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Abstract—Modern designs are growing in size and complexity,
becoming increasingly harder to verify. Today, they are architected
to include multiple clock domains as a measure to reduce power
consumption. Verifying them proves to be a computationally
intensive and challenging task as it requires their clocks to
be synchronized. To achieve synchronization, existing Boolean
satisfiability-based methodologies add hardware to combine the
clock domains before transforming them into their iterative logic
array representation (ILA). As a consequence, this results in
the addition of redundant time-frames adding overhead during
verification. This paper introduces a novel framework to verify
designs with multiple clocks using Quantified Boolean Formula
satisfiability (QBF). We first present a formulation that models
an ILA representation with symbolic universal quantification to
achieve synchronization. This is later extended with the use of
a clock divider to overcome inefficiencies. The net effect is the
reduction in the number of redundant time-frames. Furthermore,
the usage of QBF results in significant memory savings when
compared to traditional methods. Experiments on bounded model
checking demonstrate memory reductions of 76% on average with
competitive run-time performance.

I. INTRODUCTION

Verification has become a major bottleneck in the digital circuit
design process [1]. To reduce power consumption, modern designs are
architected with multiple clock domains, a practice that has introduced
new challenges during verification [2]. To overcome this challenge,
recent research has proposed a clock domain unification scheme that
generates a single clock domain [3]. This technique allows one to verify
the design without having to worry explicitly about the synchroniza-
tion of different domains. While the unification technique overcomes
the synchronization issue it can introduce redundant time-frames. In
essence, these redundant frames are copies of the transition relation
where no state change occurs. As a result, additional time and memory
are devoted to verify these unnecessary time-frames.

In more detail, Bounded Model Checking [4] (BMC) verifies a
multiple clock domain design by synchronizing the clocks [3]. It
achieves synchronization by converting state elements into functionally
equivalent components clocked by a global clock. Conceptually, the
global clock acts as a data probe where its positive edge indicates a
state transition of some clock domain in the design. Following this,
an iterative logic array (ILA) is generated [5], an action also knows as
“circuit unrolling”. However, in the presence of multiple clocks, a clock
may have to wait for computation from another clock. This wait time
will manifest itself as a redundant time-frame(s), where no state changes
occur. With large circuits, the memory capacity becomes a concern
because ILA memory size scales with the number of time-frames. Over
many cycles the memory requirements may become substantial [5]. This
realization prompts into developing memory-efficient methodologies.

In this paper, we present a novel verification methodology for
multiple clock domain designs that tackles key inherent challenges of
the problem. In an introductory formulation we explicitly model the ILA
representation with symbolic universal quantification. We employ this
to compute the transition relation of each clock only when there is clock
activity. Furthermore, unlike the ILA construction that requires multiple
time-frames, the proposed methodology synchronizes all clocks using

a single copy of the transition relation. Later, we extend the original
formulation with the use of a divider circuitry that saves on time and
memory when compared to the original one. An additional contribution
of the paper is that it presents these two new verification schemes in the
context of Quantified Boolean Formula (QBF) satisfiability. By using
QBF, it avoids the memory intensive ILA representation.

Experiments on BMC demonstrate the efficiency of the proposed
QBF-based multiple clock verification framework. Specifically, when
compared to traditional SAT approaches, the method achieves memory
reduction on average by 76% and in many cases, it is able to complete
verification where SAT fails to do so. With all these benefits aside, the
computation time still remains comparable to SAT. Evidently, advances
in QBF solvers, a fast growing field, will further harness the benefits
of the proposed methodology.

The remainder of this paper is outlined as follows. Section II contains
background material including prior art in multiple clock domain ver-
ification. Section III describes the basic clock domain synchronization
approach while Section IV extends it with the use of a divider to
synchronize the different clocks. Section V presents the experiments
and Section VI concludes this work.

II. BACKGROUND

A. Quantified Boolean Formula Satisfiability and Notation

Given a propositional logic formula Φ with sets of mutually disjoint
quantified Boolean variables V1, V2, . . . , Vn, the QBF problem asks
whether Φ can be satisfied through a proper assignment to the vari-
ables [5]. A satisfying assignment (SAT) to Φ yields Φ = 1, while an
unsatisfying one (UNSAT) yields Φ = 0. We allow a variable quantifier
to take from two values, existential (∃) and universal (∀). As such, a
QBF instance in prenex normal form is written as follows:

Q1V1Q2V2 . . . QnVn | Φ (1)

where Qi ∈ { ∃, ∀ } is a scope, Qi 6= Qi+1, and Φ is a logic
formula in conjunctive normal form (CNF). In this notation, the leftmost
(rightmost) Qi is called the outer (inner) scope, and variables are
assigned values moving from the outer scope to the inner one.

The following notation is used throughout this paper. Assume a
design with n clock domains, where ci, 1 ≤ i ≤ n, corresponds to the

i-th distinct clock domain. For each domain ci, we use s0ci , . . . , s
mci
ci to

represent state element values at cycle 0, . . . ,mci respectively, where
mci is the maximum cycle that clock ci can reach. We assume every
state element is always clocked by the same clock domain. Predicate
B(skci) is the set of bad states which should not be reachable in k
cycles of ci. We assume all clock domains have a fixed frequency, they
all start at the positive edge of cycle 0, and state changes occur at the
positive edge of the clock. Similar to the work in [3], we also generate a
global clock gclk with a frequency that is the lowest common multiple
of all the original n clock domains. For example, if there exist two
clock domains of 2 and 3 MHz each, the global clock is at 6 MHz.
We denote as tig the i-th cycle of this clock, i = 0, 1, 2, . . . ,mg where
mg is the maximum cycle gclk can reach. Intuitively, the positive edge
of tig indicates a state transition in at least one of the original clock

domains. Finally, tjci is the cycle number of the global clock gclk when
clock domain ci is at the positive edge of its cycle j.



B. Prior Work

In [6], the authors present a methodology for modelling the relations
between clock domains, such that designs can be verified under any
formal technique. This is done by translating clock constraints into
state machines representing these relations. In our methodology, we
encode the relationship between clock domains using clock constraints
specified by the engineer. The work of [7] presents a method to abstract
phase relations between clock domains. It assumes that clocks are
generated within the netlist of the design and the first task is to find
the clocks by matching nets with repeating bit patterns. They employ
heuristics to decide on the number of phases they wish the design to
have, and use this information to reduce the number of state variables.
Our methodology assumes that clocks are generated from the same
source and phase differences are negligible.

Of more interest to our work is the methodology in [3] that unifies
clock domains with the use of a single global clock. The authors use
embedded flip-flops clocked by a global clock, which oscillates at a
frequency where the positive edge indicates a state change in some
clock domain. A positive edge detector is used to detect an edge of
the original clock. When this occurs the flip-flops take the new value,
otherwise the previous value is held at the output. By replacing all
the state elements with this circuitry, a single clock domain design is
generated that retains the functionality of the original design.

After unifying the domains, the ILA representation is generated. This
involves duplicating the combinational part of a sequential circuit into
k time-frames, such that the next-state variables of the current time-
frame are connected to the current-state variables of the next time-
frame. Fig. 1(a) displays a sequential logic circuit and Fig. 1(b) displays
its ILA representation, where a, b, c (ai, bi, ci) are input (at time-frame
i), and x, y, z (xi, yi, zi) are output (at time-frame i). Due to the process
of unifying the clock domains and the generation of a global clock,
redundant time-frames (i.e., copies of the transition relation) where no
state changes occur can be generated in the ILA. Redundant time-frames
pose bottlenecks in traditional SAT instances of multiple clock domain
BMC as they require extra time and memory to compute. Two types
of redundant time-frames exist: extra frames, and waiting frames.

Extra frames are instantiated by the global clock due to state changes
in other clock domains. On a positive edge of the global clock, there
is no way to distinguish whether an edge occurs in two or more
clock domains. All that it indicates is that at least one clock domain
is transitioning states. In order to ensure correct functionality of the
design, a new frame must be created for every clock domain. For
clock domains that are not transitioning states, this results in duplicate
computations of their next state assignment. For example, if clock
domain c1 is two times faster than c2, then in the ILA representation
of Fig. 1(b) the transition relation of c2 during t1g is an extra frame
as it corresponds to the second half of c2’s period. The second clock
domain would not be on a positive edge until gclk reached t2g .

On the other hand, waiting frames arise when one clock domain,
is waiting for an acknowledge from another clock domain. Assuming
inputs are held constant, suppose that in Fig. 1(b), domain c1 is waiting
for data from c2, this means that during t0g and t1g , c1 may have had no
state changes, because it is waiting for an acknowledge from c2 that
would appear on t2g . Consequently, any assignment to the transition

relation during t0g is redundant because it is identical to the assignment

during t1g . Waiting frames are not generated by clock unification, but
may appear in the original multiple domain design.

III. QBF-BASED CLOCK SYNCHRONIZATION

In this section we present a novel clock synchronization formulation
that eliminates redundant time-frames. This is possible by tailoring the
solution around a QBF implementation. For the sake of simplicity, we
build the presentation for a two clock domain design. This can be easily
generalized for a variable number of clock domains.

The framework is depicted in Fig. 2. Inside the dashed boxes,
a robust QBF-based ILA encoding is presented [5]. Combina-
tional logic clocked by clock i is represented by the transi-
tion relation Tci(sci , s

′

ci
, inputci , outputci , CDCci,cj ), where sci ∈

{s0ci , s
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Fig. 2. Circuit diagram of two domain clock synchronization

(next) state assignment, CDCci,cj is a set of clock domain crossing
signals between ci and cj , and inputci (outputci ) is the set of primary
input (output). The two multiplexers around Tci are used to connect the
next state assignment of the current cycle to the current state assignment
of the next cycle through the use of the select line cycleci . In this sense,
the value of the select line determines the state of a clock domain at
a particular cycle and allows one to model the sequential behavior of
the design [5].

In order for the design in the dashed boxes to exhibit correct
functionality, signals cyclec1 and cyclec2 should be assigned to cycles
that synchronize the two clock domains. Our synchronization logic is
denoted by the incci hardware module. The purpose of this module
is to transition a clock domain to the next cycle when the clock is on
a positive edge. If ci is not on a positive edge then it remains in its
current cycle. Its architecture is found in Fig. 3. The signal edgejci , for
all 0 ≤ j ≤ mg , in Fig. 3 defines how the clock domain changes cycles,
and is the main factor in achieving synchronization. It is a binary signal
that must be constrained to one on a positive edge of the clock domain,
otherwise it is zero. The purpose of gclk is to order the positive edges
of each clock domain temporally, according to the specification.

Returning to the description of Fig. 2, the two outer multiplexers
essentially encode the current to next cycle assignment for incci . In this

case cycleci ∈ {cycle0ci , . . . , cycle
mg−1
ci } is the current cycle assign-

ment whereas cycle′ci ∈ {cycle1ci , . . . , cycle
mg
ci } represents the next

cycle assignment. These multiplexers are used to model the sequential
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behavior of the incci module. Notice that when cycle′ci = cycleci ,
this indicates a cycle of the global clock where clock domain ci is not
transitioning states. The combination of the outer multiplexers and the
incci module is hereafter called the synchronizer.

Clock synchronization ensures that state changes in each clock
domain are ordered temporally according to the design specification.
In more detail, it ensures that each clock domain is synchronized in
terms of valid cycles with respect to the global clock, where a valid
cycle is defined as follows:

Definition 1 Cycle i for clock domain cl is called valid w.r.t. cycle j
of the global clock gclk iff ticl ≤ tjg < ti+1

cl
, where 0 ≤ i ≤ mcl ,

0 ≤ j ≤ mg , and 1 ≤ l ≤ n where n is the number of clock domains
and mcl (mg) is the maximum cycle cl (gclk) can reach.

Essentially, to achieve synchronization we have to prevent instances
where one clock domain is processing a previous cycle and another is
processing a future cycle w.r.t. the current cycle of the global clock.
We also want to prevent clocks from exercising a different frequency
to the one defined by the specification.

Example 1 Suppose that in Fig. 4, the global clock is on t0g . This

means that t0c1 and t0c2 are valid cycles because their edge occurs with

t0g . Likewise, if the global clock is on t1g then t1c1 and t0c2 are valid, but

t0c1 is not, as c1 has temporally completed that cycle.

In the following, we show that the synchronizer hardware does
indeed synchronize the clock domains of the design.

Theorem 1 The synchronizer generates only valid cycles.

Proof: To prove the theorem we apply induction on the number
of cycles for the global clock. For the basis, let the global clock be
on t0g . Then t0cl ≤ t0g < t1cl , for any 1 ≤ l ≤ n, holds since

t0g = t0cl and the global clock has the smallest period so t0g < t1cl . For
the hypothesis, assume that given some j, cycle i of clock domain l is
valid i.e., ticl ≤ tjg < ti+1

cl
. In the inductive step, when the global

clock increments to j + 1, if cl is not on a positive edge then i is
not incremented by the adder, and therefore we have to show that the
following inequality holds:

t
i
cl

≤ t
j+1
g < t

i+1
cl

(2)

This corresponds to the case where cl has not completed its cycle, thus
ticl ≤ tj+1

g holds since ticl ≤ tjg < tj+1
g . The inequality tj+1

g < ti+1
cl

holds due to the following property of the global clock’s frequency. The
period of any clock can be represented by an integer multiple of the
global clock’s period. In the hypothesis, the smallest difference between
tjg and ti+1

cl
is one period of the global clock. Since a positive edge did

not occur, the difference must have been greater than one period.
On the other hand, if cl is on a positive edge then i is incremented

by the adder. Thus, the following inequality must hold:

t
i+1
cl

≤ t
j+1
g < t

i+2
cl

(3)

This corresponds to the case where cl has completed its cycle, and
increments with the global clock. The inequality ti+1

cl
≤ tj+1

g holds

because ti+1
cl

= tj+1
g , and tj+1

g < ti+2
cl

holds since ti+2
cl

is one period

greater than ti+1
cl

and therefore greater than tj+1
g . Since both inequalities

hold it means that the synchronizer produces valid cycles.
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Fig. 4. Timing diagram of a multiple clock domain system with the lowest
common multiple global clock gclk

Assume there exists a function λ(x) that takes a bit vector as input
and returns its integer representation (e.g. λ(〈1, 0, 0〉) = 4). Let sci =

s
λ(x)
ci represent a multiplexer encoding [5] where the output sci is the
λ(x)-th input of the multiplexer. This can be formally written as:

(

mci
−1∧

j=0

((λ(x) = j) =⇒ (sci = s
j
ci
))) ≡ (sci = s

λ(x)
ci

) (4)

As such, the diagram in Fig. 2 can be represented by a three-scope
QBF-based BMC instance formally described as follows:

∃cycleSc1 , . . . , cycle
S
cn , s

S
c1
, . . . , s

S
cn , edge

S
c1
, . . . , edge

S
cn ∀gclk

∃sC , s
′

C , cycleC , cycle
′

C , edgeC , inputC , outputC , CDCC |
n∧

i=1

(I(s0ci) ∧ Tci(sci , s
′

ci
, inputci , outputci , CDCci)

∧ (sci = s
λ(cycleci )
ci ) ∧ (s′ci = s

λ(cycleci )+1
ci ) ∧ I(cycle0ci)

∧ (cycleci = cycle
λ(gclk)
ci

) ∧ (cycle′ci = cycle
λ(gclk)+1
ci

)

∧ (

mg∧

j=0

I(edgejci)) ∧ (edgeci = edge
λ(gclk)
ci

)

∧ (edgeci =⇒ (λ(cycle′ci) = λ(cycleci) + 1))

∧ (¬edgeci =⇒ (λ(cycle′ci) = λ(cycleci)))

∧B(skcl))

(5)

where CDCci =
n⋃

j=1

CDCci,cj , for all 0 ≤ i ≤ n. In

both existential scopes notation sC (s′C ) is used to denote vari-
ables sc1 . . . scn (s′c1 . . . s

′

cn ), and cycleC (cycle′C ) denotes variables
cyclec1 . . . cyclecn (cycle′c1 . . . cycle

′

cn ). This definition similarly ap-
plies to edgeC , inputC , outputC , and CDCC . Furthermore, gclk is
the global clock, sci is the current state, s′ci is the next state, cycleci
is the current cycle, cycle′ci is the next cycle, I(cycle0ci), I(edge

j
ci
)

and I(s0ci) are the predicates recognizing valid initial constraints, and

edgeci = edge
λ(gclk)
ci represents a multiplexer encoding similar to

Equation 4. Also, sSci = {s0ci , . . . , s
mci
ci }. Furthermore, cycleSci =

{cycle0ci , . . . , cycle
mg
ci }, and a similar argument applies for edgeSci .

Finally, B(skcl) is a bounded state at cycle k for some 1 ≤ l ≤ n,
which is determined to be reachable or not in the BMC process.

When compared to the approach in [3], the proposed QBF-based
formulation has several benefits. First, it is able to remove redundant
time-frames by ensuring that the next state assignment for every cycle
is only computed once. Furthermore, as experiments later in the paper
demonstrate, it is memory-efficient by orders of magnitude when
compared to the one using an ILA approach. Due to the replacement
of the ILA with universal quantification, designs with exceptionally
long traces can be solved using our formulation whereas it may not be
possible to generate an ILA due to the excessive memory required [5].

A. Optimizing Performance

In some instances, a positive edge of the global clock will not imply a
state transition for some clock because its positive edge has yet to occur.
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In this case we have that cycle′ci = cycleci i.e., a state change doesn’t
occur. In this context, Tci does not have to be computed because we are
only interested in computing the transition relation when the positive
edge of the clock occurs.

We can optimize performance in a QBF framework by adding a
literal, disableci , to every clause in Tci which represents a path from
a driver flip-flop to an input flip-flop clocked by the same clock. Then
for every cycle of the global clock, we add an implication that sets the
literal to true (i.e., turns off the transition relation), or sets the literal
to false (i.e., allows the transition relation to be solved) depending
on whether edgejci is encoding a positive edge of ci. This results in the
following equation:

n∧

i=1

mg∧

j=0

((λ(gclk) = j) =⇒ (edgejci = ¬disableci)) (6)

For clock domain crossing (CDC) paths we do not have to add
a literal as we assume that multiple clock domain designs are im-
plemented using asynchronous FIFOs or multi-flop synchronizers [8].
These synchronizers contain minimal or no combinational logic, which
would not substantially impact the solving time. If we were to include
these paths, the variables corresponding to them would have to be
moved to the outer existential quantifier which has been shown to
increase solving time [9].

B. Handling Latches

The formulation presented in the previous section can handle latches
provided that inputs to latches are driven by flip-flops and/or clocks.
This assumption is necessary because when a latch is enabled the data
signal will behave as a clock i.e., the latch will take the value of the
data signal instantly. In the context of BMC, this would result in a

clock signal (the data input to the latch) which can have an unbounded
switching frequency. Between the period of one clock, the latch could
have flipped values any number of times, which can theoretically require
an infinite number of cycles to solve.

By applying the assumption, latched logic can be represented as a
QBF-based ILA encoding that is clocked using a least common multiple
frequency of the latch clock and the clock of the driver flip-flop. This
will ensure that all state changes are encoded. If the data input is treated
as a clock, then we would need a predefined input trace which specifies
a periodic or non-periodic clock signal.

IV. DIVIDER-BASED CLOCK SYNCHRONIZATION

A potential overhead in the formulation presented in Section III is
that when encoding a large number of cycles, the multiplexers may
become large which can potentially present a challenge to a QBF solver.
Here we extend the proposed formulation by replacing the multiplexer-
based clock synchronizer with a divider-based synchronizer. The net
benefit is a smaller and easier to solve CNF formula.

In the previous formulation, two outer multiplexers are used in
the synchronization of the clock domains. Intuitively, this causes an
overhead because as the cycle bound for BMC increases, the number
of paths in a multiplexer doubles with each new gclk bit. Furthermore,
once a path in a multiplexer is chosen, all other paths become redun-
dant. This may add unnecessary work as a QBF solver must assign
the variables on the unused paths. This observation motivates for a
modification using a divider-based synchronizer, as follows.

The basic idea of the divider-based synchronizer is to compute
cycleci by dividing the cycle of the global clock by some integer factor.
In more detail, on every cycle of the global clock, one or more clock
domains are changing states. Since all the clocks are periodic, a clock
domain ci changes states every time the global clock increments by
some number of cycles, where this number is the factor mentioned
above. For example in Fig. 4, every time the global clock increments by
two cycles, c2 increments by one cycle. Thus if we divide the current
cycle of the global clock by this factor (here, the factor is two) the
result is the current cycle of c2. Note that each clock domain may have
a different factor which will be a fixed value during a BMC run.

In the dashed boxes in Fig. 5, the hardware behind a QBF-based
encoding for an ILA is illustrated. The divider portion is presented in
the dotted box. For each clock domain, a divider output is attached to
the select lines of the multiplexers, and the global clock is set as the
numerator. The factor for each clock domain is used as the denominator.
In the next subsection the divider circuitry will be described in detail.

By applying Theorem 1, the presented divider approach generates
valid cycles. It also eliminates redundant time-frames because it only
needs to compute the next state assignment for each clock cycle once.

Formally, the divider-based synchronizer in Fig. 5, can be formulated
as a QBF instance by the following formula:

∃sSc1 , . . . , s
S
cn ,mnC , fC ∀gclk

∃sC , s
′

C , cycleC , inputC , outputC , CDCC |
n∧

i=1

(I(s0ci) ∧ Tci(sci , s
′

ci
, inputci , outputci , CDCci)

∧ (sci = s
λ(cycleci )
ci ) ∧ (s′ci = s

λ(cycleci )+1
ci )

∧ T
div
ci

(gclk, 1,mnci , fci , cycleci) ∧ I(mnci) ∧ I(fci)

∧B(skcl))

(7)

where T div
ci

(gclk, 1,mnci , fci , cycleci) is the combinational circuitry
for the dividers in the dotted boxes, I(mnci) and I(fci) are the
predicates recognizing valid initial constraints. Also, mnC (fC ) is used
to denote variables mnc1 . . .mncn (fc1 . . . fcn ). All other notation
remains as described in Section III.

Fig. 6 shows a plot of memory vs. the number of cycles of the
global clock. From this figure we see that the size of the CNF of the
formulation in Section III increases sharply, while the divider-based
formulation increases at a much slower rate. The reason for this is
for every new bit of gclk the size of the outer multiplexers in the
original formulation doubles. This is in contrast to the divider-based



TABLE I
MULTIPLE CLOCK DOMAIN BMC RESULTS

Design Info uni-clk (SAT) multi-clk (QBF) divider-based (QBF) optimization (QBF)
Design clks Comb. State # k CNF time CNF time imprv CNF time imprv CNF time imprv

Logic Elem. Latch (MB) (s) (MB) (s) (x) (MB) (s) (x) (MB) (s) (x)

rsdecoder1 3 13543 526 5 32 74.0 70.1 20.2 85.3 3.66x 13.4 80.4 5.52x 15.2 76.1 4.86x
rsdecoder2 3 13543 526 5 42 81.1 80.4 22.2 141.4 3.68x 16.4 121 4.94x 20.2 107.4 4.01x
ethernet1 5 70139 10558 12 26 486 250 127 490 3.83x 150 461 3.24x 162 430 3.00x
ethernet2 5 70139 10558 12 25 468 231 123 467 3.80x 157 420 2.98x 169 401 2.77x
ac97 ctrl1 16 17591 2482 137 68 279 368 80.2 1256 3.48x 71.2 1058 3.92x 83.5 1027 3.34x
ac97 ctrl2 16 17591 2482 137 129 539 ∞ 256 2900 2.10x 135 2821 3.99x 142 2412 3.79x
ac97 ctrl3 16 17591 2482 137 9 32.0 8.32 10.2 16.8 3.13x 14.4 16.5 2.22x 27.2 15.1 1.17x
vga1 3 89402 17110 8 9 237 57.0 60.1 158 3.94x 69.0 142 3.43x 71.6 132 3.31x
vga2 3 89402 17110 8 4 92.1 30.0 38.8 48.1 2.37x 46.0 45.6 2.00x 50.1 35.6 1.83x
vga3 3 89402 17110 8 100 3657 ∞ 1010 1320 3.62x 840 1212 4.35x 850 986 4.30x
mem ctrl1 10 48006 1239 94 4 29.0 11.5 8.10 14.6 3.58x 11.3 12.5 2.57x 20.8 11.5 1.39x
mem ctrl2 10 48006 1239 94 150 1226 ∞ 120 1012 10.2x 99.6 959 12.3x 138 845 8.88x
hpdmc1 34 9858 438 4 8 13.2 4.83 2.80 17.3 4.71x 3.40 29.4 3.88x 3.74 26.1 3.53x
inhouse-uart1 2 3912 340 0 10 5.90 1.18 1.50 1.84 3.93x 2.00 1.43 2.95x 2.12 4.18 2.68x
inhouse-uart2 2 3912 340 0 6 2.10 0.84 0.555 2.02 3.78x 0.902 1.91 2.32x 0.91 3.10 2.29x
inhouse-uart3 2 3912 340 0 20 12.3 2.47 2.67 20.2 4.61x 3.10 14.8 3.96x 3.45 16.6 3.56x

AVERAGE 452 92.5 118 496 4.03x 102 462 4.04x 109.9 408 3.45x

formulation, where increasing the divider input width by one does not
double the size of the divider. Furthermore, if the number of cycles of
the global clock is not a power of 2, some paths will be left dangling.
Satisfying these dangling paths requires extra computational effort. For
example, if the number of cycles to be computed is 100, the select
line will be 7 bits long giving a total of 128 cycles, 28 of which are
redundant and will be left dangling. This CNF size increase may cause
a slow down in a solver when tackling a design with large multiplexers.

A. An Efficient Divider Implementation

We now describe an efficient implementation of the divider circuitry
shown in Fig. 5. General purpose dividers can be large when translated
into CNF. As such, the divider is implemented using unsigned integer
division with a constant number similar to the approach presented
in [10]. By using unsigned integer division we can implement the
divider using a multiplier, an incrementer, and a shifter, which have
simpler underlying circuitry. The idea behind this type of division is
the fact that any number n can be divided by 2f , where f is some
integer, by using a shifter. This allows us to express division as such:

⌊
n

d
⌋ = ⌊mn ∗

n

2f
⌋ (8)

where d is the denominator, and mn = 2f

d
is a magic number [10]. The

magic number is a number which when multiplied by n then shifted
right by f bits, produces the result of n

d
. Integer operations are easier

to compute than floating point operations. As a result, when computing
the magic number it is rounded down to an integer. This produces
a dividing error which can be counteracted by incrementing n by 1.
Finally, we must choose a value for f , such that the error in the flooring

operation in ⌊ 2f

d
⌋ is eliminated, and such that our magic number has

the same width N , as the width of the global clock. For this we choose
f = N + ⌊log2d⌋. The magic number and f are precomputed as the
denominator does not change. When the synchronizer is generated the
implemented divider is:

cycleci = ⌊(mnci ∗ (gclk + 1)) >> fci⌋ (9)

where the constant mnci (fci ) is the mn (f ) for ci, and gclk is
universally quantified.

V. EXPERIMENTAL RESULTS

This section presents experimental results for the proposed formula-
tions. Experiments are run on a core i5-3570K workbench clocked at
3.40GHz, with a time limit of 7200 seconds. A limit of 4 GB is set.
The backend QBF solving engine that we employ is RAREQS [9],
and the SAT solving engine that we compare to is the latest version of
MINISAT 2.2.0 [11].

We perform BMC on six designs from OpenCores [12], and one
in-house real-life industrial design. Each design has a varying number
of clocks that ranges from 2 to 34. Both reachable and unreachable
properties are tested. Table I displays the results for these seven
designs. Under Column 1, the alphabetic prefix represents the name
of the design, and the numerical suffix represents the property tested.
Columns 2-5 display the number of clocks, combinational logic gates,
state elements, and latches, respectively. Finally, Column 6 denotes the
number of cycles that are required to reach B(skci).

Four BMC formulations are profiled and compared to each other. The
original clock unification method [3] is encoded in SAT and its results
are shown in the columns titled uni-clk (SAT) (Columns 7 and 8).
The proposed QBF-based clock synchronization and the extended
divider-based formulations are outlined in the remaining columns titled
multi-clk (QBF) and divider-based (QBF), respectively. In
the final columns, the divider-based approach is augmented with the
optimization from Section III-A and evaluated. For each experiment,
the size of the CNF and the solving time are reported. The peak
memory usage of each solver is analyzed later in this section. Finally,
Columns 11, 14, and 17 display the memory savings for the proposed
formulations when compared to the uni-clk (SAT) one.

From these numbers it can be seen that when compared to uni-clk
(SAT), multi-clk (QBF) manages to have a memory savings
average of 74% while keeping a comparable run-time, where uni-clk
(SAT) runs for 32% of the run-time for multi-clk (QBF). The
average slow down is computed individually, excluding the cases where
the SAT-based approach runs out of memory (shown with ∞ in the
table), and then averaging the results. Evidently, these memory savings
are due to the elimination of the ILA and only using a single instance
of the design (i.e., transition relationship) in the QBF-based approach.
At low bounds for k (range of 1. . . 50, depending on the design),
multi-clk (QBF) has the best memory savings, as the CNF of
a 1. . .6 bit multiplexer is small. However, as the bound k increases
to greater than 6 bits the memory savings drop due to the generation
of larger multiplexers. For these values of k, the run-time slows down
due to the time required to assign the variables for unused paths in the
outer multiplexers.

The divider-based formulation improves upon the original Section III
formulation at higher values of k. The more moderate memory savings
at low bounds is due to the multiplexers in the original modeling
being smaller than the dividers for low values of k. Both formulations
perform similarly in run-time at low values of k. We also observe that
multi-clk (QBF) saves about 50% more memory at low bounds
when compared to [3], however at higher bounds the divider-based
formulation saves 20%-90%. It is worth noting that in BMC, the trace
length k is not known until the instance is solved. Thus the divider-
based formulation is better due to its performance at higher bounds.
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Fig. 7. Ratio of CNF size to bound k for design ac97_ctrl (in log scale)

With the optimization presented in Section III-A, the divider-based
formulation becomes the most efficient of all proposed methods. There
is a slight increase in the CNF size due to the added clauses, but
a run-time improvement is observed due to eliminating the need to
recompute the transition relations for cycles that have previously been
evaluated. The performance benefits are less pronounced for circuits
with similar frequencies because there are less redundant time-frames.
Thus, transition relations are computed on a more frequent basis, and
the overhead introduced by the added clauses exceeds the performance
benefits. This can be seen with the inhouse-uart design, which has
a clock that is half the frequency of the other.

In terms of run-time, we observe that the SAT-based approach
remains the fastest. Nevertheless, it is important to note that while
the SAT-based approach takes 38% of the time that the divider-based
formulation executes (if we exclude the mem-out cases), the divider-
based formulation comes with a memory savings average of 76%, an
attractive feat. Further, this QBF advantage is also demonstrated by
entries in Table I which are infinity. We observe that in approximately
20% of the cases SAT runs out of memory when attempting to perform
BMC, whereas the proposed QBF-based formulation does not. As work
in QBF solvers remains a fertile research area, improvements in those
engines will also benefit the proposed formulation too.

Fig. 7 illustrates the memory size of the CNF (in logarithmic
scale) for SAT-based BMC versus the QBF-based one with respect
to the number of clock cycles in the problem instance for circuit
ac97_ctrl. As it can be seen from the plot, the ILA explodes in
size when the number of cycles exceeds 100. On the other hand, the
QBF-based instances do not increase as rapidly because the cycles are
encoded by the universal time quantifier. We observe that the original
formulation fairs comparably with the divider-based formulation, saving
more memory at lower bounds due to the use of a small multiplexer.
However, as the number of cycles increases, the size of the outer
multiplexers also increases and its memory usage deteriorates.

Fig. 8 displays the solving time for the design vga, where the
property was constrained at intervals of ten cycles. Results are again
plotted in logarithmic scale while the graph is fitted to give the
expected result at every cycle. The memory limit is relaxed in order
to solve the instances. Due to the size doubling effect of the outer
multiplexers when new clock cycle bits are added, the multi-clk

formulation requires more computation time to process the multiplexers.
The divider-based formulation does not grow as much because for
every extra bit of the global clock, only a single bit adder and multiplier
need to be added. This results in a smaller CNF when compared to
the multi-clk approach, producing a run-time performance gain that is
comparable to the one by the SAT-based formulation, as the number of
cycles increases.

Finally, Fig. 9 presents the peak memory usage when solving the
problem. The designs are constrained for the first property in Table I.
Designs that are computed for a small number of cycles show little
variation in memory usage, while designs with more cycles show
a greater variation. This variation is primarily due to the increasing
difference in CNF size between the QBF and SAT-based formulations
as the bound k increases.
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VI. CONCLUSION

Modern designs are architected to use multiple clock domains, a fact
that introduces overhead during verification. This paper introduces a
novel QBF-based synchronization scheme for the verification of designs
with multiple clock domains, the first of its kind. The original scheme
is later extended with the use of a divider-based synchronizer to further
improve performance. Extensive experiments confirm the attractiveness
of the approach as they demonstrate significant memory savings, with
comparable run-times, when contrasted to the state-of-the-art.
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