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Abstract
Knowledge graph embeddings are instrumental
for representing and learning from multi-relational
data, with recent embedding models showing high
effectiveness for inferring new facts from existing
databases. However, such precisely structured data
is usually limited in quantity and in scope. There-
fore, to fully optimize the embeddings it is impor-
tant to also consider more widely available sources
of information such as text. This paper describes
an unsupervised approach to incorporate textual in-
formation by augmenting entity embeddings with
embeddings of associated words. The approach
does not modify the optimization objective for the
knowledge graph embedding, which allows it to be
integrated with existing embedding models. Two
distinct forms of textual data are considered, with
different embedding enhancements proposed for
each case. In the first case, each entity has an as-
sociated text document that describes it. In the sec-
ond case, a text document is not available, and in-
stead entities occur as words or phrases in an un-
structured corpus of text fragments. Experiments
show that both methods can offer improvement on
the link prediction task when applied to many dif-
ferent knowledge graph embedding models.

1 Introduction
Multi-relational data plays an increasingly crucial role in
many areas of artificial intelligence, including social network
analysis, information retrieval, and question answering. In
this context, a multi-relational knowledge base is a collection
of facts, which are represented as triplets containing a pair of
entities (subject and object) and a relationship (predicate) that
they share. Several popular projects have demonstrated the
power of representing relational knowledge in a graph struc-
ture, such as YAGO [Suchanek et al., 2007], DBpedia [Auer
et al., 2007], and Freebase [Bollacker et al., 2008]. These
knowledge graphs contain millions of nodes and edges corre-
sponding to entities and relations, and can be used to reason
and infer new facts about the world.
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Many approaches to relational learning have been studied,
with those based on knowledge graph embeddings demon-
strating particular success in both performance and scalabil-
ity. These approaches learn continuous latent feature repre-
sentations (embeddings) of the entities and relations, which
can be used to compute a score for any potential fact. New
facts can then be predicted based on relative scores.

Recent work on embedding techniques has led to signif-
icant improvements in prediction accuracy [Bordes et al.,
2011; Bordes et al., 2013; Lin et al., 2015; Nickel et al., 2011;
Yang et al., 2014; Nickel et al., 2016b; Socher et al., 2013;
Nickel et al., 2016a; Wang et al., 2017]. However, such
methods rely exclusively on known facts from the knowledge
graph to learn an embedding. As a result, their predictive
ability is fundamentally limited by the information stored ex-
plicitly or implicitly in the existing database, which is often
far from complete.

A promising avenue for improvement is to incorporate ad-
ditional information from text documents such as Wikipedia
or news articles. Such documents are widely available and of-
ten contain mentions of entities and relationships which can
be indicative of new facts. Relation extraction aims to make
such facts explicit in order to build a knowledge graph or ex-
tend an existing one [Mintz et al., 2009; Riedel et al., 2010;
Surdeanu et al., 2012; Lao et al., 2012; Riedel et al., 2013;
Weston et al., 2013]. These techniques typically only con-
sider textual relations that are explicitly mentioned in con-
junction with a pair of entities. Yet text documents often con-
tain more information than just mentions of (entity, relation,
entity) triplets. For instance, they may also contain entity
attributes which could indirectly indicate various forms of se-
mantic similarity between entities.

Due to the wide variety of data formats that can appear in
natural language, such information is often best captured by
embedding representations of objects in the text. The infor-
mation can be incorporated into the knowledge graph by en-
hancing its embedding with textual embeddings rather than
by adding discrete triplets. One class of methods accom-
plishes this by optimizing an objective function which com-
bines entity and text objects to learn joint embeddings [Wang
et al., 2014; Toutanova et al., 2015]. Another approach pro-
posed by [Socher et al., 2013] uses a simple average of word
vectors to model the corresponding entity embedding. These
methods show improved performance over pure knowledge



graph embeddings, however, they do not handle all the differ-
ent cases of associated text to entity nor utilize the text fully
in each situation.

In this work we consider two different forms of text data
that may be associated with entities in a knowledge graph
and propose methods which can augment existing knowledge
graph embedding models with each type of data. We first con-
sider the case in which a text description or document is as-
sociated with each entity. For instance, descriptions of many
real-world entities and words can be readily obtained from
Wikipedia or a dictionary. We propose a model for this sce-
nario which uses a relation-specific weighted mean of word
vectors to represent a particular entity.

In the second case, the entities in the knowledge graph do
not have an associated document but rather are mentioned in
a corpus at various points. For this case we propose a dif-
ferent model which first obtains representations of entities by
training word embeddings [Mikolov et al., 2013] on the cor-
pus. The resulting word vectors provide semantic descrip-
tions of the entities based on co-occurrences of entity names
with other words in the text. These vectors are then combined
with entity embeddings to enhance the representation.

Both methods retain the same optimization objective as tra-
ditional knowledge graph embedding techniques. This allows
the methods to leverage the ability of these techniques to in-
fer new facts from existing ones, while simultaneously sup-
plementing them with the rich entity information contained
in the text. It also allows our enhancements to be seamlessly
integrated with any graph embedding model. As such, we
empirically show performance improvement on knowledge
completion tasks with six different models. This improve-
ment is obtained in a fully unsupervised manner by simply
applying textual data to the embedding procedure. Because
our approach does not require any structure or labels within
the text, such data can be collected and applied at a large scale
with minimal effort.

2 Background and Related Work
Knowledge graphs express knowledge as a collection of facts,
where each fact is a triplet consisting of a subject, a predi-
cate, and an object. Subjects and objects are represented as
nodes, collectively referred to as entities, and predicates are
represented as labeled directed edges, referred to as relations.
Thus a fact (es, rp, eo) is represented by an edge of type rp
from node es to eo.

The task of predicting new facts is usually best accom-
plished when formulated as a ranking problem. Formally,
a scoring function f : E ×R× E → R is defined, where E
denotes the set of entities and R denotes the set of rela-
tions. Given a subject es and relation rp, the score of cor-
rect objects eo should be greater than that of the incorrect
ones: f(es, rp, eo) > f(es, rp, e

′
o) for all e′o 6= eo. f is typ-

ically defined in terms of continuous latent feature represen-
tations (embeddings) of the entities and relations, which can
be learned via gradient descent on a ranking loss:

L =

n∑
i=1

max
(
0, γ − f(esi , rpi

, eoi) + f(es′i , rpi
, eo′i)

)
(1)

Model Scoring function f(es, rp, eo)
SE −

∥∥∥esR
(1)
p − eoR

(2)
p

∥∥∥
1

TRANSE −‖es + rp − eo‖1
TRANSR −‖esRp + rp − eoRp‖1
RESCAL esRpeo

DISTMULT (es � rp)eo
T

HOLE rTp (es ? eo)

Table 1: Summary of popular triplet scoring functions. � denotes
element-wise multiplication, and ? denotes circular convolution.

where i denotes the index of a triplet in the training set,
(es′i , rpi , eo′i) is a negative (untrue) sample corresponding to
(esi , rpi , eoi), and γ denotes the margin hyperparameter.

Many different knowledge graph embedding models have
been proposed, differing primarily in the definition of the
scoring function. In this work we consider six of the most
significant and fundamental ones, namely SE [Bordes et al.,
2011], TRANSE [Bordes et al., 2013], TRANSR [Lin et al.,
2015], RESCAL [Nickel et al., 2011], DISTMULT [Yang et
al., 2014], and HOLE [Nickel et al., 2016b]. The scor-
ing functions used by these models are summarized in Ta-
ble 1. These models were selected for their simplicity,
cost–effectiveness, and proven performance through exten-
sive evaluation in previously published work. This makes
them ideal for evaluating the effect of our enhancement
methodology.

Throughout this paper we use the following notational con-
ventions. Objects such as entities, relations, and words are
denoted by lowercase letters (such as ei, rj , wk), while their
corresponding vector representations (i.e. embeddings) are
denoted by the same letters in boldface font (e.g. ei, rj ,wk).
Tensors of rank two or more are denoted by uppercase letters
(e.g. E). A single subscript i denotes the ith slice of the tensor
(e.g. Ei), while a double subscript ij denotes the jth element
of the ith slice (e.g. Eij).

2.1 Combining Knowledge Graphs and Text
A large body of work exists that combines information from
both knowledge graphs and textual sources. Relation extrac-
tion aims to extend an existing knowledge graph by identi-
fying new triplets mentioned in an associated text document.
Most approaches to relation extraction require distant super-
vision for training purposes, where each existing fact in the
database is tagged with its mentions in the text [Surdeanu et
al., 2012; Lao et al., 2012; Riedel et al., 2013; Weston et al.,
2013]. Heuristic techniques are typically used to automati-
cally align the existing knowledge graph and the text in this
way. However, this can lead to highly noisy results because
the co-occurrence of two entities in a sentence does not nec-
essarily imply that the sentence is stating a relation between
them. Therefore, methods have also been proposed that re-
duce the amount of labeled data required [Mintz et al., 2009;
Riedel et al., 2010].

The use of text embeddings in relation extraction has also
been explored. [Gardner et al., 2013] learns continuous la-
tent feature representations of verbs parsed from text in order
to reduce the number of relation types, while [Gardner et al.,



2014] uses them to define semantic similarity between parsed
verbs for guiding random walks. This work is largely comple-
mentary to ours; while it performs knowledge completion by
adding new explicit facts to a knowledge graph, our approach
aims to improve the graph’s predictive ability by enhancing
its embedding.

Along this line, [Toutanova et al., 2015] incorporates tex-
tual information by adding new triplets and new relation types
extracted from text during training. In this way, embeddings
of textual relations are learned along with embeddings of the
original knowledge graph. [Wang et al., 2014] jointly learns
embeddings of words and entities by simultaneously maxi-
mizing the likelihoods of triplets occurring in the graph and
word–word and word–entity pairs co-occurring in the text.
[Socher et al., 2013] proposes a different approach to joint
embeddings based on the observation that entity names are
often composed of multiple words, and entities whose names
have common words are more likely to be related and should
therefore have more similar representations. This is achieved
by defining each entity vector to be the mean vector of all
words in the entity’s name. However, this method will assign
equal significance to all words regardless of the particular en-
tity or relation.

3 Embedding Enhancement Methodology
In this section we discuss new approaches to incorporate tex-
tual data into knowledge graph embeddings. This additional
information allows the training procedure to learn entity rep-
resentations that simultaneously reflect facts from the knowl-
edge base and associated text. We consider two distinct sce-
narios depending on the form of the available textual data.
In the first scenario, each entity has a document associated
with it which describes or defines the entity; for example, the
Wikipedia entry for Europe. Such data may be obtained from
numerous sources including an encyclopedia or a dictionary.
In the second scenario, we consider an unstructured corpus
that is not directly linked to any entity, but contains mentions
of entities at arbitrary locations. For example, a news article
which mentions Europe may be a part of this corpus. No as-
sumptions are made about the organizational structure of this
text, so it can generally be a collection of sentences gathered
from multiple documents.

The key distinction between these two forms of data is that
in the former, entities are the underlying topics of all words in
a document, whereas in the latter, entities are merely objects
mentioned in documents containing a mixture of unknown
topics. As a result, the first case contains the additional in-
formation that each word pertains to a known entity in some
way. For the second case, we only assume associations exist
between words that occur in the same context. This distinc-
tion is illustrated in Figure 1.

3.1 Embedding Model for Entity Descriptions
In this section we present a model for the first scenario in Fig-
ure 1, where textual data is available as entity descriptions.
Our approach builds upon the WordVectors model of [Socher
et al., 2013], which defines entity vectors as the mean of word
vectors in the entity names. First, we observe that the idea can

also be applied to entity descriptions so as to force entity em-
beddings to share common textual features such as attribute
or relationship words. This results in more similar vectors
for more semantically similar entities. We then improve upon
this model by adding new parameters to control how strongly
each word contributes to the composition of an entity for a
given relation.

We begin with a formalization of the WordVectors model
which we have adapted to the case of entity descriptions. Let
text(ei) = wi,1, wi,2, . . . be the sequence of words associ-
ated with entity ei. Let W denote an nw × d matrix of word
vectors, where nw is the number of words in the vocabulary
and d is the embedding dimensionality. Let Ai denote an nw-
dimensional vector such thatAik is number of times word wk

appears in text(ei). Then the embedding vector for ei can be
expressed as

ei =
AiW

‖Ai‖1
(2)

A limitation of Eq. 2 is that all words in a description are
treated equally; usually it is the case that certain words are
much more relevant for predicting a relation than others. For
instance, the words instrument, drum and career are likely
much more indicative of the musical-group-membership re-
lation than other words such as actress or saturday. There-
fore, an entity should be represented by the words instru-
ment, drum and career when predicting the musical-group-
membership relation.

On the other hand, when predicting a different relation such
as education, words such as canadian, curriculum or ivy are
likely to be much more relevant, and so the entity should be
represented more strongly by these words. In this way, the
vectors of entities containing the word ivy will be much more
similar for the education relation than for musical-group-
membership. Such a model could therefore predict that two
entities share the former relation but not the latter.

This behaviour can be achieved by introducing an nr×nw
matrix B such that Bjk represents the significance of word
wk in predicting relation rj . We can then define the represen-
tation of entity ei under relation rj as

e
(rj)
i =

(Ai �Bj)W

‖Ai �Bj‖1
(3)

where � denotes element-wise multiplication. In this way
the overall weight of word wk to the entity vector is a com-
bination of the frequency of wk in text(ei) (i.e. Aik) and the
relevance of wk for ri (i.e. Bjk).

However, the significance of each word for predicting each
relation is generally not known. We therefore initialize B
with Bij = 1 for all i, j and learn these parameters via gra-
dient descent. As demonstrated in section 4, this procedure is
able to automatically learn associations of words to different
relations without any supervision.

We can incorporate the textual information into any knowl-
edge graph embedding model by using Eq. 3 in place of ei
in Table 1. For instance, the augmented TRANSE model is
f(es, rp, eo) = −

∥∥∥e(rp)s − rp + e
(rp)
o

∥∥∥
1
. We refer to this

method as weighted word vectors (WWV).



Entity Descriptions Unstructured Corpus
Sample Text
The Alps: a large mountain system in south-central Europe
Europe: the second smallest continent (actually a vast
peninsula of Eurasia)

Associations
alps

large mountain system south central europe

europe

second smallest continent actually vast peninsula eurasia

Sample Text
The height of the Alps is sufficient to divide the weather
patterns in Europe... The severe weather in the Alps has
been studied...
Associations

height alps sufficient divide weather patterns europe

severestudied

alps europe

Figure 1: Example of text structures and associations between words and entities after preprocessing. For entity descriptions we create an
association between the entity and each word in its description. Entities are shown in boxes while words are shown in circles. For the
unstructured corpus associations are assumed by the word2vec algorithm (with a context window of width 2 for this example).

3.2 A Parameter–Efficient Weighting Scheme
A potential shortcoming of the WWV model as described in
the previous section is that the number of parameters in the
matrix B is nr × nw, which may be prohibitively large for
some datasets. This can be improved by allowing Bij to be
derived from a smaller number of parameters instead of defin-
ing each as an independent parameter. Towards this end, we
introduce an nr × d matrix P and define the weight for rela-
tion ri and word wj as follows:

Bij =
exp

(
PiW

T
j

)∑nw

k=1 exp
(
PiWT

k

) (4)

The intuition behind Eq. 4 is that Pi is a representation
of relation ri in word feature space — the same feature
space as the word vector Wj . Because Pi and Wj use
the same features, PiW

T
j is a measure of the similarity be-

tween ri and wj , which serves as the weight between them.
For example, we might expect the vector Pi for relation
ri = musical-group-membership to be similar to the vector
Wj for wj = instrument because the concepts of musical
groups and instruments are semantically related.

While it is conceptually appealing to define the weight Bij

using a softmax function, in practice the normalization fac-
tor is not needed because all weights are normalized again in
Eq. 3. Therefore, we can express the representation for entity
ei under relation rj as:

e
(rj)
i =

∑
wk∈ text(ei)

Aij exp(PjW
T
k )Wk∑

wk∈ text(ei)
Aij exp(PjWT

k )
(5)

where we have expressed the vector–matrix multiplication of
Eq. 3 in expanded form to more clearly show the weighted
averaging of words. The number of trainable parameters is
thus reduced from nr × nw to nr × d. We refer to the model

in Eq. 5 as parameter–efficient weighted word vectors (PE-
WWV). Despite having many fewer parameters, Section 4
demonstrates that PE-WWV performs comparably to WWV
in prediction accuracy.

3.3 Training Procedure
A challenge arises in training the WWV and PE-WWV mod-
els due to the fact that both the word embedding parameters
W and the weights B must be learned simultaneously with
no supervision. That is, the optimizer must discover the most
important words for each relation without being given any un-
derstanding or characterization of the relations or words. Due
to initial randomness, the optimizer may over-emphasize ir-
relevant words in the early stages of training and then never
find a good solution.

We find that this issue can be greatly alleviated by holding
the word weights (B and P) constant for the first 50 train-
ing epochs. This allows the optimizer to first learn seman-
tically meaningful word representations without disruption
from varying word weights. Then, for the remainder of the
training period, we optimize all parameters and are able to
discover the most relevant words.

3.4 Embedding Model for Unstructured Corpus
In this section we consider the second scenario in Figure 1.
To capture information from unstructured data we train the
word2vec model [Mikolov et al., 2013] on the given corpus
to learn embedding vectors of words. Word2vec is trained to
assign similar vectors to words that commonly appear in the
same context, which makes it well suited for learning entity
vectors. For example, the sentence fragment Brian Jones and
fellow guitarist Keith Richards developed a unique... clearly
states a relation between Brian Jones and Keith Richards. Be-
cause the entities Brian Jones and Keith Richards appear as
words within the same context, the word2vec vectors of these
entities will be more similar.



The word2vec vectors can also capture features which ap-
pear as attributes rather than objects of the sentence. In the
example above, the sentence also indicates an association be-
tween Brian Jones and guitar. This can be a strong hint for
predicting other types of relations for Brian Jones, such as in-
struments played or musical group membership. When given
this training sentence, word2vec learns to encode this infor-
mation implicitly in the vector for Brian Jones. This makes it
possible to incorporate the information into the entity embed-
dings by augmenting them with the word2vec feature vectors.

With this intuition the overall model works as follows. Let
wi denote the word2vec vector for the name of entity ei, and
let ei denote the entity vector. We define an augmented vector
for entity ei as:

êi = ei +wiM (6)
Thus, each latent feature in êi contains a contribution from
the original entity vector and from the word2vec vector. As
with Eqs. 3 and 5, Eq. 6 can be applied to any knowledge
graph embedding model by replacing ei with êi in Table 1.

Because word2vec learns a different set of latent features
than the knowledge graph embedding, we use the matrix M
to map vectors from word2vec feature space to entity feature
space. Note that unlike the relation–specific transformations
that operate on entities in the SE, TRANSR, and RESCAL
models (i.e. R, R(1), and R(2)), M is a global matrix that
is common to all relation types. Thus, the vector wM con-
tains features that are useful for predicting triplets but learned
from text. We refer to Eq. 6 as the FeatureSum model.

The FeatureSum model is trained in three phases. First,
word2vec is trained on the corpus to obtain the wi vectors.
The next two phases optimize for the ranking loss objective
(Eq. 1). Initially, M is set to zero and held constant while
the entity and relation parameters E and R are optimized
for 100 epochs. Finally, all parameters including M and wi

are trained together for the remainder of the training period.
However, in some cases it was found that training the wi

vectors during the third phases offers no benefit over hold-
ing them constant after initialization with word2vec. This is
discussed in further detail in Section 4.

4 Experimental Results
In this section we evaluate the proposed embedding enhance-
ment methods on standard subsets of Freebase [Bollacker et
al., 2008] and Wordnet [Miller, 1995]. We apply the meth-
ods to each of the scoring functions in Table 1, demonstrating
their ability to augment existing embedding models. We first
quantitatively compare the WWV and PE-WWV models on
the link prediction task against alternative methods for incor-
porating entity descriptions, and then we qualitatively exam-
ine the WWV model to better understand its performance.
We next compare the FeatureSum model against alternative
methods using an unstructured text corpus. For reproducibil-
ity all code and data has been made publicly available1.

4.1 Data Sets
The Wordnet knowledge graph [Miller, 1995] is a database
of English words and lexical relationships between them.

1github.com/rubikloud/kg-text-embeddings

Its purpose is to serve as a thesaurus, with different types
of relations to indicate synonymy, similarity, and hyper-
nymy/hyponymy between words. We use a subset of Wordnet
introduced by [Bordes et al., 2013] named WN18, consisting
of 18 relations, 40,943 entities, and 156,442 facts.

Freebase is a large general-purpose knowledge graph con-
taining a wide variety of facts about the world, including peo-
ple, places, and culture. In our experiments we use FB15k,
a subset of Freebase by [Bordes et al., 2013] consisting of
1,345 relations, 14,951 entities, and 592,213 facts.

We perform multiple experiments utilizing different
sources of textual data. As an unstructured text corpus we use
the Google News data set and word2vec vectors pretrained on
it2. For entity descriptions in Wordnet we use definitions pro-
vided with the data set. For Freebase entity descriptions we
use the summary section of the Wikipedia article associated
with each entity. We remove stopwords in all cases.

Unfortunately, some of the names and Wikipedia articles
for Freebase entities were not available. In order to accu-
rately measure the effectiveness of our approach we remove
all entities without descriptions as well as all triplets involv-
ing them. The resulting number of entities, relations, and
triplets is given in Table 4. This table also gives the number of
words in the vocabularies and the breakdown of triplets into
training, validation, and test sets.

4.2 Implementation Details
All experiments are performed by optimizing Eq. 1 using the
AdaGrad algorithm [Duchi et al., 2011] , with separate ex-
periments for each of the scoring functions given in Table 1.
We evaluate how prediction performance differs only by re-
defining the entity vectors es and eo. For the WV, WWV,
PE-WWV, and FeatureSum models each instance of the en-
tity vector ei is replaced with the augmented vector defined in
Eqs. 2, 3, 5, and 6, respectively. The word2vec vectors wi in
Eq. 6 are obtained from the words in the name of each entity
ei. When entity names contain multiple words we take the
mean of all word vectors in the name. Any words for which
no word2vec vector is known (due to absence in the word2vec
training corpus) are ignored.

We observe empirically that after initializing wi in Eq. 6
using word2vec, allowing these vectors to be optimized can
improve performance in some cases, while in other cases they
are better held constant. After measuring the performance of
each option on a set of validation triplets, we chose to hold
all wi constant for SE and TRANSR, while for other scoring
functions they are optimized.

We measure the link prediction performance of each
embedding model using the metrics of mean rank and
hits@10. For each test triplet (es, rp, eo), we compute the
score f(es, rp, eo) as well as the score of corrupted triplets
f(es, rp, e

′
o) for all e′o ∈ E . We then measure the rank

of the correct triplet among corrupted ones. Similarly, we
measure the rank of f(es, rp, eo) among corrupted triplets
f(e′s, rp, eo) for all e′s ∈ E , which serves as another data
point. Mean rank (MR) is defined as the mean of all such

2code.google.com/archive/p/word2vec



Model
SE TRANSE TRANSR RESCAL DISTMULT HOLE

MR H@10 MR H@10 MR H@10 MR H@10 MR H@10 MR H@10
Wordnet (WN18)

Base 1292.00 0.373 885.23 0.554 720.91 0.452 829.31 0.605 715.90 0.690 742.15 0.678
WV-desc 245.60 0.300 149.99 0.461 212.77 0.334 161.78 0.270 173.52 0.206 212.03 0.179

WWV 246.41 0.300 134.77 0.463 209.79 0.324 159.30 0.320 159.78 0.238 186.92 0.235
PE-WWV 221.49 0.302 130.79 0.483 178.60 0.327 146.45 0.337 102.94 0.387 118.08 0.360

Freebase (FB15k)
Base 844.42 0.149 188.74 0.389 320.07 0.247 219.84 0.286 251.93 0.390 193.45 0.295

WV-desc 169.94 0.285 142.67 0.374 150.74 0.332 174.05 0.277 243.43 0.191 224.21 0.211
WWV 178.34 0.277 137.46 0.393 159.05 0.328 172.67 0.295 239.39 0.228 198.88 0.268

PE-WWV 174.25 0.276 134.72 0.409 153.98 0.335 167.67 0.305 155.30 0.316 154.31 0.444

Table 2: Mean rank (MR) and hits at 10 (H@10) for link prediction using entity descriptions on WN18 and FB15k

Relation Top words
/people/person/place of birth canadian, hungarian, italian, scottish, israeli, swedish, arizona, lovely, english, minneapolis
/organization/organization member/member of./-

country, economic, un, college, countries, city, nations, american, development, eu
organization/organization membership/organization
/music/performance role/regular performances./-

instrument, used, strings, tuned, pitch, organ, viola, bell, career, drum
music/group membership/role
/award/award category/winners./award/award honor/-

grammy, oscars, tony, born, staples, press, screen, primetime, british, given
ceremony
/tv/tv program/regular cast./tv/regular tv appearance/-

glee, anatomy, wire, elsewhere, charmed, saturday, hbo, downton, brother, deadwood
actor
/education/educational institution/students graduates./-

canadian, applications, german, tufts, scottish, ontario, curriculum, ivy, symphony, australian
education/education/student

Table 3: Top weighted words for Freebase relations learned by WWV with TransE

Data Set
# Ent. # Rel. # Train # Valid # Test Vocab.
(ne) (nr) triplets triplets triplets size

WN18 40943 18 146442 5000 5000 32666
FB15k 12479 817 287065 29849 35121 36015

Table 4: Dataset characteristics

ranks, while hits@10 is defined as the fraction of ranks that
are less than or equal to 10.

Training in all experiments is performed using 200 epochs
and a batch size of 1024. The learning rate was selected based
on validation performance, resulting in a learning rate of 0.01
for the baseline and FeatureSum experiments and 0.1 for WV,
WWV, and PE-WWV. We use an embedding dimensionality
of d = 100 and a margin of γ = 1.0 for the ranking loss.

4.3 WWV and PE-WWV Results
In this section we evaluate both variants of the weighted word
vectors model — WWV and PE-WWV. We compare against
the alternative method for incorporating textual data format-
ted as entity descriptions, namely, the WordVectors model
but applied to entity descriptions rather than names. We re-
fer to this model as WV-desc. We also consider the baseline
method, named Base, in which entity vectors are simply ini-
tialized randomly and optimized with no supplementary text.

The mean rank and hits@10 metrics are given in Table 2 for
both datasets. We expect that WWV should perform strictly
better than WV-desc considering that WWV is a generaliza-
tion of WV and can be reduced to the latter by simply setting
Bjk = 1 in Eq. 2 for every j, k. Indeed, WWV outperforms

WV-desc in both mean rank and hits@10 in most cases.
Somewhat surprisingly, the PE-WWV model performs at

least as well as WWV and in many cases even better. One
might expect that PE-WWV should perform worse because
its representational capacity is no greater than that of WWV.
WWV can be made equivalent to PE-WWV by settingBjk =
exp(PjW

T
k ), meaning it is theoretically able to perform at

least as well. Upon closer investigation we find that PE-
WWV tends to learn relatively stronger weights for the top
words than WWV, which in turn allows it to create greater
variability between entity representations for different rela-
tions. Thus it appears that WWV is limited by the optimiza-
tion algorithm rather than its theoretical properties.

When compared to the baseline, the mean rank improves
in most cases, while the hits@10 shows differing results be-
tween Wordnet and Freebase. For Wordnet, the baseline per-
forms best on hits@10 compared to any text augmentation
method, which suggests that the text in this data set may not
be very indicative of the associated entities. For Freebase,
however, the descriptions provide significant benefit, improv-
ing both mean rank and hits@10 in most cases.

To better understand this behaviour, we examined the
Wordnet test triplets that were ranked significantly better by
the baseline than WWV-desc. We observe that in many
of these cases, related entities are described by completely
dissimilar text. For example, one such triplet is (kilobyte,
has part, word), for which the Wordnet definitions of the
subject and object are “unit information equal bytes” and
“word string bits stored computer memory large computers
use words bits long” (stopwords omitted). Because these def-



Model
SE TRANSE TRANSR RESCAL DISTMULT HOLE

MR H@10 MR H@10 MR H@10 MR H@10 MR H@10 MR H@10
Wordnet (WN18)

Base 1292.00 0.373 885.23 0.554 720.91 0.452 829.31 0.605 715.90 0.690 742.15 0.678
WV-names 990.55 0.267 593.96 0.391 772.71 0.284 501.92 0.420 396.71 0.444 407.30 0.456

WV-names-init 642.59 0.251 453.86 0.375 587.03 0.291 439.99 0.323 191.81 0.459 248.92 0.545
FeatureSum 488.74 0.637 285.34 0.613 322.46 0.519 376.63 0.488 393.96 0.745 487.34 0.658

Freebase (FB15k)
Base 844.42 0.149 188.74 0.389 320.07 0.247 219.84 0.286 251.93 0.390 193.45 0.295

WV-names 348.54 0.208 175.91 0.366 261.21 0.272 216.47 0.293 185.59 0.327 214.66 0.249
WV-names-init 345.30 0.195 201.06 0.346 327.42 0.225 315.97 0.263 158.21 0.443 191.38 0.415

FeatureSum 211.06 0.326 120.65 0.501 183.78 0.298 187.67 0.270 144.67 0.366 172.06 0.307

Table 5: Mean rank (MR) and hits at 10 (H@10) for link prediction using unstructured text documents on WN18 and FB15k

initions contain no common words, it may appear to the WV-
desc model that they are unrelated. In contrast, the Wikipedia
summaries of kilobyte and word contain common keywords
such as unit, digital, and memory, which may explain why
WV-desc performs much better on Freebase.

To further test this hypothesis, we compute the average
number of common words between the subject and object de-
scriptions in each triplet. In Wordnet, triplets that are ranked
significantly better by Base than by WV-desc contain an aver-
age of 0.67 common words, whereas triplets that are ranked
significantly better by WV-desc contain an average of 0.89
common words. In comparison, triplets in Freebase contain
an average of 20.0 common words. Thus, it appears that the
word vectors methods require more detailed entity descrip-
tions than are available in Wordnet.

Qualitative Results
To better understand how the WWV model works we exam-
ine which words are assigned the greatest weight for each
relation after training. Table 3 lists the top 10 words — ex-
tracted from the strongest weights in Bi — for several rela-
tions ri in Freebase, trained using TransE.

We observe that many of the top words are semantically
similar to the relation. For example, the place of birth rela-
tion tends to emphasize words that are nationalities, whereas
the relation for membership in a musical group emphasizes
words regarding musical instruments such as instrument,
strings, and drum. This demonstrates that the model func-
tions as our intuition suggests and represents entities by the
words that best indicate the relation in question. Note that
the associations between words and relations in this table are
learned in a fully unsupervised manner given only the text
and training triplets.

4.4 FeatureSum Results
In this section we compare the FeatureSum model against
other methods for incorporating information from an unstruc-
tured text corpus. Each method differs in the way the entity
vectors are defined. The WV-names model applies the Word-
Vectors technique of [Socher et al., 2013] (Eq. 2) where each
entity is associated with its name’s constituent words. This
model also does not use any supplementary textual data, but
can improve over the baseline. The WV-names-init model is
similar to WV-names but with each wi initialized with the
word2vec vector for word wi. This model does incorporate

the textual data via the training of the word2vec vectors and
is therefore a key reference point for the FeatureSum model.

The results are given in Table 5 for both data sets. Note that
these results are not directly comparable to Table 2 because
the two sets of experiments use different textual data. Com-
parisons should be made across rows within the same table.
In doing so, the mean ranks on Wordnet generally indicate
that applying WV to the entity names alone already gives a
significant improvement, while initialization with word2vec
vectors improves the results further, as suggested by [Socher
et al., 2013]. For hits@10 the results are mixed, with the WV-
names methods showing benefit in some cases but losses in
others. More interestingly, in most cases all of these models
are outperformed by the proposed FeatureSum method.

5 Conclusion
This paper discusses two novel methods methods to augment
entity embeddings in a knowledge graph with information
from textual data. The first method represents entity vec-
tors as a direct function of the words associated with each
entity, and is applicable whenever textual data is available in
the form of entity descriptions. The second method trains
the word2vec algorithm on the text documents and adds the
features it learns for entity names to the original entity fea-
ture vector. Empirical results show that if the textual data is
of sufficiently high quality, then both methods can improve
link prediction accuracy on many different embedding mod-
els when compared against embeddings with no text and al-
ternative methods for incorporating text.
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