Suspect Set Prediction in RTL Bug Hunting

Neil Veira, Zissis Poulos and Andreas Veneris
Department of Electrical and Computer Engineering
University of Toronto, Toronto, Canada
Email: {nveira, zpoulos, veneris} @eecg.toronto.edu

Abstract—We propose a framework for predicting erroneous
design components from partially observed solution sets that are
found through automated debugging tools. The proposed method
involves learning design component dependencies by using his-
torical debugging data and representing these dependencies by
means of a probabilistic graph. Using this representation, one
can run a debugging tool non-exhaustively, obtain a partial
set of potentially erroneous components and then predict the
remaining by applying a cost-effective belief propagation pass.
The method can reduce debugging runtime when it comes to
multiple debugging sessions by 15x on the average while achieving
a 91% average prediction accuracy.

I. INTRODUCTION

When functional verification captures a mismatch between
the implementation of a design and its specification, it returns
an error-trace, comprising the sequence of input stimuli and
state transitions that lead to the discrepancy. The task of design
debugging pertains to analyzing each error trace to localize the
design error responsible for that behavior. Today, debugging
largely remains a manual task in a typical design cycle. It
often consumes up to 60% of the total verification effort [1],
as the increasing size and complexity of designs intensifies the
challenge of bug localization.

To reduce debugging costs that jeopardize time-to-market,
several efforts in Computer Aided Design (CAD) have been
made to automate the process. Given an error trace, a typical
automated debugger outputs a set of potentially buggy design
locations (RTL lines or blocks), referred to as the suspect set.
Each suspect points to a design location where a modification
can rectify the failure. Most state-of-the-art debuggers perform
multiple calls to formal engines, such as Boolean Satisfiability
(SAT), Quantified Boolean Formulas, and Maximum Satisfi-
ability [2]-[5], until all suspects are exhaustively found. The
computational cost and memory footprint this incurs remains
an impediment for these tools to scale to larger designs.

The problem is especially profound when considering high-
level debugging tasks, such as failure triage and/or debugging
in regression mode. In triage the goal is to identify which error
traces are likely to originate from the same design module
before doing detailed debugging. Recent triage methods run
these formal tools for each error trace to extract an over-
approximation of the high-level error location, in order to
quantify error trace similarity [6]. Thus, for a decision to
be made at the triage stage all error traces need to go
through an exhaustive formal tool process, which increases the
computational cost. Moreover, debugging in regression mode
often involves multiple errors being placed in the queue for
analysis and fixing, which again requires running these formal
tools multiple times.

In both these scenarios, there is an underlying redundancy
that can be exploited to reduce the total cost. Particularly,
for the set of all design components there generally exists
a partitioning into suspect classes, whereby if a component
appears in a suspect set for a particular error trace then all
other components in the same suspect class will also be in

the suspect set. Of course, exactly computing these classes
is intractable. Methods that employ structural dominance [7]
and incremental SAT [8] attempt to approximate them, but
still require formal subroutines to do so. This work conjec-
tures that given sufficient historical debugging data, one can
probabilistically learn design component dependencies (i.e.,
membership in suspect classes). In effect, this allows one to
run the formal tool non-exhaustively, observe a partial suspect
set and then predict the remaining suspects without further
calls to the engine, thus drastically reducing runtime.

Specifically, our contributions are as follows. First, we in-
troduce a framework for learning design component dependen-
cies based on suspect sets that have been resolved during past
debugging sessions. The method represents these dependencies
graphically, where each node in the representation corresponds
to a design component previously seen in one or more suspect
sets, and each edge between two components is assigned a
conditional density quantifying the likelihood that one of the
components will be in some set given the presence of the other.
These conditional densities are learned by applying maximum
a posteriori (MAP) estimates over the whole set of historical
data. The graph essentially corresponds to an approximation of
the true underlying suspect dependencies, where every suspect
class is viewed as a clique. Second, we propose a method for
predicting, given a partial suspect set, the suspects that are
most likely to complement the remaining set. This is done
via cost-effective single-pass belief propagation on the learned
graph. Finally, we demonstrate that this process can reduce
debugging and triage runtime by 15x on the average, while
achieving a 91% average prediction accuracy, a remarkable
feat. We note that although the proposed methodology is
described using a formal debugger for simplicity, it is not
confined to it — any bug hunting engine can be used as
backbone.

The remainder of this paper is organized as follows. Section
Il contains preliminaries on automated design debugging.
Section III presents the suspect dependency learning algorithm.
Section IV shows how to predict solutions using the proposed
representation. Section V gives experimental results and Sec-
tion VI concludes the paper.

II. PRELIMINARIES
A. SAT-based Design Debugging

A failure is said to occur in a design when the design’s
behaviour differs from the expected (golden) behaviour. A
failure may manifest itself in multiple ways, such as an
assertion failure due to a property violation, or a mismatch on
the values of the primary output signals between the design
under test (DUT) and the golden design. An error trace is
associated with each failure which contains the sequence of
vector values leading to the observed erroneous behaviour. The
bug is the location in the RTL from which the failure originates
due to incorrect logic/connections.

A SAT-based debugger can be used to find the set of all
suspects corresponding to a failure. These are design locations

with which the erroneous behaviour could be corrected by
applying a change at that location [2]. Because of the need
to perform an exhaustive search involving multiple calls to
a backend SAT-solver, runtimes and memory requirements of
these tools can become prohibitive with increasing design size
and longer error traces.

To alleviate this issue state-of-the-art debuggers incorporate
techniques that eliminate the need to consider the entire error
trace. In particular, suffix window debugging considers only a
suffix of the error trace, implying that only suspects whose
activation times are close to the failure time will be found [9].
This has the desirable effect of reducing runtime and memory
use, but in general the resulting suspect set may be incomplete.
If more suspects are needed then the suffix window can be
iteratively expanded as described in [9], but at the cost of
increasing runtime.

B. Failure Binning and Triage

Regression testing for a design-in-progress will typically
produce a large number of failures at a time, all of which need
to be diagnosed and fixed. However, many of these failures
will likely be caused by the same underlying bug, and so per-
forming detailed debugging on all of them would compromise
resources. Failure binning is the process of partitioning failures
into groups such that two failures are in the same group if and
only if they are likely to share a common root cause. Thus
it is essentially a clustering process on the failures. It is the
first stage of failure triage, which is the process of assigning
failures to the engineer/team which is most likely to be able
to diagnose and fix them [10], [11].

Failure binning involves running SAT-based debugging on
each failure to identify all of its high-level suspect locations.
This is currently the bottleneck of the failure binning process in
terms of resource usage, and so any improvement here would
result in significant improvement overall. For this reason we
see failure binning as an ideal use case for a suspect prediction
algorithm; it can achieve a considerable runtime reduction, and
since failure binning is an approximate process to begin with,
approximating the suspect sets does not have a major impact
on the binning quality.

III. LEARNING SUSPECT RELATIONSHIPS

While the technique of suffix window expansion generally
reduces peak memory use, it may suffer from severe runtime
inflation due to the need to iteratively expand the debug win-
dow with additional calls to the SAT solver in each iteration.
Instead we propose that a single suffix window debug instance
be run to obtain a partial suspect set, and the remaining
suspects can be predicted probabilistically by learning from
a history of debug sessions. The first step, which is described
in more detail in the remainder of this section, is to estimate
the probability of each pair of suspects occurring together
based on the frequencies of the suspects in the debug history
(analogous to [12]). In the next section this idea is extended
to compute probabilities of suspects occurring in conjunction
with an entire set of other suspects. Then the predicted suspects
will be those which are most likely to occur with the subset
obtained by suffix window debugging.

Formally, let Fp;st = {F1, ..., Fx} denote a set of failures
with corresponding suspect sets Syt = {51, ..., Sn}, where
each S; is a set of suspects {s;1,...,S;n, ;. Moreover, let
SU = S1US5U...USy. This constitutes the set of all distinct
design locations that have ever been observed as suspects.

Suppose a new failure F” is given. Its complete suspect set
is S’, however, only a subset of these are observed, denoted

!

’ps © 5. In practice S/, could be obtained by debugging a
suffix window of F”, in which case it would contain only the
suspects whose activation times are close to the failure time.
In general, however, no assumptions are made as to which
suspects are in 57, - — the algorithm we present can be applied
equally well to arbitrary subsets. The task we address next is
to predict which suspects from SU are in S\ S/,..

A natural model for this purpose is a graph in which
each node 7 represents the suspect s; € SU and each
directed edge (i,j) is weighted according to the strength of
the implication of s; on s;. Formally, we associate with every
suspect s; € SU a random variable x; which represents the
event of s; being in S’. That is, x; = 1 corresponds to
s; € 8" and x; = 0 corresponds to s; ¢ S’. Two directed
edges are created between every pair of suspects (one in each
direction), with the weight of edge (7, j), denoted w;;, equal to
an estimation of the conditional probability P(z;|z;). We use
the notation P(x;|x;) for convenience, which is understood to
mean P(z; = 1|z; = 1).

In order to compute these probabilities we consider the
individual and pairwise frequencies of suspects in the training
data. For individual suspects let count(i) be the number of
failures in the debug history that include s;. Similarly, for every
pair of suspects let count (i, j) be the number of failures that
include both s; and s;. The most straightforward probability

estimation would then be to assume that P(x;) = C‘O;L:ti? and
N
P(z;,z;) = %fﬁ” giving
count (s, j)
Plz;lz;)) = ———==~ 1
(i) count (i) ()

Unfortunately this method can lead to severe overfitting to
the training data when the count values are small (which is
frequently the case in practice). For instance, if suspect s;
occurs only once in Sh;st, Say in suspect set Sg, and Sy does
not include s, then Eq. 1 would give P(x2|x1) = 0. However,
it would be much too strong of a conclusion that so cannot
occur in the presence of s1, having only ever observed s; once.

To deal with this issue we extend the preceding analysis
with the standard technique of maximum a posteriori (MAP)
inference [13]. The probabilities P(x;|z;) can be viewed as
underlying model parameters while the observed count values
are the data. The MAP technique selects parameter values
which maximize the product of the data likelihood distribution
and a prior distribution over the parameters. As for the former,
when suspect s; is given then the event of observing s;
is a Bernoulli random trial with probability P(x;|x;). Thus
count(i, j) follows the binomial distribution

P(count(i, j)|P(z;|z;), count(i)) =

B(z = count(i, j);n = count(i),p = P(x;|x;)) @

For the prior distribution, a Gaussian with a mean of 0.5 is used
because no prior knowledge about the data is assumed apart
from the fact that all values lie between O and 1. A variance
of 0.2 was chosen as it is sufficiently large so as to allow the
model to fit the data and sufficiently small so as to allow the
model to generalize well. However, the precise value assigned
to the variance was not found to have a major impact on the
algorithm’s overall performance.

In summary this gives

052
w;j = P(zj|z;) = argmax exp _p =057
) 0.4

count(7) tij N o
~ count(i,j) 11— count(i)—count(i,j)
(commiti)0

3

Note that the initial proposition of Eq. 1 is equivalent to the
maximum likelihood estimation (MLE) as it maximizes Eq. 2.
MAP is much more appropriate as it avoids placing too much
confidence on the parameter values for suspects which are
rarely observed.

IV. SUSPECT PREDICTION

The suspect graph can give the probability of observing
a suspect conditioned on having observed any other suspect,
but what we are actually interested in is the probability of
observing a suspect conditioned on having observed the set of
suspects S/, .. In the first subsection we show how to compute
these probabilities approximately using belief propagation on
the suspect graph. This leads naturally to a ranking of all sus-
pects according to these probabilities. The second subsection
then describes a method to estimate the cardinality of S’, which
is used to draw a cutoff line when deciding which suspects
should actually be returned.

A. Suspect Ranking

C0ns1der a specific suspect s; € SU \ S/,.. Letting
{zi : si € S}}, we are interested in the probability

Pg:mX . This is given by the following proposition [14].

Proposition 1. Under the assumption of conditional indepen-
dence between the graph edge probabilities, the probability of
suspect s; being in S’ is

1, s; €80,
T Xos - 1
P@lXad =012 11 (= Pailz)PG)). s ¢ S,
SJ'ESU,]'ii
4)

Proof: For nodes in S/, . we are given x; so P(z;) = 1.

For nodes not in S/, , consider instead the complimentary
probability P(z;|X,,). The only way the event &; can occur
is if z; is not observed with any of its neighbours. The prob-
ability x; being observed with neighbour z; is P(z;,z;) =
P(zi|x;)P(x;), and if we assume that all neighbours act
on z; independently then P(z;|X/,.) [iesv el —
P(z;|z;)P(j)). Eq. 4 then follows immediately. [|

Because the suspect graph is a clique and not a DAG,
many loops exist in the dependencies between suspects in
Eq. 4. Therefore the additional approximation is made of
only considering nodes being activated via edges (,7) where
ie S, and j € SU\ S/, . The probabilities can then be
computed with a single pass of belief propagation. For each
unobserved suspect Eq. 4 simplifies to

P(ai|Xo) =1— I (1= Plailz))).si ¢ Sips S
S5E€S G,

Eq. 5 is computed for all s; ¢ S/, and suspects are ranked

in order of non-increasing P(xZ\XObS) which we will denote

by Srank = (srl,...,sr‘sw), where 1 < r; < |SU|. If a

total of k suspects are desired then the returned suspects are

(Spys -y Srp,). The overall process is illustrated in Example 1.

Example 1. Consider the following history of suspect sets
Sy = {51, 84755}
Sy = {82,585}
S3 = {51,52,83,54,55}
Sy = {53,55,56}
S5 = {51,53,54}

Fig. 1. Suspect graph for Example 1.

Suppose the set we wish to predict and its observed subset are

S/ - {51782354785}
Sops = {51, 52}

The first step is to compute the graph edge welghts using Eq. 3.
We consider only edges (i,j) where s; € S!, and s; € SU \
! vs- The relevant count values are shown in the following

table.
i | count(i) | count(1,4) | count(2,1i)

~ R Lo G
SN W~ W
S N~~~

1
1
2
3
4
5
6

Consider the edge (1,3). Eq. 3 becomes

—0.5)? 3
w13 = argmax exp —u X p*(1—p)>2
b 0.4 p

= 0.62

The remaining weights are computed in a similar manner, and
the resulting graph is shown in Fig. 1. Observed suspects are
shown in gray while unobserved suspects are shown in white.

Next the suspect probabilities are computed using Egq. 5.
For instance for s3 we have

P($3|l‘1,$2) =1- (1 — wlg)(l — w23)
= 0.809

Doing this for the remaining suspects yields the probability
scores

P($4|.’171,$2) = 0.999998
P(l‘5|$1,$2) =0.973
P($6|$1,$2) =0.070

from which we obtain the suspect ranking Srenk =
S1, 82, 84, S5, S3, S6)- If the engineer requests four suspects,
S1, 82, S4, S5) would be returned.

B. Stopping Criterion

While belief propagation gives a ranking of the suspects
by probability of being in S’, it says nothing as to how many
of these suspects should actually be returned for S’, as the
size of S’ is not known. We envisage this as a parameter that
can be controlled by the engineer, as more suspects may only
be required if the results achieved with partial suspect sets
are unsatisfactory. Nonetheless, in many situations it would be
useful to have an estimate of the actual number of suspects that
would be returned by the debugger. To this end we propose

Lo

I
Exact number of suspects
I

— fomoon
08| 1

Es‘timated stopping point
|
06

04 F

02+

0.0 . L . . L
] 100 200 300 400 500 600

i

Fig. 2. Illustration of the stopping criterion. The function f,,00tp is plotted
with the solid green line. The estimated stopping point is at the first local
minimum (153) as shown by the solid red line, while the exact number of
suspects is 169, shown by the dashed line.

the following criterion which dictates when to stop returning
suspects.

Definition 1. Stopping Criterion
After Syani; is obtained by belief propagation as in Section

IV-A, for each i such that |S!,.| < ¢ < |SU|, define the
Sfunction f : 7 — R where
f(@@) = Pz, IT17'-'7IT1‘,—1)
=1- [[a-Planlzr,)) (©)
1<j<i

Because f can be quite noisy we apply smoothing by tak-
ing the running average of f(i). That is, let fsmootn(i) =
ﬁ 2327 s [(4), where 0 is a parameter whose value is
determined empirically. The algorithm should then return the

suspects {Spy ..., Sr; } up to the smallest i such that fsmootn (7)
is a local minimum.

E(}L 6 is effectively the conditional probability of observing
the i'"* ranked suspect having already observed the first s — 1
ranked suspects. The justification for this criterion is that
we stop returning more suspects at the earliest point that
minimizes the probability of observing another suspect (which
may not be a global minimum). This is illustrated in Fig. 2.

V. EXPERIMENTAL RESULTS

In this section we evaluate the performance of the proposed
suspect prediction algorithm. Its prediction accuracy is mea-
sured on several different designs while key parameter values
are varied. Runtimes of debugging suffix windows of various
sizes are also compared against runtimes of full debugging.
Next the error in the suspect set size estimation obtained from
the stopping criterion is measured. Finally, failure binning is
run using the predicted suspect sets, and the binnings obtained
with the predicted suspects are compared against the binnings
obtained with the ground truth suspect sets. All experiments
are run on a i5-3570K 3.4 GHz machine with 16 GB of RAM.

A. Data Collection Methodology

The proposed algorithm requires a history of failures and
debug instances to learn from. For evaluation purposes we
generated such a data set by injecting a variety of bugs into
several OpenCores [15] designs as well as a design from an

ethernet fpu

— Optimal
— Inferred 100\
\ — Random \\\

Accuracy (%)
Accuracy (%)

[N " " "
50 100 150 200 250 300 350 400 0 50 100 150 200 250 300
k k

Fig. 3. Accuracy versus k for the prediction, optimal, and random algorithms.

industrial partner. In order to avoid bias and to ensure the bug
set included a diversity of design locations, bugs were injected
randomly using a Python script. Each bug was created by
selecting a module and signal assignment uniformly at random
and forcing the signal assignment to O or 1. However, it is
possible that such randomly generated stuck-at faults may not
be representative of real bugs as a simple script cannot imitate
the reasoning process of a design engineer. Therefore, several
different types of bugs were created manually which more
closely resemble human-introduced errors from our experience
with industrial partners (including missing pipeline stages, in-
correct operators in expressions, bad stimulus, complemented
conditions in if-statements, incorrect state transitions, etc.
[16]), and a combination of randomly- and manually-generated
bugs are used for evaluation.

Each buggy design was then simulated and failures were
debugged. The types of failures under consideration include
SystemVerilog Assertion (SVA) failures and incorrect
values on the primary output signals. The designs, their sizes,
and total number of failures for each are shown in the first
three columns of Table I.

B. Suspect Prediction Accuracy

Let k denote the number of desired suspects, and let S}, .. ; ;.

denote the set of suspects returned by the prediction algorithm,
so that |S] ;| = k. Because k is a parameter controlled by
the engineer, the suspect prediction is evaluated over all values
of k. We evaluate performance using the metric of prediction
accuracy, defined as

|Séred,k N S/|

accuracy(k) = x 100%

which is the percentage of returned suspects that are in S’

We compare the prediction algorithm against optimal and
random algorithms, which serve as upper and lower bounds,
respectively, on reasonable prediction accuracies. The optimal
algorithm is defined as the algorithm which, for a given k,
always maximizes accuracy. That is, for k < |S’| it returns
only suspects in S/, and for k > |S’| it returns all of S’ as
well as k — |S’| arbitrary suspects from SU \ S’. The random

algorithm randomly chooses k—|57, .| suspects from SU\S’, ..

To maximize the amount of test data we use a standard
leave-one-out methodology whereby for each failure F; €
F},is¢ the model is trained on Fj;s \ F; and tested on F;. The
resulting prediction accuracy is then averaged over all failures.
In each case the sample S/, contains 50% of the suspects in
S’

Fig. 3 plots the prediction accuracy against k for 1 <
k < |SU|. Note that accuracy always begins at 100% for
kE < |8, since S/, is given, and it decreases as k is
increased. It can be seen that for all k the prediction algorithm
achieves an accuracy much closer to optimal than to random.
This result is summarized in columns 5-7 of Table I which

100

95

90 -

.
é
‘
@
ot

85

scam_core | |
vga
fpu
spi
rsdecoder ||
fdct

mips789
ethernet
aemb

divider
- mean

80

75+

Prediction accuracy (%)

70 st

¢ B P e WP OB F O

65 L

60
0

10 20 30 40 50 60 70
Training set size, T

Fig. 4. Accuracy versus training set size with a sample size of 50%. Each
design is shown in a dotted line while the mean is shown in the solid line.

give the mean accuracy over all k. On average the prediction
algorithm achieves an accuracy of 44.9% compared to optimal
and random values of 46.3% and 36.9%, respectively.

C. Effect of Training Set Size

In this subsection we investigate how prediction accuracy
varies with the number of debug instances that are used to learn
the graph parameters, which we will denote by T'. For each
failure we test values of 7' ranging from 5 up to a maximum
of |Fpist| — 1 in increments of 5. For a given T and failure F;
the training set was chosen randomly from Fj;s; \ F;.

In order to isolate the effects of the suspect ranking from
Section IV-A and the stopping criterion from Section IV-B,
accuracy is measured at k = |S’|. The stopping criterion is
evaluated independently in Section V-E. Fig. 4 plots accuracy
against 7', averaged over all failures for each design, and
columns 8-10 of Table I give the numerical results. As would
be expected accuracy increases rapidly with 7" when T is small,
but only marginal improvement is achieved as 1" gets larger.
The figure suggests that a training set size of at least 20-30
debug instances would be desirable, but the algorithm can still
work reasonably well with less training data.

D. Effect of Sample Size

Next we measure the prediction accuracy for different sizes
of the observed sample S/, _, varying from 10% of S’ to 90%
of S’ in 10% increments. Samples are chosen to include only
the suspects whose activation times are closest to the failure
time. This mimics the sample that would be obtained by suffix
window debugging without the need to actually run it. As in
Section V-C the accuracy is measured at k = |S’|. Fig. 5a
plots the results for all sample sizes while columns 11-13 of
Table I give the values for sample sizes of 40%, 60%, and

80%. The figure shows that accuracy increases monotonically
with sample size as more suspects are given with S/,

Fig. 5b gives an estimate of the runtime that would be
saved by running only suffix window debugging rather than
full debugging for various sample sizes. Due to the excessive
amount of computation time that would be required, the suffix
window debugging was not actually run for all window sizes
and for all failures. Instead a single window size was chosen at
random for each failure and debugged. The resulting suspect
sample size is rounded to the nearest 10%, and the ratio
of suffix debug runtime to full debug runtime is computed
(the runtime of the suspect prediction being negligible in
comparison). Then for each sample size in increments of 10%,
the geometric mean of relative runtimes is plotted in Fig. 5b.

The figure indicates that a reasonable tradeoff between
runtime and accuracy would be to use a sample size of
around 50-70%. The mean accuracy in this range is 91%
while the geometric mean runtime is 0.068 vs full debugging,
corresponding to a 15x runtime reduction.

E. Accuracy of Stopping Criterion

This section investigates how closely the stopping criterion
presented in Section IV-B matches the actual size of S’. Let
k.st be the estimated stopping point. We measure the relative
error in kes; versus the ground truth value of |S’| and take the
average over all failures.

As noted in Section IV-B, a critical parameter in the
stopping criterion is the range over which the incremental
probability function is smoothed, §. With too little smoothing
the algorithm could stop too early at a spurious local minimum
caused by noisy data; with too much smoothing it might
stop too late because the ideal local minimum was “smoothed
away”. By measuring the error for a range of § values it was

found that a value of about |SU‘ works best for most designs.

Fig. 6 shows scatter plots of the actual and estimated set
sizes for two designs. While it performs quite well for most
failures, it tends to underestimate the size for larger suspect
sets. This is a natural consequence of the fact that we stop at
the first local minimum; in some cases it would be better to
stop at a later local minimum, however, identifying the ideal
local minimum remains a challenge. Column 14 of Table I
gives the average error in k.5, for each design. Over all designs
the suspect set size is predicted to within 24% of the actual
value.

Next we examine how the error in k.4, affects the predic-
tion of S’. Because the sizes of S, ;, and S’ may now be
different, a more appropriate metric than prediction accuracy
is the Jaccard index between S| ;. and S'. The results are
given in column 15 of Table I On average the predicted set
matches the ground truth set with a Jaccard index of 0.72.

TABLE 1. EXPERIMENTAL RESULTS ACROSS ALL DESIGNS AND PARAMETER VALUES

Mean accuracy Accuracy (%) at k = |S’] Kest Jaccard Error in binning NMI

Design # gates # failures |SU| over all k (%) Training set size Sample size (%) error index at Sample size (%)
predict. opt. rand. 40 60 80 Kest 40 60 80
aemb 20266 29 494 48.8 50.7 41.6 80.3 81.8 n/a 81.1 88.2 | 93.5 .320 .658 264 115 .096
divider 10201 71 149 66.6 67.2 56.0 85.9 91.2 | 927 92.7 96.0 | 98.7 .247 51 435 145 221
ethernet 45120 67 418 38.6 38.9 30.3 78.5 86.1 88.9 944 | 958 | 985 222 147 014 .091 051
fdct 546765 22 559 34.7 38.2 29.2 82.4 | 845 n/a 83.5 89.0 | 95.6 207 127 224 156 .072
fpu 82888 28 308 30.8 32.6 24.5 75.2 80.6 n/a 82.5 87.6 | 91.8 .280 .645 .002 128 .079
mips789 55248 68 1063 443 45.7 35.7 80.2 82.7 85.1 85.4 88.8 94.5 176 731 .043 .087 .029
rsdecoder 14842 72 1147 37.6 38.1 29.7 84.8 87.5 88.6 91.2 | 9%4.1 97.8 .256 746 .169 .010 .017
scam_core 1315446 68 485 52.1 53.6 42.7 814 | 829 84.7 84.2 89.3 97.6 .255 17 351 .051 .106
spi 2528 60 228 59.9 60.5 50.6 87.9 924 | 934 94.6 | 95.1 97.5 241 735 011 .059 .059
vga 60533 38 890 35.8 37.5 28.8 74.1 80.4 81.9 80.0 859 | 94.6 177 702 431 .067 126
mean 449 46.3 36.9 8.1 85.0 87.9 87.0 | 91.0 | 96.0 238 716 195 091 .086

100

95+

%]
S

=
=)

~
a

Prediction accuracy (%)
@
o

' s rsdecoder ||
, -om fdct

70+ // ‘e mips789
/ ethernet
651 / aemb
) divider
,’ = mean
60
0 20 40 60 80 100
Sample size (%)
0.5 r r (b) r 0.5
—=— mean error in NMI|

—e— runtime

)
=
)
IS

o
w

40.3

o
[N}

10.2

Error in binning NMI

Suffix debug vs full debug runtime
o
=
=)
=

o
o

0.0
20 40 60 80 100
Sample size (%)

o

Fig. 5. Experimental results versus sample size as a percentage of |.S’|.

a) Prediction accuracy for all designs (dotted lines) and the mean (solid line).
The minimum accuracy given from S/, is shown by the lower dashed line.
b) Runtimes vs full debug and mean error in failure binning NMI.

FE. Application to Failure Triage

One potential application for suspect prediction is failure
triage, whereby failure binning would be performed using the
predicted suspect sets rather than the suspect sets from full
debugging. For experimental purposes we use the entire failure
history Fj,;s; as a single triage instance, corresponding to the
set of failures observed in regression testing. For each failure
F;; the suspect prediction is obtained in a leave-one-out manner
by training on Fj;s \ F;. In this scenario it is not assumed
that the engineer can provide a meaningful estimate on the
number of suspects, so prediction is stopped at k = k.. Bugs
are considered only at the module level, that is, all failures
originating from the same module are considered to be caused
by the same bug and should be binned together.

Fig. 5b compares the binning using predicted suspect sets
against the binning using exact suspect sets by plotting the
relative error in the clustering normalized mutual information
(NMI) between the two for a range of sample sizes, where
binning is implemented as in [6]. Numerical data is given
in columns 16-18 of Table I. We see again that there is
a tradeoff between time spent debugging to obtain a larger
sample and triage efficacy. At a sample size in the range 50-
70%, failure binning with predicted suspect sets performs as
well as binning with exact suspect sets to within 10%, while
the mean debugging speedup is 15x.

VI. CONCLUSION AND FUTURE WORK

We present an algorithm to predict a failure’s suspect set
from a partial subset of suspects, which can be obtained by
suffix window debugging. The algorithm first uses a history
of debug sessions to learn the probability of observing each
suspect given that another suspect has been observed. Then
all potential suspects are ranked by probability of occurring

400 vga 1200 rsdecoder

® Exact °® ® Exact
350 Estimated) Estimated
1000
300 o
o o
B 250 § 80
F g
2 200 ot 2 600 °
g . 8 .
2 150 ® &
4
B o eee®® 3 400 ”
o
...
50 e 200
cssee®
0
510 15 20 25 30 35 40 ° 10 20 30 40 50 60 7

Failure # Failure #

Fig. 6. Estimated and actual suspect set sizes for each failure in the vga and
rsdecoder designs. Failures are ordered by non-decreasing exact set size.

with the given subset of suspects. Provided that a reasonable
estimate of the number of suspects is given, this can achieve
a prediction accuracy of up to 91% while reducing debugging
runtime by 15x on average (Fig. 5). If the number of suspects
is not known then an estimate is provided, which differs from
the exact value by less than 24% on average. This is currently
the bottleneck of the overall prediction accuracy, and so future
work could be devoted to improving this estimate. Another
avenue for future research would be to incorporate structural
information such as dominance relationships so as to restrict
the suspect graph and improve prediction accuracy.

REFERENCES

[1] H. D. Foster, “Trends in functional verification: A 2014 industry study,”
in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
June 2015, pp. 1-6.

[2] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and
logic debugging using Boolean satisfiability,” IEEE Transactions on
CAD, vol. 24, no. 10, pp. 1606-1621, 2005.

[3] O. Sarbishei, M. Tabandeh, B. Alizadeh, and M. Fujita, “A formal
approach for debugging arithmetic circuits,” in IEEE Transactions on
CAD, vol. 28, no. 5, May 2009, pp. 742-754.

[4] S. Mirzaeian, F. Zheng, and K. Cheng, “Rtl error diagnosis using a
word-level sat-solver,” in International Test Conference, 2008, pp. 1-8.

[S] K. hui Chang, I. Wagner, V. Bertacco, and I. L. Markov, “Automatic
error diagnosis and correction for rtl designs,” in Proc. International
High Level Design Validation and Test Workshop (HLDVT) 2007, pp.
65-72.

[6] Z. Poulos and A. Veneris, “Clustering-based failure triage for rtl
regression debugging,” in Int’l Test Conference, 2014, pp. 1-10.

[7]1 H. Mangassarian, L. Bao, and A. Veneris, “Debugging RTL using
structural dominance,” IEEE Transactions on CAD, vol. 33, no. 1, pp.
153-166, 2014.

[8] J. Whittemore, J. Kim, and K. Sakallah, “SATIRE: A new incremental
satisfiability engine,” in Design Automation Conf., 2001, pp. 542-545.

[9] B. Keng, S. Safarpour, and A. Veneris, “Bounded model debugging,”
IEEE Transactions on CAD, vol. 29, no. 11, pp. 1790-1803, 2010.

[10] Z. Poulos and A. Veneris, “Exemplar-based failure triage for regression
design debugging,” in Journal of Electronic Testing, 2016, pp. 125-136.

[11] H. Mangassarian, L. Bao, and A. Veneris, “Debugging RTL using
structural dominance,” IEEE Transactions on CAD, vol. 33, no. 1, pp.
153-166, 2014.

[12] S. Vasudevan, D. Sheridan, S. Patel, D. Tcheng, B. Tuohy, and D. John-
son, “Goldmine: Automatic assertion generation using data mining and
static analysis,” in Design, Automation and Test in Europe, 2010, pp.
626-629.

[13] K. Murphy, Machine Learning: a probabilistic perspective. MIT Press,
2012.

[14] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2003, pp. 137-146.

[15] OpenCores.org, “http://www.opencores.org,” 2006.

[16] Z. Poulos, R. Berryhill, J. Adler, and A. Veneris, “On simulation-based
metrics that characterize the behavior of rtl errors,” in Proceedings of
the Summer Computer Simulation Conference, 2016, p. 14.

