
Propelling SAT-based Debugging
using Reverse Domination

Bao Le1, Hratch Mangassarian1, Brian Keng1, Andreas Veneris1,2

Abstract—With the growing complexity of VLSI designs, func-
tional debugging has become a bottleneck in modern CAD flows.
To alleviate this cost, various SAT-based techniques have been
developed to automate bug localization in the RTL. In this context,
dominance relationships between circuit blocks have been recently
shown to reduce the number of SAT solver calls, using the
concept of solution implications. This paper first introduces the
dual concepts ofreverse domination and non-solution implications.
A SAT solver is tailored to leverage reverse dominators for the
early on-the-fly detection of bug-free components. These are non-
solution areas and their early pruning significantly reduces the the
debugging search-space. This process is expedited by branching
on error-select variables first. Extensive experiments on tough real-
life industrial debugging cases show an average speedup of1.68x
in SAT solving time over the state-of-the-art, a testimony of the
practicality and effectiveness of the proposed approach.

I. I NTRODUCTION

Design errors are becoming increasingly common with the growing
complexity of VLSI designs. Design debugging is the processof
localizing the bug(s) in the RTL, based on a failing counter-example
trace. Today, bigger designs and longer traces have made debugging
a resource-intensive task, which consumes up to 60% of the total
verification effort [1].

As a result, various methodologies have been proposed to automate
design debugging and reduce its cost [2]–[6]. Due to advancements
in formal engines, most modern debugging techniques use Boolean
Satisfiability (SAT) solvers [4]. The problem is encoded as aSAT
instance, where each satisfying assignment corresponds toa potential
bug location, called asolution [7]. Each solution consists of a (set
of) circuit block(s) or RTL line(s), that can be modified to fixthe
erroneous behavior in the counter-example trace. All-solution SAT-
based debugging guarantees that the root cause of the error is one
of these solutions, which greatly simplifies the task of identifying and
fixing the actual bug.

With typical design sizes exceeding the half-million synthesized
gates mark, the propositional formulas encoding design debugging can
have tens of millions of variables and clauses [6]. This underlying
complexity often presents a challenge even to modern SAT solvers.
The motivation behind this work is to prune the search-spaceof the
all-solution SAT solver in design debugging. This is done byleveraging
dominance relationshipsbetween circuit blocks. A blocka is said to
dominate another blockb if every path from every node inb to a
primary output passes through a node ina. Dominators have been
used to optimize various CAD tasks,e.g., test pattern generation and
verification [8]–[10]. Recently, dominance between circuit blocks has
been successfully used in an automated RTL debugger [11] to reduce
the number of SAT solver calls by introducing the concept ofsolution
implications.

This work makes use of the concept of reverse domination. In more
detail, we say that blockb is a reverse dominatorof block a if a
dominatesb. It is shown that ifa is not part of any solution, then all
its reverse dominators can also be ruled out asnon-solutions, that is,
as blocks that cannot be modified in any way to correct the counter-
example trace. Based on this key idea, we tailor a SAT solver to leverage

1University of Toronto, ECE Department, Toronto, ON M5S 3G4 ({lebao,
hratch, briank, veneris}@eecg.toronto.edu)

2University of Toronto, CS Department, Toronto, ON M5S 3G4

reverse dominators for performingnon-solution implications. This is
done by adding new learned clauses on-the-fly, which significantly
prune the problem search-space. Furthermore, we present a new SAT
branching scheme making this much more effective, whereerror-
select[4], [12] variables are decided upon first.

The presented techniques are implemented in a SAT-based automated
RTL debugger, using MINI SAT 2.2.0 as the back-end solver. An
extensive set of experiments on real industrial designs demonstrates
that performing both solution and non-solution implications results in
an average speedup of1.68x in SAT solving time over performing only
solution implications [11]. These results demonstrate theeffectiveness
and practicality of our contributions.

The paper is organized as follows. Section II contains background
on design debugging and block dominance. Section III presents the
theory for leveraging reverse block dominators to perform non-solution
implications. Section IV gives our SAT branching algorithm, which
makes non-solution implications effective. Section V shows experimen-
tal results and Section VI concludes the paper.

II. PRELIMINARIES

The following notation is used throughout the paper. Given a
sequential circuitC, the symbolsx, y, ands respectively represent the
sets of primary inputs, primary outputs and state elements (flip flops)
in C. Let l denote the set of all nodes (including nodes inx, y, s). For
eachz ∈ {l, x, y, s}, the Boolean variablezi denotes theith element
of setz.

For simplicity, we consider designs with a single clock-domain,
but the theory developed here is applicable to multiple clock-domain
designs using the results of [13].Time-frame expansionis a modeling
technique for sequential circuits, which replicates (i.e., unrolls) the
combinational components ofC k times, such that the next state of
each time-frame is connected to the current state of the nexttime-frame.
For any variablezi (or set z), zt

i (or zt) denotes the corresponding
variable (or set) in time-framet. The behavior ofC during thetth clock-
cycle is dictated by the transition relation predicateT (st, st+1, xt, yt),
which can be extracted fromC and encoded in CNF using the auxiliary
variables inlt (i.e., the logic gates).

Some of the nodes inl are grouped into blocks. Each block consists
of the synthesized gates corresponding to an RTL “block”, such as an
if statement or analwaysblock. Let B = {b1, b2, ..., b|B|} denote the
set of all blocks, where eachbi ⊆ l. Note that the same nodeli could
belong to more than one block because of the hierarchical nature of
RTL. The setout(bi) includes the outputs of blockbi. In the unrolled

s1

y2

b1

b2 b4

b3

y1

x1

x2

x3

x4

g1

g2
g4

g3

Fig. 1. A Sequential Circuit

circuit, the setbt
i(out(bt

i)) denotes set of nodes belonging to block
bi(outputs ofbi) in time-framet.

A. Design Debugging
This section describes SAT-based design debugging and introduces

relevant notation. Given an erroneous design, a counter-example of
length k and an error cardinalityN , the goal of an automated design
debugger is to find all sets ofN blocks that can potentially be
responsible for the faulty behavior associated with the counter-example.
Each such set is referred as asolution of cardinality N . SAT-based
design debugging [4], [12] encodes the problem as a propositional
formula, where each satisfying assignment corresponds to asolution.
The encoding process consists of the following steps.

First, a set oferror-selectvariablese = {e1, . . . , e|B|} is added to
the circuit, where eachei is associated with a blockbi. The circuit is
modified such that settingei = 1 disconnects the nodes inout(bi) from
their fanins, making them free variables, while settingei = 0 does not
modify the circuit. Next, time-frame expansion is performed on this
enhanced circuit, such thatout(bt

i) are controlled by the same error-
select variableei, for all time-framest. This allows the SAT solver to
modify the outputs of blockbi across all time-frames by settingei = 1
to “fix” any potential errors inbi.

Then, constraints are applied to the initial state, primaryinputs and
primary outputs. These constraints ensure that given the initial state
ΦS(s1) and primary inputsΦX(x1,, xk) from the counter-example,
the enhanced circuit produces theexpectedoutputs ΦY (y1,, yk).
Finally, an error cardinality constraintΦN (e) is added to enforce
Σ

|B|
i=1ei = N . Overall, the design debugging problem is encoded as:

Debug =
k̂

t=1

Ten(st
, s

t+1
, x

t
, y

t
, e) ∧ ΦS(s1)∧

ΦX(x1
,, x

k) ∧ ΦY (y1
,, y

k) ∧ ΦN (e) (1)

whereTen(st, st+1, xt, yt, e) denotes the transition relation predicate
of the enhanced circuit at time-framet.

Each assignment toe = {e1, . . . , e|B|} satisfying Debug (1)
corresponds to a debugging solution, and the SAT solver mustfind all
such satisfying assignments toe. This is normally done by iteratively
blocking each satisfying assignment using a blocking clause and re-
solving Debug until the problem becomes unsatisfiable orUNSAT.

Example 1 Consider the sequential circuit presented in Figure 1. We
are also given a two-cycle counter-example with initial state s1 = 1,
inputs〈x1, x2, x3, x4〉 = 〈〈1, 1, 0, 1〉, 〈0, 0, 0, 1〉〉 and expected outputs
〈y1, y2〉 = 〈〈1, 1〉, 〈1, 1〉〉, demonstrating a mismatch in the second
time-frame at the outputy1.

The corresponding design debugging formulation is illustrated in
Figure 2. As shown, each blockbi is associated with an error-select
variable ei. The initial-state/input/output constraints are shown in
boxes. The constraintΦN is omitted for brevity. ForN = 1, {b4}

g1

2

g1

3

1

0

1

1

0

0 0

0

1

y1

1

e2

e1

e2y1

2

e3

e4

x1

1

x1

2

x1

3

x1

4

g1

1

g1

4

e3

e1

x2

4

x2

3

x2

1
x2

2

g2

2

g2

3

g2

4

y2

2

y2

1

g2

1

e4

1

1
1

Fig. 2. Design Debugging Formulation

is returned by the automated design debugger as the only solution. b4

is indeed the buggy block and could be corrected by turning gate g4

into an OR gate.

B. Block Dominance
Block bj is said to dominate blockbi if every path from a node in

out(bi) to a primary output contains a node inbj . The notationbjDbi

indicates thatbj dominatesbi, where D is referred to as the block
dominance relation. Furthermore, the setD(bi) = {bj |bjDbi} consists
of blocks that dominatebi.

Example 2 Consider the sequential circuit in Figure 1. Blockb3

dominates blockb1 while no other blocks dominate any other blocks.
This is because every path fromout(b1) has to pass through gateg3

of b3 to reach the primary outputsy1, y2.

[11] discusses why existing methods for computing so-called single
and multiple-vertex dominators are not applicable in a design debugging
setting, and present a fixpoint algorithm for computing the block
dominance relationD. The run-time of their algorithm isO(c·|B|·|E|),
where |B| is the number of blocks,|E| is the number of edges inC
andc is called the loop-connectedness ofC.

Furthermore, [11] proves that given a solution{bi1 , ..., biN
} of

Debug (1), if
VN

n=1
(bjn

Dbin
), then{bj1 , ..., bjN

} is also a solution.
This allows them to leverage the block dominance relationD to perform
solution implications, which significantly reduces the number of SAT
calls and speeds up the debugging process.

III. N ON-SOLUTION IMPLICATIONS USING REVERSE

DOMINATION

In this section, we first define reverse dominators and non-solution
blocks. Next, we prove that reverse dominators can be leveraged to
perform non-solution implications, given an original non-solution block.

Definition 1 A blockbi is a reverse dominator of blockbj , denoted as
biD

−1bj , if and only if bjDbi.

Clearly, the reverse block dominance relationD
−1 is completely

determined byD, which can be computed using the algorithm in [11].
The setD−1(bj) = {bi|biD

−1bj} consists of reverse dominators ofbj ,
i.e., the blocks thatbj dominates.

Definition 2 Given an erroneous designC, a counter-example of
length k along with the corresponding expected outputs and an error
cardinality N , bi is a non-solution block if and only ifDebug ∧ ei is
UNSAT.

In other terms, a non-solution block cannot be part of any solution
of cardinalityN . We will prove that reverse dominators of non-solution
blocks are also non-solution blocks.

Lemma 1 Given an erroneous designC, a counter-example of lengthk
along with the corresponding expected outputs and an error cardinality
N , we have:

((Debug ∧ ei is SAT) ∧ bjDbi) ⇒ (Debug ∧ ej is SAT)

Proof: Let π denote the satisfying assignment of(Debug ∧ ei).
Assuming thatbjDbi, we will construct an assignmentπ′ satisfying
(Debug ∧ ej).

We first constructπ′(e). Let the set of error-select variables assigned
to 1 in π(e) be {ei, eσ1

, . . . , eσN−1
}, where {σ1, . . . , σN−1} ⊆

[1, |B|] − {i}.
1) If j 6∈ {σ1, . . . , σN−1}, we let the set of error-select variables

assigned to1 in π′(e) be {ej , eσ1
, . . . , eσN−1

}.
2) If j ∈ {σ1, . . . , σN−1}, we let the set of error-select variables

assigned to1 in π′(e) be {ei, eσ1
, . . . , eσN−1

}.
In both cases, the number of error-select variables assigned to 1 in
π′(e) is N , satisfyingΦN .

Since bjDbi, any path fromout(bi) to a primary output must
pass throughout(bj). This makes it possible to partition the unrolled
enhanced circuit described in Subsection II-A into two parts: Let I
refer to the sub-circuit in the fan-out cone ofout(bi) (that fans out
to out(bj)) and letJ refer to the rest of the circuit (excluding error-
select variables). InDebug ∧ ej , clearly π′(ej) = 1 in both cases
shown above, effectively disconnectingout(bj) from its fanins. As
such,out(bi) is disconnected from the primary outputs and becomes
dangling logic. This means thatI is dangling (althoughJ can fan-out to
I). Since there are no external constraints onI , π′(I) can be computed
by simply “propagating” whateverπ′(out(bi)) and π′(J) are into I
(using gate propagation, which is effectively unit propagation in CNF).
Hence, what remains is to constructπ′(J).

Note that every error-select variableek other thanei or ej is
assigned to the same value inπ andπ′, as shown in both cases above.
Furthermore, sinceπ′(ej) = 1, we are free to setπ′(out(bj)) =
π(out(bj). In addition, recall thatout(bi) has no effect onJ since
I is dangling. As such, sinceπ′(ek) = π(ek) for all other ek, for all
nodesv ∈ out(bk) ∩ J , we can simply setπ′(v) = π(v). As a result,
π′(J) = π(J). Sinceπ(J) satisfies all the constraints inDebug, so
doesπ′(J). Finally, sinceπ′(ej) = 1, π′ satisfiesDebug ∧ ej .

The following theorem proves that reverse dominators can beused
to perform non-solution implications.

Theorem 1 Given an erroneous designC, a counter-example of length
k along with the corresponding expected outputs and an error cardi-
nality N , if bj is a non-solution block ofDebug and biD

−1bj , thenbi

is also a non-solution block ofDebug.

Proof: To clarify the presentation, let us define the predicatesΦi

andΦj , as follows:

Φi = Debug ∧ ei is SAT Φj = Debug ∧ ej is SAT

Using Lemma 1, we have:

(Φi ∧ bjDbi) ⇒ Φj

⇔ ¬Φi ∨ ¬ (bjDbi) ∨ Φj

⇔ ¬Φi ⇐ (bjDbi ∧ ¬Φj)

⇔
“

biD
−1

bj ∧ ¬Φj

”

⇒ ¬Φi

Example 3 Consider the debugging problem presented in Example 1
and Figure 1. We know that blockb3 is a dominator of blockb1 from
Example 2. Ifb3 is known to be a non-solution, using Theorem 1, we
know thatb1 is also a non-solution. We can therefore automatically
add the clause(¬e1) to prune the search-space ofDebug.

In order to make use of Theorem 1, we need to learn thatbj is a
non-solution block first. The following section shows how wemodify
the branching scheme of the SAT solver to expedite the learning of
original non-solutions and to simplify the process of detecting learned
non-solutions.

IV. SAT BRANCHING SCHEME FOREARLY NON-SOLUTION

LEARNING

In this section, we describe a new SAT branching scheme for
design debugging, where error-select variables are decided upon first.
This allows the early learning (and simple detection) of non-solutions,
making non-solution implications using reverse dominators useful.

A. SAT Branching Scheme
The decision tree in a SAT solver gives the order in which variables

are decided upon. The first motivation for assigning the error-select
variables early in the decision tree relates to their importance and their
impact on other variable decisions in the SAT solving process. For
example, whenei = 1, the internal nodes of blockbi become dangling,

Algorithm 1: SAT Solver for Design Debugging

input : CNF Debug, Dominator relationD, sete

1 foreach ei ∈ e do Priority(ei)←∞;
2 result ← BCP ();

3 while result 6= (SAT/UNSAT) do
4 heap ← buildHeap (Priority) ;
5 numConf← 0;
6 ei ← heap.firstErrorSelect ();
7 while numConf < maxConf do
8 if result = (SAT/UNSAT) then return ;
9 if result = Conflict then

10 numConf ++;
11 resolveConflict ();
12 end
13 next ← heap.pop ();
14 if next ∈ e then next.assign (1);
15 elsenext.assign (polarity ());
16 if (ei.value() = 0) then
17 // bi is the block ei represents
18 foreach ej ∈ D(bi) do
19 Debug← Debug ∧ (¬ej);
20 end
21 ei ← nextErrorSelect ();
22 end
23 result ← BCP ();
24 end
25 end

and therefore they are don’t-cares. As such, assigning the nodes inbi,
as well as their fanouts, is useless ifei is later assigned to1.

A second, and more important, reason for assigning the error-select
variables early is that it allows the solver to learn non-solution blocks
much faster. This in turn enables non-solution implications due to
reverse dominance to prune the SAT search-space earlier andtherefore
more effectively. Subsection IV-B discusses how to detect learned non-
solutions using our branching scheme.

As a result, we force the SAT solver to first decide on all error-
select variables (e). Furthermore, we force the solver to always assign
error-select variables that are decided (i.e., not forced due toΦN) to 1
before trying to set them to0. The reason for doing this is to learn non-
solutions, and is explained in detail in Subsection IV-B. The solver uses
the standard decision heuristics (e.g., VSIDS [14]) for the remaining
variables.

B. Detecting Learned Non-Solution Blocks
To simplify the presentation of this subsection, let us assume without

loss of generality that the variable at the root of the decision tree ise1.
According to our branching scheme explained in the previoussection,
the SAT solver first assignse1 = 1. If the solver later switches toe1 = 0
without finding a satisfying assignment undere1 = 1, this means that
e1 = 1 cannot be extended to a satisfying assignment. Hence,e1 = 0 is
true for all satisfying assignments (if any exist). In otherterms,(¬e1)
has been learned andb1 is a non-solution block.

This observation is not applicable to all non-root variables in the
decision tree. Consider variablee2 in the subtree undere1 = 1,
switching from e2 = 1 to e2 = 0 without finding a satisfying
assignment does not imply that(¬e2) has been learned. However, it
is possible to learn about non-root variables in some circumstances, as
shown by Lemma 2.

Lemma 2 Using the branching scheme given in Subsection IV-A, until
a satisfying assignment is found, all the error-select variables set to

e1

e2

01

1 0UNSAT

UNSAT
ej

1 0

UNSAT

Fig. 3. Non-solution blocks using our branching scheme

0 along the right-most path of the decision treecorrespond to non-
solution blocks.

Proof: Assume that the error-select variables are decided in the
order of 〈e1, . . . , e|B|〉. Recall that our branching scheme forces the
solver to first set each error-select variable to1 before trying to set
it to 0. Also assume thate1 = 0, . . . , ej = 0 have been set along
the right-most path of the decision tree and no satisfying assignment
has been found yet. Then by construction, all other assignments to
e1, . . . , ej have been examined and setting any of them to1 cannot be
extended to a satisfying assignment. In other terms, each ofDebug ∧
e1, . . . , Debug ∧ ej is UNSAT. By Definition 2, this means that each
of b1, . . . , bj is a non-solution block.

Note that forced variables (due to BCP) are not part of the decision
tree. Using Lemma 2, as soon as the SAT solver switches fromej = 1
to ej = 0, as long as all its ancestors in the decision tree are assigned
to 0 and no satisfying assignment has been found yet, we can be sure
that bj is a non-solution block. This scenario is shown in Figure 3.
Using this, we can imply that every blockbi ∈ D

−1(bj) is also a non-
solution, by Theorem 1, and therefore add the clause(¬ei) for each
reverse dominator.

C. Overall Modified SAT Algorithm
Algorithm 1 presents the pseudocode of our modified SAT solver. All

unassigned variables are already assumed to have been assignedpriority
values, which set their order in the decision tree. Our algorithm assigns
error-select variables very large priority values on line 1, in order to
guarantee that they will be at the top of the decision maxheap[15] built
on line 4, which is used to pick the next decision variable.

On line 12, the unassigned error-select variable with the highest
priority is stored inei. The next variable is popped from the heap on
line 19. If this variablenext is an error-select line, then it must be first
assigned to1 (line 14), otherwise the functionpolarity() decides the
polarity of next using heuristics such as VSIDS [14] (line 21). Later,
if ei is assigned to0, block bi is learned as a non-solution block. As
a result, eachbj that is dominated bybi is also learned as a non-
solution block and the unit clause(¬bj) is added (line 25). Afterbi

is learned as a non-solution,ei is updated so that new non-solutions
can be learned (line 21). Other functions of the SAT engine such as
BCP () andresolveConflict() are not modified.

V. EXPERIMENTAL RESULTS

This section presents the experimental results for the proposed
framework on industrial design debugging problems. All experiments
are run using a single core of a i5-2400 3.1 GHz workstation with 8GB
of RAM and a timeout of 7200 seconds. The presented techniques are
implemented on top of a state-of-the-art SAT-based debugger [4], [11],
[12] with a Verilog front-end to allow for RTL diagnosis. We tailor the
debugger’s back-end solver, MINI SAT 2.2.0 [16], to leverage reverse
dominators for performing non-solution implications as described in
this work.

Eight industrial Verilog designs from OpenCores [17] and three
commercial designs provided by our industrial partners areused in our

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35

N
um

be
r

of
 s

ol
ut

io
ns

SAT run-time (sec)

dbgSAT
Orig

Fig. 4. # solutions vs run-time for rsdecoder2

 1

 10

 100

 1000

 1 10 100 1000

db
gS

A
T

/d
bg

S
A

T
+

R
R

 r
un

-t
im

e
(s

ec
)

Orig run-time (sec)

dbgSAT

Fig. 5. Performance Results

experiments. For each design, several debugging instancesare generated
by injecting different designer mistakes such as wrong state transitions,
incorrect operators or incorrect module instantiations. The erroneous
designs are then verified using industrial verification tools. A failure is
detected and a counter-example is recorded and passed to thedebugger.
Experiments are conducted with two different versions of the SAT
solver, the original MINI SAT (Orig), our enhanced version (dbgSAT).

Table I shows the results of all our experiments. The first column
gives the instance name. The next four columns respectivelyshow the
length of the counter examplek, the number of nodes|l| in C, the
number of blocks|B|, and the number of solutions,# sols. Column
Orig gives the total run-time of the original MINI SAT 2.2.0. Columns
seven (time), eight (# impl non-sols) and nine (imprv) underdbgSAT
respectively give the total run-time ofdbgSAT, the number of implied
non-solutions and the speed-up compared withOrig .

Figure 4 plots the number of solutions versus run-time forOrig
and dbgSAT for rsdecoder2. Clearly,dbgSAT outperformsOrig by
discovering solutions at a significantly faster rate. In addition to this
faster rate,dbgSAT returns earlier solutions faster than its average rate
(i.e., its solutions plot is concave). This is beneficial because itallows
the designer to examine those solutions earlier while the debugger
continues to run.

The average speed-up in total SAT run-time compared toOrig is
1.68x for dbgSAT showing significant improvement. In some instances,
such as for rsdecoder1, our solver terminate, while the original solver
times out. In rare cases, such as ucrcpar and memctrl2, no non-
solutions are implied. However, our solvers still show significant speed-
ups overOrig due to our branching scheme which decides error-select
variables first. Finally, Figure 5 plots the SAT run-times ofour solvers
dbgSAT versus those ofOrig on a logarithmic scale, demonstrating

TABLE I
DESIGNDEBUGGINGSAT SOLVER RESULTS

Instance Info Orig dbgSAT
instance k |l| |B| # time time # impl imprv

sols (s) (s) non-sols (x)
rsdecoder1 112 13543 2044 430 T/O 6955.90 1192 ∞
rsdecoder2 112 13564 2044 396 33.35 20.46 941 1.6x
usb funct1 32 35158 3425 422 53.17 45.46 631 1.2x
usb funct2 53 35350 4201 576 134.46 117.83 1167 1.1x
wb dma1 35 191386 7896 468 123.89 97.26 2100 1.3x
wb dma2 7 299838 8460 205 49.14 36.90 3384 1.3x
wb dma3 28 299862 8836 526 304.18 182.09 5135 1.7x
vga1 423 89412 1593 128 434.81 172.51 145 2.5x
vga2 423 89402 1741 84 106.98 147.95 277 0.7x
ucrc par 155 1056 63 20 7.97 3.94 0 2.0x
mem ctrl1 581 48006 3355 23 12.53 24.67 567 0.5x
mem ctrl2 1180 48006 3355 9 11.76 4.78 0 2.5x
mips7891 153 30711 953 49 22.08 13.51 53 1.6x
opensparcddr21 29 58399 2792 373 48.45 33.42 1072 1.4x
opensparcddr22 27 64915 2791 509 44.11 39.39 1138 1.1x
design1-1 71 499325 20204 69 53.40 25.08 40 2.1x
design1-2 26329 499705 20211 117 72.54 38.27 5073 1.9x
design1-3 5343 499696 20209 120 39.63 31.69 210 1.3x
design1-4 467 499705 20211 150 100.89 45.69 5854 2.2x
design1-5 177 499705 20211 98 73.72 27.04 5760 2.7x
design2-1 26 45632 5507 61 18.47 14.59 543 1.3x
design2-2 5 203706 7416 50 7.38 4.23 53 1.7x
design2-3 20 2082 185 62 0.13 0.08 65 1.6x
design3-1 56 5454 495 129 3.03 2.07 187 1.6x
design3-2 144 2333 144 28 0.083 0.07 52 1.2x
AVERAGE 1.68x

the effectiveness of our method.

VI. CONCLUSION

This work shows how to leverage reverse dominators in a circuit
to speed-up SAT-based automated design debugging. This is done by
performing non-solution implications, consisting of the early pruning of
non-solution areas of the problem search-space. A new SAT branching
strategy is also proposed for design debugging, which expedites the
learning of non-solutions by the solver. Finally, an extensive set of
experiments on real industrial designs demonstrates the robustness and
practicality of the presented framework.

REFERENCES

[1] H. Foster, “Assertion-based verification: Industry myths to realities (invited
tutorial),” in Computer Aided Verification, 2008, pp. 5–10.

[2] M. Abramovici, M. Breuer, and A. Friedman,Digital Systems Testing and
Testable Design. Computer Science Press, 1990.

[3] S. Huang and K. Cheng,Formal Equivalence Checking and Design
Debugging. Kluwer Academic Publisher, 1998.

[4] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and logic
debugging using Boolean satisfiability,”IEEE Trans. on CAD, vol. 24,
no. 10, pp. 1606–1621, 2005.

[5] H. Mangassarian, A. Veneris, and M. Benedetti, “Robust QBF encodings
for sequential circuits with applications to verification,debug, and test,”
IEEE Trans. on Computers, vol. 59, no. 7, pp. 981–994, 2010.

[6] B. Keng and A. Veneris, “Managing complexity in design debugging with
sequential abstraction and refinement,” inASP Design Automation Conf.,
2011, pp. 479–484.

[7] A. Veneris, B. Keng, and S. Safarpour, “From RTL to silicon: the case for
automated debug,” inASP Design Automation Conf., 2011, pp. 306–310.

[8] T. Kirkland and M. R. Mercer, “A topological search algorithm for ATPG,”
in Design Automation Conf., 1987, pp. 502–508.

[9] T. Niermann and J. H. Patel, “Hitec: a test generation package for
sequential circuits,” inEuropean Design Automation Conf., 1991, pp. 214–
218.

[10] R. Drechsler,Advanced Formal Verification. Kluwer Academic Publishers,
2004.

[11] H. Mangassarian, A. Veneris, D. E.Smith, and S. Safarpour, “Debugging
with dominance: On-the-fly debug solution implications,” in Int’l Conf. on
CAD, 2011.

[12] M. F. Ali, S. Safarpour, A. Veneris, M. Abadir, and R. Drechsler, “Post-
verification debugging of hierarchical designs,” inInt’l Conf. on CAD,
2005, pp. 871–876.

[13] M. Ganai and A. Gupta, “Efficient BMC for multi-clock systems with
clocked specifications,” inASP Design Automation Conf., 2007, pp. 310–
315.

[14] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an efficient SAT solver,” inDesign Automation Conf., 2001,
pp. 530–535.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction to
Algorithms, 3rd ed. The MIT Press, 2009.

[16] N. Éen and N. S̈orensson, “An extensible SAT-solver,” inInt’l Conf. on
Theory and Applications of Satisfiability Testing, 2003, pp. 502–518.

[17] OpenCores.org, “http://www.opencores.org,” 2007.

