Propelling SAT-based Debugging
using Reverse Domination

Bao L€', Hratch MangassarianBrian Kend, Andreas Veneris’

Abstract—With the growing complexity of VLSI designs, func-
tional debugging has become a bottleneck in modern CAD flows.
To alleviate this cost, various SAT-based techniques haveebn
developed to automate bug localization in the RTL. In this catext,
dominance relationships between circuit blocks have beerecently
shown to reduce the number of SAT solver calls, using the
concept of solution implications. This paper first introduces the
dual concepts ofreverse domination and non-solution implications.
A SAT solver is tailored to leverage reverse dominators for te
early on-the-fly detection of bug-free components. These arnon-
solution areas and their early pruning significantly reduces the the
debugging search-space. This process is expedited by brdnicg
on error-select variables first. Extensive experiments on tough real-
life industrial debugging cases show an average speedup di68x
in SAT solving time over the state-of-the-art, a testimony 6 the
practicality and effectiveness of the proposed approach.

I. INTRODUCTION

Design errors are becoming increasingly common with thevigm
complexity of VLSI designs. Design debugging is the proces$s
localizing the bug(s) in the RTL, based on a failing coureample
trace. Today, bigger designs and longer traces have madeygieh

reverse dominators for performingon-solution implicationsThis is
done by adding new learned clauses on-the-fly, which sigmifig
prune the problem search-space. Furthermore, we presest &SAT
branching scheme making this much more effective, whemer-
select[4], [12] variables are decided upon first.

The presented techniques are implemented in a SAT-basechatetd
RTL debugger, using MiISAT 2.2.0 as the back-end solver. An
extensive set of experiments on real industrial designsodetrates
that performing both solution and non-solution implicasoresults in
an average speedup b68x in SAT solving time over performing only
solution implications [11]. These results demonstrateeffiectiveness
and practicality of our contributions.

The paper is organized as follows. Section Il contains bemkyl
on design debugging and block dominance. Section Ill ptestre
theory for leveraging reverse block dominators to perfoon-solution
implications. Section IV gives our SAT branching algorithmhich
makes non-solution implications effective. Section V sh@xperimen-
tal results and Section VI concludes the paper.

Il. PRELIMINARIES

The following notation is used throughout the paper. Given a
sequential circuit”, the symbolse, y, and s respectively represent the

a resource-intensive task, which consumes up to 60% of th# tosets of primary inputs, primary outputs and state eleméfigsfiops)

verification effort [1].

As a result, various methodologies have been proposed tonate
design debugging and reduce its cost [2]-[6]. Due to advaroés
in formal engines, most modern debugging techniques usdeBoo
Satisfiability (SAT) solvers [4]. The problem is encoded asSAT
instance, where each satisfying assignment correspondsptiiential

bug location, called aolution [7]. Each solution consists of a (set

of) circuit block(s) or RTL line(s), that can be modified to fike
erroneous behavior in the counter-example trace. AlltBmuSAT-
based debugging guarantees that the root cause of the ermmei
of these solutions, which greatly simplifies the task of tidgimg and
fixing the actual bug.

With typical design sizes exceeding the half-million sydized
gates mark, the propositional formulas encoding designuglgihg can
have tens of millions of variables and clauses [6]. This uyde
complexity often presents a challenge even to modern SAVesl
The motivation behind this work is to prune the search-spzicthe
all-solution SAT solver in design debugging. This is dondéweraging
dominance relationshipbetween circuit blocks. A block is said to
dominate another block if every path from every node i to a
primary output passes through a nodedn Dominators have been

used to optimize various CAD tasks,g, test pattern generation and

verification [8]-[10]. Recently, dominance between citdolocks has
been successfully used in an automated RTL debugger [1Hdoce
the number of SAT solver calls by introducing the concepsaltition
implications

This work makes use of the concept of reverse domination.drem
detail, we say that block is a reverse dominatorof block a if a
dominatesh. It is shown that ifa is not part of any solution, then all
its reverse dominators can also be ruled ounhas-solutions that is,
as blocks that cannot be modified in any way to correct the teoun
example trace. Based on this key idea, we tailor a SAT sotviaverage

LUniversity of Toronto, ECE Department, Toronto, ON M5S 3GQ4elao,
hratch, briank, venerjs@eecg.toronto.edu)
2University of Toronto, CS Department, Toronto, ON M5S 3G4

in C. Let! denote the set of all nodes (including nodesciny, s). For
eachz € {l,z,y, s}, the Boolean variable; denotes theth element
of setz.

For simplicity, we consider designs with a single clock-cam)
but the theory developed here is applicable to multiple lcldamain
designs using the results of [13[ime-frame expansiois a modeling
technique for sequential circuits, which replicaté®.(unrolls) the
combinational components @ k times, such that the next state of
each time-frame is connected to the current state of thetimeatframe.
For any variablez; (or setz), z! (or z') denotes the corresponding
variable (or set) in time-frame The behavior of” during thetth clock-
cycle is dictated by the transition relation predicaites’, s, x*, "),
which can be extracted frod@ and encoded in CNF using the auxiliary
variables inl’ (i.e., the logic gates).

Some of the nodes ihare grouped into blocks. Each block consists
of the synthesized gates corresponding to an RTL “blockéhsas an
if statement or amlwaysblock. Let B = {b1, b, ..., b5/} denote the
set of all blocks, where eadh C [. Note that the same node could
belong to more than one block because of the hierarchicalrenaif
RTL. The setout(b;) includes the outputs of block. In the unrolled

Y2

Fig. 1. A Sequential Circuit

circuit, the setb!(out(bt)) denotes set of nodes belonging to blocks returned by the automated design debugger as the onlyicolb,

b;(outputs ofb;) in time-framet.

A. Design Debugging

This section describes SAT-based design debugging anotirdes
relevant notation. Given an erroneous design, a countamnple of

is indeed the buggy block and could be corrected by turningg ga
into an OR gate.

B. Block Dominance
Block b; is said to dominate block; if every path from a node in

length & and an error cardinalityv, the goal of an automated designout(b;) to a primary output contains a nodetin The notationb; Db;
debugger is to find all sets oV blocks that can potentially be indicates thath; dominatesb;, where D is referred to as the block

responsible for the faulty behavior associated with thenterdexample.
Each such set is referred assalution of cardinality N. SAT-based
design debugging [4], [12] encodes the problem as a prappalt
formula, where each satisfying assignment corresponds soluion.
The encoding process consists of the following steps.

First, a set oferror-selectvariablese = {e1,..., e} is added to
the circuit, where each; is associated with a block;. The circuit is
modified such that setting = 1 disconnects the nodes it (b;) from
their fanins, making them free variables, while setting= 0 does not
modify the circuit. Next, time-frame expansion is perfodnen this
enhanced circuit, such thatt(b!)

modify the outputs of bloclk; across all time-frames by setting = 1
to “fix” any potential errors in;.

Then, constraints are applied to the initial state, primaputs and
primary outputs. These constraints ensure that given tiialiistate

dg(s') and primary inputsby (z', ..., z*) from the counter-example,

the enhanced circuit produces te&pectedoutputs ®y (y?,, y*).

dominance relationFurthermore, the séd(b;) = {b;|b;Db;} consists
of blocks that dominat®;.

Example 2 Consider the sequential circuit in Figure 1. Blodk
dominates blocld; while no other blocks dominate any other blocks.
This is because every path fromat(b1) has to pass through gate;

of bs to reach the primary outputg:, y2.

[11] discusses why existing methods for computing so-daiegle
and multiple-vertex dominators are not applicable in agrediebugging

. : are controlled by the same error-setting, and present a fixpoint algorithm for computing tHeck
select variables;, for all time-framest. This allows the SAT solver to dominance relatiol. The run-time of their algorithm i©(c-|B|-|E|)

where|B| is the number of blocks|E| is the number of edges i@
andc is called the loop-connectedness ©f

Furthermore, [11] proves that given a solutidh;,, ..., by } of
Debug (1), it AX_,(b;,Db;,), then{b;,,...,b;, } is also a solution.
This allows them to leverage the block dominance relafldo perform
solution implications which significantly reduces the number of SAT

Finally, an error cardinality constrainby(e) is added to enforce calls and speeds up the debugging process.

|B|
Y

k
Debug = /\ Ten(st7 8t+17 It7 yt7 6) A (I)S(Sl)/\
t=1

Bx(z', .,)Y A By (YY) A DN (e) (1)
where Ten(st7 s gt gt e)
of the enhanced circuit at time-frame

Each assignment t@ = {ei,...,ep} satisfying Debug (1)
corresponds to a debugging solution, and the SAT solver fmdall

such satisfying assignments #o This is normally done by iteratively

blocking each satisfying assignment using a blocking eaaisd re-
solving Debug until the problem becomes unsatisfiable WNSAT.

Example 1 Consider the sequential circuit presented in Figure 1.
are also given a two-cycle counter-example with initialtstay = 1,

inputs(x1, x2, x3, z4) = ((1,1,0, 1), (0,0,0, 1)) and expected outputs
,1)), demonstrating a mismatch in the secon

(_y17y2> = ((1,1),(1

time-frame at the outpuy; .
The corresponding design debugging formulation is illatgd in

Figure 2. As shown, each blodk is associated with an error-select
variable e;. The initial-state/input/output constraints are shown i

boxes. The constrain®y is omitted for brevity. ForN = 1,{bs}

My 91

Fig. 2.

Design Debugging Formulation

= N. Overall, the design debugging problem is encoded as:

W

I11. NON-SOLUTION IMPLICATIONS USING REVERSE
DOMINATION
In this section, we first define reverse dominators and nautisn

blocks. Next, we prove that reverse dominators can be |geerdo
perform non-solution implications, given an original neslution block.

denotes the transition relation predicate

Definition 1 A blockb; is a reverse dominator of blodk;, denoted as
b;D~'b;, if and only ifb;Db;.

Clearly, the reverse block dominance relatibm! is completely
determined byD, which can be computed using the algorithm in [11].
The setD~*(b;) = {b:|b;D~'b;} consists of reverse dominators lgf,
i.e., the blocks thab; dominates.

Definition 2 Given an erroneous desigd’, a counter-example of
length k& along with the corresponding expected outputs and an error

{Jardinality N, b; is a non-solution block if and only iDebug A e; is
NSAT.

In other terms, a non-solution block cannot be part of anytsoi
of cardinality N. We will prove that reverse dominators of non-solution
locks are also non-solution blocks.

Lemma 1 Given an erroneous desidri, a counter-example of length
along with the corresponding expected outputs and an ermodinality
N, we have:

((Debug A e; is SAT) A b;Db;) = (Debug A e; is SAT)

Proof: Let 7 denote the satisfying assignment (@ebug A e;).
Assuming thatb;Db;, we will construct an assignment’ satisfying
(Debug A ej).

We first constructt’ (). Let the set of error-select variables assigned

to 1 in w(e) be {ei,es,,...,€0n_,}, Where {o1,...,on_1} C
(L, 1B]] — {i}.
1) If j & {o1,...,0n-1}, we let the set of error-select variables

assigned td in 7' (e) be {ej, €015 €on_ 1}
2) If j € {o1,...,0n—1}, We let the set of error-select variables
assigned td in 7’(e) be {ei, eoyy. .. €00 1}
In both cases, the number of error-select variables ass$igmd in
7'(e) is N, satisfying® .

Since b;Db;, any path fromout(b;) to a primary output must Algorithm 1. SAT Solver for Design Debugging

pass throughvut(b;). This makes it possible to partition the unrolled : ; : -
enhanced circui(t]d)escribed in Subsection II-A into two gattet 1 input: CNF Debug, Dominator relatiorD, sete
refer to the sub-circuit in the fan-out cone ofit(b;) (that fans out 1 foreache; € e do Priority(e;) « oc;

to out(b;)) and let.J refer to the rest of the circuit (excluding error- , os It — BCP 0;

select variables). InDebug A e;, clearly 7'(e;) = 1 in both cases '

shown above, effectively disconnecting:t(b;) from its fanins. As 3 while result # (SAT/UNSAT) do

such, out(b;) is disconnected from the primary outputs and becomes , heap < bui | dHeap (Priority) ;

dangling logic. This means thatis dangling (although/ can fan-out to s numconf — 0

I). Since there are no external constraints/om’ () can be computed ! .

by simply “propagating” whatever’(out(b;)) and «’(J) are into I 6 e; < heap.firstErrorSel ect ();

(using gate propagation, which is effectively unit progamain CNF). 7 while numConf < mazConf do

Hence, what remains is to construet(J). 8 if result = (SAT/UNSAT) then return ;

assigned 16 the same valueArand ' s shown in both cates above, | | It restlt = Conflictthen

i valu 7, wn i ve. .

Furthermore, sincer’(e;) = 1, we are free to setr’(out(b;)) = 10 numConf ++ .)

m(out(b;). In addition, recall thabut(b;) has no effect onJ since 11 resol veConflict ();

I'is dangling. As such, since’(e;) = m(ey) for all otherey, for all 12 end

nodesv € out(bx) N J, we can simply set’(v) = w(v). As a result, 13 next « heap.pop ();

g/(J) = W(]]:)" S”ince_w(J) lsatisies aIII the c?pnsgalints iPebug, SO 14 if next € e then next.assi gn (1);

oesn’(J). Finally, sincen’(e;) = 1, n’ satisfiesDebug A e;. . 15 elsenext.assi gn (polarity ());
The following theorem proves that reverse dominators canseel 16 if (e;.val ue() = 0) then
to perform non-solution implications. 17 Il b; is the block e; represents
18 foreache; € D(b;) do

Theorem 1 Given an erroneous desighi, a counter-example of length 19 | Debug « Debug A (—e;);

k along with the corresponding expected outputs and an eraodie 20 end

nality IV, if b; is a non-solution block oDebug and b:D~'b;, thenb; 21 e; — next Error Sel ect ();

is also a non-solution block abebug.

22 end
Proof: To clarify the presentation, let us define the predicadtes 23 result — BCP ();
and®;, as follows: 24 end
®; = Debug Ae; is SAT ®; = Debug A e, is SAT 25 end
Using Lemma 1, we have:
(@i Ab;Dbi) = @; and therefore they are don't-cares. As such, assigning ddesninb;,
< —®; V = (b;Dbi) V @, as well as their fanouts, is useless:ifis later assigned ta.
P, Db A P A second, and more important, reason for assigning the-select

< i = (b;Dbi A =) variables early is that it allows the solver to learn norutioh blocks
N (binlbj A—.q)j) = -, much faster. This in turn enables non-solution implicagiatue to

reverse dominance to prune the SAT search-space earligharefore
m more effectively. Subsection IV-B discusses how to deteatried non-
solutions using our branching scheme.

Example 3 Consider the debugging problem presented in Example 1 As a result, we force the SAT solver to first decide on all error
and Figure 1. We know that blodk is a dominator of block; from S€lect variablese). Furthermore, we force the solver to always assign
Example 2. Ifb; is known to be a non-solution, using Theorem 1, W@rror—seleet variables that are decidéd.(not forced due teby) to 1

know thatb, is also a non-solution. We can therefore automaticallf€fore trying to set them to. The reason for doing this is to learn non-
add the clausd—e;) to prune the search-space &febug. olutions, and is explained in detail in Subsection IV-BeHolver uses

the standard decision heuristios.d., VSIDS [14]) for the remaining

In order to make use of Theorem 1, we need to learn thas a variables.
non-solution block first. The following section shows how medify . .
the branching scheme of the SAT solver to expedite the legrof B. Detecting Learned Non-Solution Blocks
original non-solutions and to simplify the process of dateclearned To simplify the presentation of this subsection, let us asswithout
non-solutions. loss of generality that the variable at the root of the decidiee ise; .
According to our branching scheme explained in the preverdion,
IV. SAT BRANCHING SCHEME FOREARLY NON-SOLUTION the SAT solver first assigns = 1. If the solver later switches @& = 0
LEARNING without finding a satisfying assignment under= 1, this means that
= 1 cannot be extended to a satisfying assignment. Hence, 0 is
e for all satisfying assignments (if any exist). In othemms, (—e1)
has been learned artd is a non-solution block.
This observation is not applicable to all non-root variabie the
decision tree. Consider variable, in the subtree undee; = 1,
. switching fromes; = 1 to ex = 0 without finding a satisfying
A. SAT Branching Scheme assignment does not imply thé&tes) has been learned. However, it

The decision tree in a SAT solver gives the order in whichalzléis is possible to learn about non-root variables in some cistantes, as
are decided upon. The first motivation for assigning theresetect shown by Lemma 2.

variables early in the decision tree relates to their imrgoaré and their
impact on other variable decisions in the SAT solving precdsor Lemma 2 Using the branching scheme given in Subsection IV-A, until
example, whemr; = 1, the internal nodes of blodk become dangling, a satisfying assignment is found, all the error-select ablés set to

In this section, we describe a new SAT branching scheme fﬁt
design debugging, where error-select variables are diaigden first.
This allows the early learning (and simple detection) of-sofutions,
making non-solution implications using reverse dominataseful.

400
350 |
» 300 f
S
S 250
8
5 200}
9]
2 150t
Z 100}
50 f dbgSAT
Orig
0 . . .
Fig. 3. Non-solution blocks using our branching scheme 0 5 10 15 20 25 30 35
SAT run-time (sec)
Fig. 4. # solutions vs run-time for rsdecoder2
0 along the right-most path of the decision treerrespond to non-
solution blocks.
1000 -
Proof: Assume that the error-select variables are decided in the dbgSAT A& |
order of (e1,...,e;5)). Recall that our branching scheme forces the 8 :
solver to first set each error-select variableltdefore trying to set e a
it to 0. Also assume that; = 0,...,e; = 0 have been set along 2 100 A
the right-most path of the decision tree and no satisfyirgjgasnent E =
has been found yet. Then by construction, all other assigtsn® 3 AR
e1,...,e; have been examined and setting any of therh tannot be i A A
extended to a satisfying assignment. In other terms, eadbebfig A & r'N
e1,...,Debug A e; is UNSAT. By Definition 2, this means that each g 10
of b1,...,b; is a non-solution block. [= 4 A
Note that forced variables (due to BCP) are not part of thésaet 128
tree. Using Lemma 2, as soon as the SAT solver switches éos 1 3
to e; = 0, as long as all its ancestors in the decision tree are askigne 1
to 0 and no satisfying assignment has been found yet, we can be sur 1 10 100 1000
that b; is a non-solution block. This scenario is shown in Figure 3. Orig run-time (sec)
Using this, we can imply that every blogk € D~*(b,) is also a non-
solution, by Theorem 1, and therefore add the clalise) for each Fig. 5. Performance Results

reverse dominator.

C. Overall Modified SAT Algorithm

Algorithm 1 presents the pseudocode of our modified SAT soMé experiments. For each design, several debugging instaneegnerated
unassigned variables are already assumed to have beenealimigrity by injecting different designer mistakes such as wrongestansitions,
values, which set their order in the decision tree. Our dlgorassigns incorrect operators or incorrect module instantiationse Brroneous
error-select variables very large priority values on lineirLorder to designs are then verified using industrial verification $o@! failure is
guarantee that they will be at the top of the decision maxlfigajbuilt detected and a counter-example is recorded and passeddelihgger.
on line 4, which is used to pick the next decision variable. Experiments are conducted with two different versions af ®AT

On line 12, the unassigned error-select variable with thghdst solver, the original NI SAT (Orig), our enhanced versiomllfgSAT).
priority is stored ine;. The next variable is popped from the heap on Table | shows the results of all our experiments. The firsticol
line 19. If this variablenext is an error-select line, then it must be firstgives the instance name. The next four columns respectsrey the
assigned td (line 14), otherwise the functiopolarity() decides the length of the counter example, the number of noded| in C, the
polarity of next using heuristics such as VSIDS [14] (line 21). Laternumber of blocks|B|, and the number of solution# sols Column
if e; is assigned td), block b; is learned as a non-solution block. AsOrig gives the total run-time of the original MiISAT 2.2.0. Columns
a result, eachb; that is dominated byb; is also learned as a non-seven {ime), eight ¢ impl non-soly and nine imprv) underdbgSAT
solution block and the unit clause-b;) is added (line 25). Afteb; respectively give the total run-time dbgSAT, the number of implied
is learned as a non-solution; is updated so that new non-solutionsnon-solutions and the speed-up compared Witfy .
can be learned (line 21). Other functions of the SAT enginghsas Figure 4 plots the number of solutions versus run-time @uig

BCP() andresolveCon flict() are not modified. and dbgSAT for rsdecoder2. ClearlydbgSAT outperformsOrig by
discovering solutions at a significantly faster rate. Initdd to this
V. EXPERIMENTAL RESULTS faster ratedbgSAT returns earlier solutions faster than its average rate

This section presents the experimental results for the qmeg (i.e., its solutions plot is concave). This is beneficial becausgldws
framework on industrial design debugging problems. Allempents the designer to examine those solutions earlier while theugiger
are run using a single core of a i5-2400 3.1 GHz workstatiah @B continues to run.
of RAM and a timeout of 7200 seconds. The presented techsigre The average speed-up in total SAT run-time compare®tig is
implemented on top of a state-of-the-art SAT-based debudde[11], 1.68x for dbgSAT showing significant improvement. In some instances,
[12] with a Verilog front-end to allow for RTL diagnosis. Wailor the such as for rsdecoderl, our solver terminate, while ther@igolver
debugger’s back-end solver, IMSAT 2.2.0 [16], to leverage reversetimes out. In rare cases, such as upar and memctrl2, no non-
dominators for performing non-solution implications asaéed in solutions are implied. However, our solvers still show #igant speed-
this work. ups overOrig due to our branching scheme which decides error-select

Eight industrial Verilog designs from OpenCores [17] ande¢h variables first. Finally, Figure 5 plots the SAT run-timesoefr solvers
commercial designs provided by our industrial partnersuaesl in our dbgSAT versus those oDrig on a logarithmic scale, demonstrating

TABLE |
DESIGNDEBUGGING SAT SOLVER RESULTS

Instance Info Orig dbgSAT
instance k 1] [B] # time time #impl | imprv
sols (s) (s) non-sols x)
rsdecoderl 112 13543 2044] 430 T/O]| 6955.90 1192 00
rsdecoder2 112 13564 | 2044 | 396 33.35 20.46 941 1.6x
ush functl 32 35158 3425 | 422 53.17 45.46 631 1.2x
ush funct2 53 35350 4201 | 576 || 134.46 117.83 1167 1.1x
wb_dmal 35 [191386 7896 | 468 || 123.89 97.26 2100 1.3x
wb_dma2 7] 299838 8460 | 205 49.14 36.90 3384 1.3x
wb_dma3 28 | 299862 | 8836 | 526 || 304.18 182.09 5135 1.7x
vgal 423 89412 1593 | 128 || 434.81 17251 145 2.5x
vga2 423 89402 1741 84 106.98 147.95 277 0.7x
ucrc_par 155 1056 63 20 7.97 3.94 0 2.0x
mem ctrl1 581 48006 3355 23 12.53 24.67 567 0.5x
mem_ctrl2 1180 48006 3355 9 11.76 4.78 0 2.5x
mips7891 153 | 30711 953 49 22.08 13.51 53 1.6x
opensparcddr21 29 58399 | 2792 | 373 48.45 33.42 1072 1.4x
opensparcddr22 27 64915 2791 | 509 4411 39.39 1138 1.1x
design1-1 71 | 499325 | 20204 69 53.40 25.08 40 2.1x
design1-2 26329 | 499705 | 20211 | 117 72.54 38.27 5073 1.9x
design1-3 5343 [499696 | 20209 | 120 39.63 31.69 210 1.3x
design1-4 467 | 499705 | 20211 | 150 || 100.89 45.69 5854 2.2X
design1-5 177 | 499705 20211 98 73.72 27.04 5760 2.7x
design2-1 26 45632 5507 61 18.47 14.59 543 1.3x
design2-2 5 | 203706 7416 50 7.38 4.23 53 1.7x
design2-3 20 2082 185 62 0.13 0.08 65 1.6x
design3-1 56 5454 495 | 129 3.03 2.07 187 1.6x
design3-2 144 2333 144 28 0.083 0.07 52 1.2x
AVERAGE 1.68x

the effectiveness of our method.

. . R |
This work shows how to leverage reverse dominators in a itircu

VI. CONCLUSION

to speed-up SAT-based automated design debugging. Thisnis by
performing non-solution implications, consisting of thelg pruning of
non-solution areas of the problem search-space. A new Séfiching
strategy is also proposed for design debugging, which etgqsedhe
learning of non-solutions by the solver. Finally, an extemsset of
experiments on real industrial designs demonstrates thestoess and
practicality of the presented framework.

(1]
(2]
(3]

REFERENCES

H. Foster, “Assertion-based verification: Industry imgto realities (invited
tutorial),” in Computer Aided Verificatigr2008, pp. 5-10.

M. Abramovici, M. Breuer, and A. Friedmamigital Systems Testing and
Testable Design Computer Science Press, 1990.

S. Huang and K. ChengFormal Equivalence Checking and Design
Debugging Kluwer Academic Publisher, 1998.

[4] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagsis and logic

(5]

(6]

(7]
(8]
El

[10]
[11]

debugging using Boolean satisfiabilitylEEE Trans. on CADvol. 24,
no. 10, pp. 1606-1621, 2005.

H. Mangassarian, A. Veneris, and M. Benedetti, “Robu&F@ncodings
for sequential circuits with applications to verificatiotlebug, and test,”
IEEE Trans. on Computersol. 59, no. 7, pp. 981-994, 2010.

B. Keng and A. Veneris, “Managing complexity in desigrbdgging with
sequential abstraction and refinement,”ABP Design Automation Conf.
2011, pp. 479-484.

A. Veneris, B. Keng, and S. Safarpour, “From RTL to silicdhe case for
automated debug,” il\SP Design Automation Con2011, pp. 306—-310.
T. Kirkland and M. R. Mercer, “A topological search algbm for ATPG,”
in Design Automation Conf1987, pp. 502-508.

T. Niermann and J. H. Patel, “Hitec: a test generationkpge for
sequential circuits,” ireuropean Design Automation Cont991, pp. 214—
218.

R. DrechslerAdvanced Formal Verification Kluwer Academic Publishers,
2004.

H. Mangassarian, A. Veneris, D. E.Smith, and S. SafarptDebugging
with dominance: On-the-fly debug solution implicationsy’lnt’| Conf. on
CAD, 2011.

[12] M. F. Ali, S. Safarpour, A. Veneris, M. Abadir, and R. RBlesler, “Post-

verification debugging of hierarchical designs,” lint'l| Conf. on CAD

2005, pp. 871-876

M. Ganai and A. Gupta, “Efficient BMC for multi-clock sgsns with

clocked specifications,” iASP Design Automation ConR007, pp. 310—
315.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. MalfiChaff:

Engineering an efficient SAT solver,” iDesign Automation Conf2001,

pp. 530-535

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Staitroduction to
Algorithms 3rd ed. The MIT Press, 2009.

N. Eén and N. Srensson, “An extensible SAT-solver,” imt'l Conf. on

Theory and Applications of Satisfiability Testirp03, pp. 502-518.

[17] OpenCores.org, “http://www.opencores.org,” 2007.

