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Abstract—In the past decade, formal tools have increased the environment but not explicitly documented. This resirit
functional verification efficiency by exhaustively searching for formal tools reporting a failure when, in fact, the designyma
hard to find bugs. Often the counter-examples returned are not work as intended for the given environment.

due to design bugs but due to missing constraints that are needed o . .

to model the surrounding environment. These types of false TO solve this issue, constramts in the form of formal_ prop-
positives have become a great concern in the industry today. €rties are added by the engineer to restrict the space irhwhic
To address this issue, input constraints are typically added by the formal tool can explore. The purpose of these consgraint
the engineer to restrict the input space a formal tool is allowed s to precisely model the restricted input space allowing th

to explore. These constraints are difficult to generate as they formal tool to find “real” design bugs. However, this present

are usually implicit in the documentation or implementation of | deb . hall to th . ho | ked t
adjacent design blocks. As a consequence, this process reduce@ 'argeé debugging challenge 1o the engineer who Is asked 1o

the efficiency of formal methodologies because missing input Play @ guessing game as to which constraints need to be added.
constraints must be determined before deep design bugs canAdding to this overhead, often these constraints are intiglic
actually be detected. _ _ specified in the documentation or implementation of adjacen
In this work, we present an algorithm to automatically gen-  yagjgn plocks. In many cases, the time-consuming manual
erate missing |nput constraints given a fallmg counter-example. . . .. . .
The process begins by building a filtering function that models POC€SS needed to |den'Flfy these missing 'nPUt constraints
the failing behaviors from the counter-example. Next, using dominates the formal verification process leading to reduce
this function a list of fixed cycle properties are generated and efficiency.
filtEI’Ed to 'return a Set of candiqlate input constraints for use This situation of generating constraints has also appeared
in debugging. Preliminary experimental results show that the ;, oher contexts. During constrained random simulatioe, t
generated properties provide a strong intuition as to what input ) . . .
constraints may be missing. Work in [3]_ automatically generates co_nst_ralnt properties
bias the stimulus generator towards missing coverage .holes
|. INTRODUCTION In compositional verification [4], a key step is generating
Functional verification is one of the most time consumingssumption properties in order to verify the correctness of
steps in the VLSI design flow taking up to 46% of the totatomponents separately. Previous work [5]-[7] aims to auto-
design time [1]. To ease this growing burden, new tools amdatically generate an assumption on the interface between t
technologies have been developed such as assertion-bersedoomponents with the goal of proving the target property. Ad-
ification (ABV). ABV has shown to improve observability andditionally, generating environmental constraints fortaafe
increase overall verification efficiency. Along with tradital model checking [8], [9] and reactive system synthesis [10],
simulation-based techniques, modern ABV flows make wid&1] have also been studied. In these situations, the tqakasi
use of formal technologies. effectively generate constraints to accomplish their eetipe
Formal methods allow a user to exhaustively explore tlgoals. However, none of them addresses the wide-spread pain
state space of a design in an attempt to find corner casfedebugging missing input constraints in a formal hardware
counter-examples that elude traditional simulation-basai- verification flow.
fication. In formal property checking, a design block is fied In this work, we present an algorithm that takes the first
against a precisely defined formal property written in asteps towards automated debugging of missing input con-
assertion language such as SystemVerilog Assertions (S\#tjaints in a formal Register Transfer Level (RTL) verifioat
or Property Specification Language (PSL). As such, whenflaw. This algorithm automatically generates fixed cycleuinp
formal verifier returns a counter-example, the expectatson constraints in the form of SystemVerilog properties from a
that a design bug has been detected. Although ideal, repdeiting formal counter-example. The benefit of these geteera
from the industry indicate that many failures are due to mgss constraints is twofold. First, the constraints are gemerat
constraints from the surrounding environment and not bezatefficiently from the counter-example without the need to re-
of design errors [2]. In the context of this work, we referun the entire formal flow thus providing feedback quickly in
to such a situation as false positive These false positive the verification cycle. Further, the constraints are in tenf
are typically caused by missing constraints that are buoiti i of simple properties that can aid debugging by either being



directly used for the actual missing constraint(s), ortiectly clauses is a potential way to “correct” the design. UNSAT
used to give intuition about the failure. The key insight isores and MCSs have been widely used in various debugging
that the engineer cannot be taken out of the debugging loapplications such as [16].
entirely. Instead, the algorithm aims to efficiently retuaasy ' . DEBUGGING MISSING INPUT CONSTRAINTS
to understand feedback to speed up the debugging of missing i . )
constraints. A.”Extracting Failing Behaviors from a Counter-Example

The algorithm begins by using the time-unrolled counter- In this subsection, we develop a methodology to quickly
example and extracting all minimal correction sets witlpees determine whether a candidate input constraint will préen
to the inputs of the design. This information is used tilure from occurring. A naive way to detect this is to siypl
build a filtering function that encodes the incorrect inpute-run the formal tool with the added candidate constrdinis
combinations that led to the failure in the counter-exampléan be very computationally intensive especially if mudtip
Next, a dictionary of fixed cycle properties is used to getgeradnput constraint candidates need to be tested. Instead,ilve w
a list of candidate input constraints based on relevantassgngenerate an approximate solution to this process by géngrat
from the counter-example. Each property on the list is thén function that intuitively represents the disallowed inpu
used in conjunction with the filtering function to generate Behaviors from the unrolled counter-example. More prégise
small SAT instance to determine if the property is a candibis function will represent all MUSs with respect to the
date for a missing constraint. The result is a set of inpiitput unit clauses of the unrolled counter-example. Ushig t
constraints that each can restrict the bad input behavéar e function, potential input constraints can be efficientlgcked
the counter-example. Preliminary experimental resultdion  to ensure that they do not cause a failure in a similar manner
the efficiency in generating the new properties as well & the given counter-example.
their ability to provide effective guidance as to what input Consider the CNF formul@ of the time-frame expanded
constraints may be missing. circuit and the corresponding counter-example:

The remaining se_ctions of this paper proceed as follows. 6=S8-X-T-P (1)
Section Il and Section Il present background material and o
the proposed approach, respectively. Section IV preseats yhereS represents the initial state¥ the counter-example

perimental results and Section V concludes this work. input vector,T' the unrolled circuit transition relation, and
P the property to be checked. Singemodels the counter-

Il. PRELIMINARIES example of the unrolled circuit, it is guaranteed to be UNSAT
A. Minimal Correction Sets and Unsatisfiable Cores Instead of computing all MUSs faf to generate our desired

Given an unsatisfiable (UNSAT) Boolean formuia in function, a less expensive computation can be performed by

conjunctive normal form (CNF), aNSAT corés a subset of €Xa@mining only the inputs clauses fraf. The intuition here
clauses that are unsatisfiable Minimal Unsatisfiable Subset S that we are only concerned with missing input constraints
(MUS) is an UNSAT core where every proper subset is sati$ itis unnecessary to perform extra computation for finding
fiable (SAT). AMinimal Correction Se(MCS) is a minimal &/l MUSs not relating to inputs. .
subset of clauses op such that removing the subset will More precisely, we wish to extract aIIkmmlrﬁatuBsets of

H H v 3
result in¢ being satisfiable. There exists a duality relationshi'b1put unit clauses fromX gdgnoted by f‘?r thg k™ such
between MUSs and MCSs as it is possible to compute the S§F) such thats - 7" P- U is UNSAT. This will allow us
of one from the other [12]. Using this relationship, one calp build a function, F, that represents the disjunction of all
calculate all MUSs from all MCSs. MUSs with respect to the inputs, shown in the next equation:

Given an UNSAT CNF formula, MCSs can be computed F=U"+.. +U* 2

by introducing a fresh variable to each clause calletea . . . s .

laxation variable If the variable is active, then the cIauseG'Ven a candidate input C‘?”S”a'.”“" 'f.F A is SAT, then
. . . .. A does not prevent the failure given in the counter-example
is effectively removed from the problem. Using this idea

S . . .- “"dince at least one df* is SAT. Inversely, ifEF'- A is UNSAT,
cardinality constraints [13] can be used to find all minimg ) . . .
. X . en A will ensure that future failures will not occur in the
sets of relaxation variables that mak&AT. For each solution,
the set of active relaxation variables correspond to an MCE

This idea has been used extensively in modem Max-SaI failures, but it at least prevents failures similar tmsk
solvers [14], [15] to compute MCSs. . ' P
seen in the counter-example.

Wl_th res_pect to debugging, a MUS |ntU|t_|ver represents one For thei*" literal in U*, denoted by:*, Equation 2 can be
way in which a counter-example can excite an error, traverse C g
its effects through the design components and cause ae‘ailﬁ?(panded to give:
at the observation points. In this view, clauses correspond F =ugus...ufo; + ... + ugul...ufyx,
to the counter-example, components of the design and target
property. Alternatively, an MCS represents a minimal set of
clauses related to components that are potentially ercaneo . Minimal in the sense that removing any clause fréff will make

In other words, removing the components related to the MGS T - P - U* become SAT.

me way as the given counter-example. However in the latter
se,A may not constrain the input space enough to prevent

= (@) + 0 + . + U0 (@5 +TE A+ +T)  (3)



Notice that whenF' evaluates to false, at least one literal in
eachU* term is false. In other words, all* MUSs can be
broken by negating at least one literal from each tern¥'in
Correspondingly can be made SAT if at least one literal
from each term inF" is negated for the respective unit clauses
in ¢. Further, removing a minimal set of the corresponding
unit clauses from the original problem will give an equivdle
effect. Define this minimal set to Bé* C X for the k** such
set.

The set’* can be thought of as thié” MCS with respect to
the input literals. In fact, the relationship between thaimal
subsets of inputs to makg UNSAT (U*), and the minimal
subsets of inputs that need to be removed to na®AT (VF), Fig. 1. Example 1: A Simple Modulo-2 Counter
is analogous to the relationship between MUSs and MCSs.

Using this relationship and the fact that these sets orl§/ Generating Fixed Cycle Properties
contain unit clausesF' can be simplified further. Let the
ith literal in V* C X be denoted bys¥. Equation 3 can
be simplified, by distributing the conjunctions and remgvin
redundant terms/literals, to:

Missing constraints can be arbitrarily complex properties
ranging from constant values to complex bus protocols that
depend on the specifications. In general, there is no auéamat
method to precisely generate these missing constraints tha
F =0000..0yo| + - + U010 (4) model the external environment. Even in cases where it
may be possible, it is usually not practical. This is because
_ L : ; rEgorithmically computed properties will likely be in some
negated I|terals. of eac‘zf - Thus to build the functiorF”, one complex form that is unintelligible to user. This limits the
only peeds to find all” N ) o _benefit of any such technique to the user.

This can be accomplished in a similar manner to Comp“t'nglnstead, we take a different approach where simple fixed
all MCSs. Begin by adding a fresh relaxation variable to eaq:?,de properties are generated to give guidance to the nser.

glz_t;se I'n_X' Us_lnhg cardlnahtyhconstr;eunts: find Eflllblrn'_rll'malthis way, the feedback can be used in conjunction with the
solutions with respect to these relaxation variableslar g pg knowledge to determine the missing input constraint

to the process used by modern Max-SAT solvers [14], [1 hich frequently requires higher level desigh semantit@sEt

. . .
Each such solution will correspond tol&*. After all such ﬁ%mperties may not be able to model all the complexities of

;olu/tllonsh arequunﬂ, anStht a SAT |n§tancebof Lhe kfo(rj e surrounding environment in all cases. However, the fitene
-4, WhereA IS the given input constr_amt to_ € CNECKehst the proposed approach lies in the fact that it points the us
This instance checks whether can restrict the input space

fail imil h o th to what types of constraints may be needed. Note that a more
to prevent a failure similar to the one seen in the Countec,r()mprehensive set of properties can be used to expand upon

example. . . .. the simple models presented in this preliminary study tm gai
Although computing MCSs can be computationally inte sreater benefit

sive in general, the proposed method only calculates thém wi The process begins by selecting which input signals are

respect t_o_the input unit (_:Iauses. This.’ allows the methodsto P\volved in the counter-example failure. Any signal whose
more efficient as shown in the experimental results. bit is used inF' is considered to be a candidate for use in

. . . . a generated property. Here, signals are categorized either
Example 1 Consider the implementation of the simple statg 1o it or multi-bit based upon the definition in the RTL.
machine shown in Figure 1 that implements a modulo-é

_ o For single bit signals and bits composing multi-bit signals
counter that count_s_ up V_Vhe‘“— 1 and resets ih = 1. The denoted bya, the following family of properties are generated:
property to be verified is: Stuck-at propertiesta anda

P: s == 2"b01 & a |=> s == 2’ bl0 « Hold: $past (a) == a, $rose(a) |=> a,

Informally, if the counter is at0O1 and « is high, then $rose(a) |=>'a, 3fell(a) |=> a,

in the next cycle it should be at0. If sent to a formal $fell(a) [=>!a

property checker, the property will fail because the praper This family comprises of simple stuck-at properties andihol
was written under the assumption that the reset signades Pproperties. These types of properties can be useful foctiete
not go high. A two cycle counter-example to this properifig many different types of issues such as setting incorrect
is X =< (a%,b9), (a',b") >, where the superscripts indicatemodes, or writing incorrect data.

the clock-cycle. Solving for alt*, we find:V° = {a°}, V! = Next, these multi-bit properties provide detection for eom
{[TO}, V2 = {a'},V? = {b'}. Which can directly be used tomon bus constraints such as one-hot, or incorrect addresses
build F = a9 + 19 + ol + bl. b1 andb2 represent multi-bit signals, whiteval > represents

an assignment to the respective signal seen when simulating



the counter-example. The following is a family of multi-bitcreating the filtering function as well as filtering, alongtiwi
properties: the original number of generated properties candidates fro

« One-hot propertiestonehot (b) and$onehot O(b). Section IlI-B, followed by the number remaining after filtey
« Equality operatorshl <op> <val > and bl <op> With function F". From the filtered list, the last three columns

b2. Where<op> is one of {<, <=, ==, >=, >}, show the total run-time, number of non-vacuous passing
and where the size df1 andb2 match. instances and vacuous passing instances when re-running al
These are slightly higher-level properties that may give-in 9enerated constraints separately with the formal tool.
ition about certain missing constraints. Overall, the results show that the filtering function can

efficiently filtered, as described in Section IlI-A, by criegta 2an average of66 properties in columis, down to an average
small SAT instance”- A. Each instance is significantly smaller®f 24 in column 7 after filtering. Moreover, this is done

of filtering these potential constraints without having oah for use when debugging missing constraints. Compared to
entire formal check. running each generated constraint in a separate formakchec

(column8), the proposed method shows a 33.4x speedup on
Example 2 Consider the filtering functio’ generated from average. The last two columns show that in certain cases (e.g
Example 1 and the four stuck-at fault properties that wowdd fpdnt andspi ), the simple properties can generate an exact
generatedu, @, b, andb. Of these, only the first one would beconstraint to prevent the failing assertion. Although ie tase
filtered out since it would return SAT when run with while of ddr, none of the generated properties are able to prevent
the others all return UNSAT. Of the remaining, it is easy tie failing assertion.
see how they translate to high-level behavior of the design: This is not a big surprise considering the simplicity of the
prevents the counter from incrementing (a vacuous conitio generated constraints. However, a main point of this work
b continually resets the machine (also vacuous), artdrns IS to aid debugging of missing constraints, not necessarily

off reset (desired result). generate the exact constraint for the user. The simplidity o
the generated constraints in this case is beneficial since it
IV. EXPERIMENTAL RESULTS gives a intuitive method for the user as to which constraint i

This section presents preliminary experimental results fpotentially missing. To further illustrate this point, westribe
the proposed approach. All experiments are run on a singtedetail the results of several cases from Table I.
core of a Intel Core i5 3.1 GHz quad-core workstation with Consider the first failing property fdrpdnt 1 that specifies
8 GB of RAM. Three designs are selected for our evaluatiothat after a read, an acknowledge signal should be asserted
The first two designs are from OpenCores [IW)dnt, spi ), several cycles later based on thiem cas register.
while the last one is a DDR2 controller from the OpenSparc p. g gse(read) [-> (!timcas ##5 $rose(ack))
project @dr ) [18]. For the OpenCores designs, SVA assertions or (tim.cas ##6 $rose(ack))
are written based upon the accompanying design documenta- ) )
tion. For the DDR2 controller, assertions from [19] are usel{'® Proposed approach generatgsconstraints, which deal
which are based on the DDR2 specifications. These assertiB1rily with bus and address line input pins. In particula
are formally verified against the design using a commercih|eS€ generated constraints seemed relevant:
formal property checker [20], and any failures are congider Al: wbc_adr_i[3:2] == 2’ b00
instances of missing constraints. Each failing assertn i A2: !Wbc_we_i
considered separately and is labeled by adding a number t0A3f woc_dat _i [ 6]

; S Ad: lwbc_dat _i [ 6]
the suffix of the circuit name.

Using these instances, our experimental methodology prae first two constraints fordei m _cas not to be over-written
ceeds as follows. First, for each failing assertion, a aauntduring programming of the control registers, while the last
example is generated using a formal property checker. Netwtio! ensure that regardless of what is programntédn cas
the proposed approach from Section Ill uses the countshould be held stable. These constraints give intuitiohttiea
example to generate a filtered list of missing constraintisi m cas register should be held constant when checking this
M ni sat [21] is used to solve all SAT instances, includingproperty.
generating the filtering functior’. Finally, to check if any  For spi 1, the assertion is a simple property to detect that
of the generated properties can be used as actual misdimg internal FIFO raises thenpty flag correctly:
cc.)nstraints', gach property is re-run in a separate fqrmailch P: (re & (rp+2’ hl)==wp) |=> enpty:
with the original failing assertion. The comprehensiveutess
for each instance are shown in Table I. The proposed approach generatéd constraints, where the

The first four columns of Table | show the instance naméllowing were of particular interest:

number of gates, number of state elements, and counter- , ,
T The reason that bothbc_dat _i [ 6] and its complement are suggested

ijam.ple length. The next three columns list the _Ove':a" M'URthat it ensures that the signal is held constant througti®utrace so that
time in seconds of the proposed approach, which includesoes not toggle.



TABLE |
AUTOMATED GENERATION OF MISSING CONSTRAINTSEXPERIMENTAL RESULTS

[ instance info I algorithm I check ]

instance # # c-ex || time | cand | filter time | passing| vacuous

name gates | states| len (s) (s)

hpdmcl 9794 430 13 25 [ 211 29 716 11 2

hpdmc2 9794 430 12 58 | 325 45 984 1 5

hpdmc3 9794 430 2 1 14 5 46 3 1

spil 1724 132 4 1 40 10 80 1 8

spi2 1724 132 21 4 82 40 169 0 10

ddrl 55069 | 2474 9 248 | 310 20 || 3477 0 0

ddr2 55069 | 2474 6 42 180 20 || 1869 0 0
Al: adr_i[1:0] != 2'bl0 [6] A.Gupta, K. L. Mcmillan, and Z. Fu, “Automated assumptiomgeation
A2: lTwe_ i for compositional verification,Formal Methods in System Design: An

These constraints attempt to disable writing to the FIFO. Iifr]
this case, the assertion was written under the assumptéin th
the writes cannot happen if the current operation has not begy

acknowledged yet, as given by this propertyick_o | =>

'we_i. In this case, the missing constraint involves a more

complex protocol that is dependent on an output pitk_o.

El

Despite this, the returned constraints can remind the bser t

this protocol should be followed.

In the case ofldr 1, the assertion involves a more compleilo]
setup described in [19] to reach the target property of: “No
more than 4activatecommands may be issued to the DDR£

SDRAM within a window of t FAW clock cycles.” All the
returned constraints deal with tleg her _que_pos signal,
which controls thene signal, which in turn causes aacti-

vate command. The work in [19] suggests that the issue

(12]

i’

either a design error, or a constraint is missing to model @]
adjacent block that enforces this behavior. In the latteseca

ot her _que_pos constraints point to this conclusion.

V. CONCLUSION

(15]

In this work, an algorithm is proposed that automaticall{16]
generates missing input constraints from a failing counter
example. It begins by building a filtering function that mtsde [17]

the failing behaviors from the counter-example. Next, & li!8] : le: ht ,
] A. Datta and V. Singhal, “Formal Verification of a Publimmain DDR2

of fixed cycle properties are generated and filtered to ret

a set of constraints that restrict the failing behavior ie th2o

counter-example. Preliminary experimental results shiost t

the constraints can be efficiently generated and they peovi 1

effective guidance to improve the formal verification flow.
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