41]. Additionally, the manipulation of oracles and price

manipulation attacks have been extensively discussed. For instance,

this work [36] demonstrates the vulnerability of lending protocols

that employ TWAP oracles to undercollateralized loan attacks. Xue

et. al. [52] suggest monitoring token changes in liquidity pools to

detect anomalous transactions and proposes using front-running as

a defense mechanism against such attacks. Wu et. al. [51] propose

a framework for detecting oracle manipulation attacks through se-

mantics recovery. An algorithmic model is designed to estimate the

safety level of DEX-based oracles and calculate the cost associated

with initiating price manipulation attacks [5].Wang et. al. develop

a tool that detects price manipulation vulnerabilities by mutating

states [50]. Several works focus on the design of robust oracles

and proving the properties of price oracles [15]. While previous

research has primarily concentrated on the design of robust oracles

and the detection of price manipulation attacks, our work proposes

promising analysis tools for smart contracts to help developers to

mitigate oracle deviation caused by such attacks, operating under

the assumption that oracles are unreliable.

Loop Summary. The loop summary component of our work is

closely related to a previous work [37] which proposes a DSL con-

taining map, zip, and fold operations and their variant to summarize

Solidity loops. They use a type-directed search with an enumeration

approach. However, after multiple experiments we are not able to

use their tool, Solis, to implement the loop summary component

of our work since it does not handle loops that contain if-else
branches that require introducing Boolean flags in the summary.

Furthermore, during our experiments, we faced some loops without

if branches that require composition that cannot be handled using

Solis. For example, the following loop requires composing the fold

and zip operators on a single statement which according to Section

4.3 in [37] is not supported in Solis.
1 for (uint i = 0; i < len ; i ++) {

2 total += arr1[i] * arr2[i]; }

Also, as presented in Section 4.3 in [37], Solis first generates
a summary for a single statement and concatenates summaries

through the sequence operator. Thus, it fails to handle dependent

statements.

1 for (uint i = 0; i < len ; i ++) {

2 arr[i] * = 5; // S1

3 total += arr[i]; //S2 depends on S1 }

In DeFi protocols, most loops perform fold operations and in-

clude complex mathematical expressions. Therefore, we develop a

new loop summarization algorithm that is tailored to DeFi smart

contracts to address the above issues.

7 THREATS TO VALIDITY
One threat to the validity of our results is that OVer might not be

able to analyze the source code of DeFi protocols beyond our bench-

mark set. To mitigate this threat, we curated a diverse collection

of benchmark protocols that manage digital assets worth billions

of dollars. Another potential threat is that we focus on the five

most volatile days in history to estimate the upper limit of oracle

deviations. However, even if we overlooked certain data points, it

does not undermine our surprising finding that the current control

mechanisms in many deployed DeFi protocols are inadequate for

protecting the protocols against oracle deviations.

8 CONCLUSION
The integrity of decentralized finance protocols is frequently con-

tingent on the precision of crucial oracle values, such as the prices

of digital assets. In response to this, we introduced OVer, the first

sound analysis tool that aids developers in constructing formal mod-

els directly from contract source code. Our findings demonstrate

that OVer possesses the capability to analyze a broad spectrum of

prevalent DeFi protocols. Intriguingly, with the assistance of OVer,

we discovered that many existing DeFi protocols’ control mech-

anisms, even with default parameters, fall short in safeguarding

the protocols against historical oracle deviations. This revelation

underscores the indispensable role of tools like OVer and advocates

for more methodical strategies in the design of DeFi protocols.

9 DATA AVAILABILITY
Our artifact includes the implementation of OVer, source code

for benchmark protocols and the experiment data. It is publicly

accessible on Zenodo [19]. Furthermore, an extended version of the

paper, including supplementary experiment results, can be found

on arxiv [20].

ACKNOWLEDGEMENT
We thank anonymous reviewers for their insightful comments on

the early version of the paper. This work was supported by Mitacs

through the Mitacs Accelerate program. Sidi Mohamed Beillahi is

supported by NSERC Postdoctoral Fellowship.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xun Deng, Sidi Mohamed Beillahi, Cyrus Minwalla, Han Du, Andreas Veneris, and Fan Long

REFERENCES
[1] 2021. Solo protocol. https://github.com/dydxprotocol/solo/releases/tag/v0.41.0.

[2] 2023. Yearn Attack Disclosure. https://github.com/yearn/yearn-security/blob/

master/disclosures/2021-02-04.md.

[3] Aave. 2023. Aave V2. https://github.com/aave/protocol-v2/tree/master.

[4] John Adler, Ryan Berryhill, Andreas Veneris, Zissis Poulos, Neil Veira, and Anas-

tasia Kastania. 2018. Astraea: A decentralized blockchain oracle. In 2018 IEEE
international conference on internet of things (IThings) and IEEE green computing
and communications (GreenCom) and IEEE cyber, physical and social computing
(CPSCom) and IEEE smart data (SmartData). IEEE, 1145–1152.

[5] Ayana T Aspembitova and Michael A Bentley. 2022. Oracles in Decentralized

Finance: Attack Costs, Profits and Mitigation Measures. Entropy 25, 1 (2022), 60.

[6] Massimo Bartoletti, James Chiang, Tommi Junttila, Alberto Lluch Lafuente, Mas-

similiano Mirelli, and Andrea Vandin. 2022. Formal analysis of lending pools in

decentralized finance. In International Symposium on Leveraging Applications of
Formal Methods. Springer, 335–355.

[7] Thomas Bernardi, Nurit Dor, Anastasia Fedotov, Shelly Grossman, Neil Immer-

man, Daniel Jackson, Alexander Nutz, Lior Oppenheim, Or Pistiner, Noam Rinet-

zky, et al. 2020. WIP: Finding bugs automatically in smart contracts with param-

eterized invariants. Retrieved July 14 (2020), 2020.

[8] Vitalik Buterin. 2014. Ethereum: A next-generation smart contract and decen-

tralized application platform. https://ethereum.org/en/whitepaper/.

[9] Yuxi Cai, Nafis Irtija, Eirini Eleni Tsiropoulou, andAndreas Veneris. 2022. Truthful

decentralized blockchain oracles. International Journal of Network Management
32, 2 (2022), e2179.

[10] calvwang9. 2022. Oracle Manipulation. https://github.com/calvwang9/oracle-

manipulation.

[11] Zhiyang Chen, Sidi Mohamed Beillahi, and Fan Long. 2022. FlashSyn: Flash Loan

Attack Synthesis via Counter Example Driven Approximation. arXiv preprint
arXiv:2206.10708 (2022).

[12] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and

Sang Kil Cha. 2021. Smartian: Enhancing smart contract fuzzing with static and

dynamic data-flow analyses. In 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 227–239.

[13] Compound Finance. 2020. Compound V2. https://github.com/compound-finance/

compound-protocol/releases/tag/v2.8.1.

[14] Consensys. 2023. Mythril: a security analysis tool for EVM bytecode. https:

//github.com/Consensys/mythril.

[15] Kinnari Dave, Vilhelm Sjöberg, and Xinyuan Sun. 2021. Towards Verified Price

Oracles for Decentralized Exchange Protocols. In 3rd International Workshop on
Formal Methods for Blockchains (FMBC 2021) (Open Access Series in Informatics
(OASIcs), Vol. 95), Bruno Bernardo and Diego Marmsoler (Eds.). Schloss Dagstuhl

– Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 1:1–1:14. https://doi.org/

10.4230/OASIcs.FMBC.2021.1

[16] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In

Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-

ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

337–340.

[17] DeFiLlama. 2023. DeFiLlama - DeFi Dashboard. https://defillama.com/.

[18] DeFiLlama. 2023. DeFiLlama - Oracles Dashboard. https://defillama.com/oracles.

[19] Xun Deng, Sidi Mohamed Beillahi, Cyrus Minwalla, Han Du, Andreas Veneris,

and Fan Long. 2024. Artifact for OVer: Safeguarding DeFi Smart Contracts against
Oracle Deviations. https://doi.org/10.5281/zenodo.10436720

[20] XunDeng, SidiMohamed Beillahi, CyrusMinwalla, HanDu, Andreas Veneris, and

Fan Long. 2024. Safeguarding DeFi Smart Contracts against Oracle Deviations.

arXiv:2401.06044 [cs.SE]

[21] Xun Deng, Zihan Zhao, Sidi Mohamed Beillahi, Han Du, Cyrus Minwalla, Keerthi

Nelaturu, Andreas Veneris, and Fan Long. 2023. A Robust Front-Running Method-

ology forMalicious Flash-LoanDeFi Attacks. In 2023 IEEE International Conference
on Decentralized Applications and Infrastructures (DAPPS). IEEE, 38–47.

[22] dforce Network. 2021. Lending Contracts. https://github.com/dforce-network/

LendingContractsV2/tree/master/contracts.

[23] Joshua Ellul and Gordon J Pace. 2018. Runtime verification of ethereum smart

contracts. In 2018 14th European Dependable Computing Conference (EDCC). IEEE,
158–163.

[24] Etherscanners. 2020. xToken Victim Contract. https://etherscan.io/address/

0x04bef870de607519c91d16a23434ad5745f62a63#code.

[25] Etherscanners. 2023. Yearn Attack. https://etherscan.io/tx/

0xf6022012b73770e7e2177129e648980a82aab555f9ac88b8a9cda3ec44b30779.

[26] Euler. 2023. Euler Smart Contracts. https://github.com/euler-xyz/euler-contracts.

[27] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis

framework for smart contracts. In 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE, 8–15.

[28] Chainlink Foundation. 2023. Chainlink API. https://docs.chain.link/any-api/api-

reference/.

[29] Ethereum Foundation. 2023. The Solidity Contract-Oriented Programming Lan-

guage. https://github.com/ethereum/solidity

[30] Bo Jiang, Ye Liu, and Wing Kwong Chan. 2018. Contractfuzzer: Fuzzing smart

contracts for vulnerability detection. In Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering. 259–269.

[31] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. Zeus:

analyzing safety of smart contracts.. In Ndss. 1–12.
[32] Uniswap Labs. 2023. Uniswap Protocol. https://uniswap.org/.

[33] Ao Li, Jemin Andrew Choi, and Fan Long. 2020. Securing smart contract with

runtime validation. In Proceedings of the 41st ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. 438–453.

[34] Ye Liu, Yi Li, Shang-Wei Lin, and Rong Zhao. 2020. Towards automated verifica-

tion of smart contract fairness. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 666–677.

[35] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.

2016. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. 254–269.

[36] Torgin Mackinga, Tejaswi Nadahalli, and Roger Wattenhofer. 2022. TWAP Or-

acle Attacks: Easier Done than Said?. In 2022 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC). 1–8. https://doi.org/10.1109/ICBC54727.

2022.9805499

[37] Benjamin Mariano, Yanju Chen, Yu Feng, Shuvendu K. Lahiri, and Isil Dillig. 2021.

Demystifying Loops in Smart Contracts (ASE ’20). Association for Computing Ma-

chinery, New York, NY, USA, 262–274. https://doi.org/10.1145/3324884.3416626

[38] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco,

Josselin Feist, Trent Brunson, and Artem Dinaburg. 2019. Manticore: A user-

friendly symbolic execution framework for binaries and smart contracts. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 1186–1189.

[39] Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin, and Quang Tran Minh. 2020.

sfuzz: An efficient adaptive fuzzer for solidity smart contracts. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering. 778–788.

[40] Trail of Bits. 2023. Slither: Static Analyzer for Solidity. https://github.com/crytic/

slither.

[41] Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. 2021. Attacking

the defi ecosystem with flash loans for fun and profit. In International conference
on financial cryptography and data security. Springer, 3–32.

[42] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi. 2018. Sereum:

Protecting existing smart contracts against re-entrancy attacks. arXiv preprint
arXiv:1812.05934 (2018).

[43] Chaofan Shou, Shangyin Tan, and Koushik Sen. 2023. ItyFuzz: Snapshot-Based

Fuzzer for Smart Contract. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis. 322–333.

[44] Tianyu Sun andWensheng Yu. 2020. A formal verification framework for security

issues of blockchain smart contracts. Electronics 9, 2 (2020), 255.
[45] Vyper Team. 2023. Vyper. https://vyper.readthedocs.io/en/stable/

[46] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev,

Evgeny Marchenko, and Yaroslav Alexandrov. 2018. Smartcheck: Static analysis

of ethereum smart contracts. In Proceedings of the 1st international workshop on
emerging trends in software engineering for blockchain. 9–16.

[47] Palina Tolmach, Yi Li, Shang-Wei Lin, and Yang Liu. 2021. Formal analysis of

composable DeFi protocols. In Financial Cryptography and Data Security. FC
2021 International Workshops: CoDecFin, DeFi, VOTING, and WTSC, Virtual Event,
March 5, 2021, Revised Selected Papers 25. Springer, 149–161.

[48] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian

Buenzli, and Martin Vechev. 2018. Securify: Practical security analysis of smart

contracts. In Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security. 67–82.

[49] Haijun Wang, Ye Liu, Yi Li, Shang-Wei Lin, Cyrille Artho, Lei Ma, and Yang Liu.

2020. Oracle-supported dynamic exploit generation for smart contracts. IEEE
Transactions on Dependable and Secure Computing 19, 3 (2020), 1795–1809.

[50] Shih-Hung Wang, Chia-Chien Wu, Yu-Chuan Liang, Li-Hsun Hsieh, and Hsu-

Chun Hsiao. 2021. ProMutator: Detecting vulnerable price oracles in DeFi by

mutated transactions. In 2021 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). IEEE, 380–385.

[51] Siwei Wu, Dabao Wang, Jianting He, Yajin Zhou, Lei Wu, Xingliang Yuan, Qin-

ming He, and Kui Ren. 2021. DeFiRanger: Detecting Price Manipulation Attacks

on DeFi Applications. arXiv:2104.15068 [cs.CR]

[52] Yue Xue, Jialu Fu, Shen Su, Zakirul Alam Bhuiyan, Jing Qiu, Hui Lu, Ning Hu, and

Zhihong Tian. 2022. Preventing Price Manipulation Attack by Front-Running. In

International Conference on Artificial Intelligence and Security. Springer, 309–322.
[53] Peilin Zheng, Zibin Zheng, andXiapu Luo. 2022. Park: Accelerating smart contract

vulnerability detection via parallel-fork symbolic execution. In Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis.
740–751.

https://github.com/dydxprotocol/solo/releases/tag/v0.41.0
https://github.com/yearn/yearn-security/blob/master/disclosures/2021-02-04.md
https://github.com/yearn/yearn-security/blob/master/disclosures/2021-02-04.md
https://github.com/aave/protocol-v2/tree/master
https://ethereum.org/en/whitepaper/
https://github.com/calvwang9/oracle-manipulation
https://github.com/calvwang9/oracle-manipulation
https://github.com/compound-finance/compound-protocol/releases/tag/v2.8.1
https://github.com/compound-finance/compound-protocol/releases/tag/v2.8.1
https://github.com/Consensys/mythril
https://github.com/Consensys/mythril
https://doi.org/10.4230/OASIcs.FMBC.2021.1
https://doi.org/10.4230/OASIcs.FMBC.2021.1
https://defillama.com/
https://defillama.com/oracles
https://doi.org/10.5281/zenodo.10436720
https://arxiv.org/abs/2401.06044
https://github.com/dforce-network/LendingContractsV2/tree/master/contracts
https://github.com/dforce-network/LendingContractsV2/tree/master/contracts
https://etherscan.io/address/0x04bef870de607519c91d16a23434ad5745f62a63#code
https://etherscan.io/address/0x04bef870de607519c91d16a23434ad5745f62a63#code
https://etherscan.io/tx/0xf6022012b73770e7e2177129e648980a82aab555f9ac88b8a9cda3ec44b30779
https://etherscan.io/tx/0xf6022012b73770e7e2177129e648980a82aab555f9ac88b8a9cda3ec44b30779
https://github.com/euler-xyz/euler-contracts
https://docs.chain.link/any-api/api-reference/
https://docs.chain.link/any-api/api-reference/
https://github.com/ethereum/solidity
https://uniswap.org/
https://doi.org/10.1109/ICBC54727.2022.9805499
https://doi.org/10.1109/ICBC54727.2022.9805499
https://doi.org/10.1145/3324884.3416626
https://github.com/crytic/slither
https://github.com/crytic/slither
https://vyper.readthedocs.io/en/stable/
https://arxiv.org/abs/2104.15068

	Abstract
	1 Introduction
	2 Background
	3 Example and Overview
	4 Design
	4.1 Code Summary Overview
	4.2 Code Summary Module
	4.3 Model Generation
	4.4 Optimization

	5 Evaluation
	5.1 Implementation and Benchmarks
	5.2 Protocols' Response to Oracle Deviations
	5.3 Effectiveness of OVer
	5.4 Case Studies Analysis

	6 Related Work
	7 Threats to Validity
	8 Conclusion
	9 Data Availability
	References

