
Incremental Diagnosis of Multiple Open-Interconnects

J. Brandon Liu, Andreas Veneris
University of Toronto, Department of ECE

Toronto, ON M5S 3G4, Canada
{liuji, veneris}@eecg.utoronto.ca

Hiroshi Takahashi
Ehime University, Department of CS

Matsuyama, Ehime 790-8577, JAPAN
takahashi@cs.ehime-u.ac.jp

Abstract

With increasing chip interconnect distances, open-
interconnect is becoming an important defect. The
main challenge with open-interconnects stems from its
non-deterministic real-life behavior. In this work, we
present an efficient diagnostic technique for multiple open-
interconnects. The algorithm proceeds in two phases. Dur-
ing the first phase, potential solution sets are identified fol-
lowing a model-free incremental diagnosis methodology.
Heuristics are devised to speed up this step and screen the
solution space efficiently. In the second phase, a general-
ized fault simulation scheme enumerates all possible faulty
behaviors for each solution from the first phase. We conduct
experiments on combinational and full-scan sequential cir-
cuits with one, two and three open faults. The results are
very encouraging.

1. Introduction

Open-interconnect is becoming an important fault in to-
day’s advanced manufacturing process [17]. Current CMOS
ICs may have six or more metal interconnect layers along
with numerous vias and contacts. These are susceptible to
open faults due to material defects or processing anomalies,
electro-migration or thermal stress [5, 8, 17]. Furthermore,
according to the SIA road map, the total length of intercon-
nect wires grows exponentially, as shown in Figure 1. This
also increases the likelihood of occurrence of this type of
defects in a chip.

Modeling an open defect at logic level presents a chal-
lenge. In the case of finite resistance, an open can be mod-
eled by a combination of transition faults. However, if the
defect has an infinite resistance, it may cause itself and its
fanout branches to float [4, 12]. As shown in Figure 2,
the logic value on a stem with an open can be resolved
differently at its fanout branches. This is due to the dif-
ferent threshold values of the gates at the fan-outs, which
depend on various layout and physical parameters [5, 8],
which are commonly not available to logic level diagnostic

tools. Opens can also cause sequential behaviors by creat-
ing capacitive feedback paths [9]. We only investigate opens
with infinite resistance in this work, as in [12, 17].

Figure 1. SIA’s National Technology road map
on interconnect length (property of SIA).

Consequently a cause-and-effect (e.g. building fault dic-
tionary) approach is encumbered by the lack of a simple de-
terministic fault model. A mixed mode simulation scheme
can circumvent the problem but it may result in higher costs
[5, 8]. Recently, Venkataraman and Drummonds proposed
a diagnostic algorithm for open-interconnect faults on logic
level [17]. In that work, the authors introduce the notion of
a net diagnostic model, which is a superset of all observ-
able faults for a stem and its fanout. Their method then
proceeds to build a composite output pattern for each open
fault, which is used in matching the output response of the
faulty chip.

In this work, we present a simulation-based model-free
diagnosis algorithm for multiple open-interconnect faults.
The algorithm proceeds in two phases. The first phase
identifies tuples (pairs, triples, etc) of suspect faulty lines
following an incremental diagnosis methodology. During
incremental diagnosis [16], the algorithm iteratively identi-
fies suspect faulty locations one at a time. For each loca-
tion, it selects a suitable fault/error model, which brings the
logic behavior of the circuit and its specification closer, and
proceeds to the next iteration. Experiments show that, in
practice, incremental diagnosis achieves nearly linear per-
formance for multiple faults and errors.

In this paper, the logic unknown value [1] is introduced
instead of a fault model. Logic unknown has been used
in region-based diagnosis as an alternative to fault models
[2, 14]. Unlike [2, 14], this work tailors the notion of logic
unknown to an incremental framework in which faults in
random error locations, not in regions, are identified. The
second phase reduces the number of candidate fault tuples
through a generalized fault-simulation scheme that enumer-
ates the effects of an arbitrarily complex fault.

1

0

2.5 V

Open Fault

A

Threshold 2.3 V

Threshold 2.6 V

2.5 V
B

C

2.5 V

Figure 2. Open fault on a stem.

The main contributions of this paper are 1) devise a
worst-case fault model for open-interconnect fault, 2) pro-
pose a model-independent algorithm for incremental diag-
nosis of multiple open faults, 3) develop theory and heuris-
tics to capture open faults efficiently 4) evaluate the ef-
ficiency of the proposed method by experiments on IS-
CAS’85 and full-scan versions of the ISCAS’89 benchmark
circuits.

The paper is organized as follows. We present the open
fault model and the motivation for this work in Section 2.
An overview of the algorithm is presented and illustrated
with a simple example (Section 3). The subsequent two
sections (4 and 5) describe the method and Section 6 con-
tains results for ISCAS’85 and full-scan ISCAS’89 sequen-
tial circuits. Section 7 concludes this work.

2. Fault Model and Model-Free Diagnosis

In this work, the behavior of a chip corrupted with mul-
tiple open-interconnect faults is not explicitly emulated due
to the lack of a suitable (deterministic) fault model. Instead,
a worst case scenario is used: make the logic value of the
wire with an open fault behave completely at random. The
purpose of this fault model is not to emulate realistic behav-
ior of open-fault but to generate a worst-case scenario for
evaluating the diagnostic algorithm.

In this model, all fanout branches of a stem behave at
random independent of the value on the stem or each other.
As illustrated in Figure 2, if a stem has an open fault, its
value can be interpreted differently by its branches even
for the same vector [4, 5, 8]. This is equivalent to having
all the branches floating. In implementation, we allow the
branches take an arbitrary logic 1 or 0 for each test vector.

When an input test vector has at least one erroneous pri-
mary output (EPO), we say that a symptom is generated. It is
seen, that this worst-case approximation covers all possible
open symptoms. For simplicity, we refer to this approxima-
tion of an open-interconnect fault as open fault in the rest of
our discussion.

In most logic-level diagnostic tools [7, 10, 11, 16, 18,
19, 20], explicit knowledge of fault models is necessary. In
these instances, diagnosis is simplified in the sense that a
fault model acts as an assumption to help narrow the pos-
sible candidates. For example, if a net is injected with a
stuck-at fault, the cardinality of the fault model is 3 (i.e.
SA-0, SA-1, and fault-free). The accuracy of such a diag-
nostic algorithm depends on the validity of the fault model.
In the case of simple fault models, this approach is efficient
and accurate. In the case of complex phenomena, such as
bridging faults and design errors, it may even fail to capture
some faulty effects [10, 16].

These observations motivate to find a model-free diagno-
sis algorithm. In this work, we demonstrate such an algo-
rithm that identifies candidate locations incrementally [16].
It reasons with ternary logic values without any assumption
about how a fault should behave or where it is located. We
also evaluate its performance in presence of multiple open
faults. In the future, we intend to investigate cases of mul-
tiple (stuck-at, open, bridge, etc) faults co-existent in a cir-
cuit.

3. Method Overview

We refer to the lines under consideration by diagnosis
as a suspect line. Any set of lines returned by diagnosis is
called a candidate tuple. Using this terminology, our di-
agnostic problem is formulated as follows. Given a logic
netlist and a faulty chip, we seek a set of candidate tuples,
any one of which may potentially account for the logic be-
havior of the corrupted implementation. Observe that a fault
tuple can be classified as either actual or equivalent in the
diagnosis context [15]. Obviously no diagnostic method can
distinguish between them because both explain the fault ef-
fects. A test engineer needs to inspect the physical chip to
find the actual cause of the fault(s).

The algorithm accepts a specification and a faulty chip,
and produces a list of probing sites for test engineers. Fig-
ure 3 outlines its overall flow. The diagnosis proceeds in two
independent phases which are described in Section 4 and
5. The first phase performs incremental diagnosis by sim-
ulating logic unknown values on single lines to capture all
possible fault effects [2]. This phase also compacts the can-
didate tuples in classes to return a somewhat pessimistic list
of candidate tuples that may explain the erroneous circuit
behavior. The second phase takes this list and conducts a
simulation of all combinations of logic values on the tuples.
Their ability to change primary output values is used as a

Path-Trace

Suspect List
Compaction

Top-Ranked
Suspect Class

Inject X on

All EPOs
Covered?

Fault Simulation
Generalized

Phase I
Incremental
Diagnosis
(Section 4)

NO

YES

Suspect Lines

Suspect Classes

Candidate Tuple List

Reduced List

Phase II
(Section 5)

Figure 3. Algorithm flow.

criterion to reduce the length of the list. In the remainder of
the section, we use an example to illustrate the conceptual
approach. Throughout this example, a line is identified by
the name of the gate that drives it. A branch is named by
concatenating the name of its stem followed by the name of
the gate it fan-ins.

Example 1: Figure 4 (a) contains a circuit with two open
faults located on lines G8 and G9. In that figure, each line
also carries its simulated fault-free/faulty value [1] for a sin-
gle vector. In this example, it is seen that both primary out-
puts are erroneous. Recall that in fault diagnosis, faulty val-
ues are the “desired behavior” we try to capture by injecting
faults at appropriate locations in our simulatable netlist. Ap-
parently, the internal values of the faulty implementation are
not visible to the algorithm.

The first phase of the diagnosis algorithm tries to iden-
tify the fault locations one at a time. Assume that this phase
returns with location G9. Next, the algorithm places a logic
unknown on G9 and simulates at its fanout cone, as shown
in Figure 4(b). It can be seen that the unknown propagates
to G17 which is originally an EPO. At the second itera-
tion of phase I (Figure 4 (c)), the algorithm ignores all lines
with unknown value and identifies G8 as the second poten-
tial fault location. Again, it places an unknown value X

on G8 and simulates its fanout cone. Since every EPO has
an unknown value on it, this concludes the first phase and
{G8, G9} is returned as a candidate tuple.

During the second phase, for each tuple returned by the
first phase, the algorithm enumerates all the possible com-
bination of binary logic values (0 and 1) for each vector
simulated on all its member lines. In the case of a stem, its
branches are considered as separate lines so that we cover all

possible error effects. Intuitively, this exhaustive simulation
captures all possible faulty effects that may arise from the
underlying locations for each vector. In this example, the tu-
ple {G8, G9} is expanded to {G8, G9→12, G9→15}. There
are 2

3 possible combination of logic values for this triple,
only two of which are shown in Figure 4(d). The values in
the upper square boxes are those produced by assigning the
ordered tuple logic values {1, 1, 1} and the lower ones are
produced by logic values {1, 0, 0}. We observe that both
combinations produce the faulty value on O1 but only the
lower one does on O2. As long as a single combination
produces the observed EPO behavior, phase II qualifies the
tuple as a valid solution. Therefore, {G8, G9} is the output
of the algorithm.

4. Phase I: Incremental Diagnosis

The first phase of diagnosis identifies a set of candidate
tuples so that if the logic unknown value is placed on every
member line of the same tuple, all the EPOs will have the
unknown value. In this phase, the algorithm finds the faults
in each tuple iteratively. As illustrated in Figure 3, each
pass consists of three steps. First, a 3-valued path-trace rou-
tine marks suspect lines. Then a novel suspect compaction
scheme reduces the suspect list by grouping lines with sim-
ilar unknown simulation behavior into a single class. It also
ranks these classes by using a matching formula at the pri-
mary outputs. Finally, the top ranking class is chosen and
the unknown value X is placed on one representative mem-
ber of the class. Multiple passes are conducted until all the
EPOs are covered by the unknown value. All suspect classes
picked along one path are grouped together to form one can-
didate class tuple. Each of these tuples is a potential solution
to the diagnosis problem.

To improve the run-time efficiency, the results of parallel
vector simulation for every line in the circuit are stored in
indexed arrays as in [15]. The i-th entry of this logic ar-
ray for line l contains the well-defined (0 or 1) logic value
of l when the i-th input vector is simulated or a logic un-
known X due to Phase I of diagnosis. This array is properly
updated to reflect the effect of injecting and simulating un-
known values. The following definition aids the remaining
discussion.

Definition A diagnostic configuration is a partially diag-
nosed circuit during incremental diagnosis and consists of
the circuit structure and the indexed array of logic values on
each line. A diagnostic configuration that has at least one
EPO remaining is called active. Otherwise, it is inactive.

4.1 3-valued Path-Trace

The 3-valued path-trace is an extension of the Critical
Path Tracing [1] and Path-Trace [19] procedures. It starts

Place X here

Place X here

(d)

(c)

(b)

(a)

0

1

1

0

0

0

1

1

0

1

0

1

1

1

0 / 1

0 / 1

1 / 0

0 / 0

0 / 1

1 / 1

1 / 1

1 / 1

1 / 1

1 / 0

0 / 0

0 / 0

0 / 0

0 / 0

1 / 0

1 / 1

1 / 1

1 / 1

EPO

1 / 1

0 / 1

0 / 1
0 / 0

1 / 0

0 / 1

0 / 1

X / 0

X / 1

X / 0

X / 1

X / 1

X / 1

1 / 1

1 / 1

1 / 1

1 / 1

X / 0

0 / 0

0 / 0

1 / 1

1 / 1

1 / 1
X / 0

X / 1

1 / 1

EPO 0 / 1

0 / 0

0 / 0

1 / 0

X / 1

0 / 1

X / 0

X / 1

G12

O1

O2

.

I5

I4

G
8

.

G 17

16

.

15G

I2

I3

9G

.

G
I1

8

G 17

16

G15

12G

G O1

O2

.

I5

I4

I3

I2

I1
G

.

G 9

.

9G

.

G
I1

I2

I3

I4

I5

.
O2

O1G

8

G 17

16

G15

12G

G O1

O2

.

I5

I4

I3

I2

I1
G

.

G12

15G

16

17G

8

.

G 9

Figure 4. Diagnosis of two open-interconnects.

from an EPO and pessimistically marks lines that may be-
long to a sensitized path (i.e. a path of lines with differ-
ent logic values under the influence of some fault(s)). If
the output of a gate has been marked and the gate has one
or more fan-in(s) with controlling values, then the proce-
dure randomly marks one controlling fan-in; if the gate has
all fan-ins with non-controlling inputs, then all fan–ins are
marked; if a branch is marked, then it marks the stem of the
branch. In the context of this work, this procedure is mod-
ified by adding the following rule to accomodate for logic
unknowns:

Rule: Never mark a line with logic unknown value on it.

Path-trace may deduce information by following a trail
of (possibly) erroneous values in the circuit. Due to the
conservativeness of the unknown value [1, 3], lines with
unknown values can never increases the number of EPOs.
Therefore, a line with an X can provide no information to
path-trace.

The following two theorems prove that 3-valued path-
trace is pessimistic enough to guarantee inclusion of all
equivalent tuples.

Theorem 1 If the logic unknown value is simulated simul-
taneously on all lines with opens then all EPOs obtain the
unknown value as well.

Proof. Placing the unknown values on all fault-injected
lines is equivalent to just placing the unknown on all these

lines in a fault-free circuit. As such, the unknown value
propagates identically in both circuits due to the absence of
any fault effects. A fault free circuit has no EPO. Therefore,
all EPOs are eliminated (by logic unknown) from the circuit.
�

Theorem 2 If all the nodes of the search tree are visited,
all equivalent fault tuples are included in the candidate list.

Proof. It has been shown in [15] that the original path-
trace algorithm marks at least one member of each equiva-
lent solution tuple. The added rule does not affect its proof.
Because placing the unknown value on a line annuls its fault
propagation, any lines belonging to the fanout portion of
its sensitized path cannot be marked in the subsequent path
traces. Therefore, if the search tree is allowed to be fully ex-
plored, each level-by-level traversal monotonically reduces
the number of faults in each equivalent tuple by one. Even-
tually, all the solution tuples are selected. By Theorem 1,
they all qualify as candidate tuples. �

This path-trace algorithm is implemented to trace simul-
taneously from all EPOs generated by hundreds of vectors.
For each line, we count the number of times it has been
traced. Only the top ranked lines, specified by a use-defined
parameter, qualify for subsequent procedures.

4.2 Suspect Compaction

Although fast and useful, the 3-valued path-trace has
low resolution due to its conservative nature. To prune the

search space (tree) quickly without losing fault coverage,
we devise a suspect class compaction method. Experiments
show that this helps achieve dramatic reduction in search
space and run-time when compared to brute-force. Suspect
class compaction performs the following operations:

• collapse the suspect list (set of candidate circuit lines)
of each node into fewer classes, which are used instead
of individual lines in subsequent diagnosis.

• compute a score for each compacted class, which is a
weighted sum of how many EPOs it can correct, how
many previously correct primary output now contains
logic unknown, and how frequently it is marked by the
3-valued Path-Trace.

• rank the classes by their score for selection during tree
traversal.

Suspect compaction reduces the number of children for
each node in the tree and the overall level of the tree.
As seen in the experimental section, very few rounds are
needed to capture all the injected faults. The suspect com-
paction does so by partitioning the suspect list into classes,
each of which can be represented by one representative
member line. The conceptual example that follows illus-
trates the motivation behind this approach.

R0

R1

R2

X

X

X
X

X

NC

NC

C

X

Figure 5. Class compaction.

Example 3: Each triangle in Figure 5 represents some
fanout-free circuitry. The solid lines are those in R0’s fanout
cone; the dotted lines are inputs from other parts of the cir-
cuit. A logic unknown is placed on one of the lines inside
R0 and propagated to its headline (i.e. the first stem that
dominates R0 [1]). In R2, the logic unknown at its input
propagates to its output because all the other fan-ins of R2
have non-controlling (NC) values. However, this is not the
situation for R1 because one of its fan-ins has a controlling
value (C). In this example, a logic unknown at R0 or a logic
unknown at R2 or at both have the same effect at the primary
outputs. We also observe that simulating a logic unknown
at R0 introduces a superset of unknown values in the cir-
cuit. Therefore, simulating the propagating effect of each
one separately seem wasteful. Rather, we can compact R0’s

and R2’s fault effects together by placing a logic unknown
in R0 and simulating it at its fan-out cone. This approach
gives an upper bound estimation of the EPOs a line from R0
or R2 can rectify (i.e. change to logic unknown value).

Pseudocode for the compaction algorithm is found in
Figure 6. Lines 10 through 12 of the algorithm give the
compaction criterion: line M is in the same class with L

only if logic unknown can always propagate from L to M

for all test vectors. This condition enforces the requirement
that simulating the fanout cone of L can produce a upper
bound of the number of EPOs turning into Xs for any line
inside the class. Clearly a compaction class has to be asso-
ciated with a particular diagnostic configuration.

When applied to Example 3, it groups R0 and R2 into
one compacted class and recognizes some line from R0 as
the class representative. The representative of the class has
the useful property that simulating the unknown value on
it makes the most EPOs turning to unknown that any other
member in its class. Experiments show that diagnostic time
is reduced at the cost of having a somewhat lower diagnostic
resolution. However, as explained in Section 5, the resolu-
tion is regained in the second phase of the algorithm.

4.3 Search Tree

Because numerous suspect locations exist for each active
diagnostic configuration, a search tree is built to facilitate
data management similar to [16]. Each node (represented
by an ellipse) of the tree represents a diagnostic configu-
ration. For each active diagnostic configuration, a ranked
list of candidate classes are compiled, as explained in Sec-
tion 4.2. In the example of Figure 7, candidate classes are
named by a single letter and placed inside the squares. The
root node of the tree, N0, has 3 candidate classes: A, B and
C. Node N4 is inactive so it has no candidate classes. To
go from a node to one of its branches, a candidate class is
chosen (represented by a labeled arrow). A logic unknown
value placed on its representative member and its fanout
cone simulated to produce the new diagnostic configuration.
Whenever an inactive configuration is reached, we call it a
successful leaf (e.g. N4). An unsuccessful leaf occurs when
the depth bound (user-defined at the start of the algorithm) is
violated by a node with an active configuration. Therefore,
the candidate classes identified along the path between the
root and a successful leaf form a solution set. In the figure,
{ A, E } forms such a candidate tuple.

To guarantee we capture all faults in reasonable time, the
search tree is traversed in a breadth/depth first manner si-
multaneously and it proceeds in rounds [16]. During each
round, all nodes with active configurations are extended by
one branch. For example, the root node (N0) is first pro-
duced in the first round in Figure 7. In the subsequent
two rounds, {N1} and {N2, N3} are identified respectively.
Node N4 is identified in the fourth round along with the

(1) Compact(candidate list)
(2) START
(3) Sort the candidate list ascendingly by the level of each line.
(4) Start from the beginning of the list, repeat for each line L of the list
(5) if L does not belong to any compacted class
(6) place X on L
(7) for all the vectors, simulate the fanout cone of L
(8) create a new compacted class C
(9) insert L into C
(10) examine each line M in the candidate list after L
(11) if M has X value for all test vectors
(12) place M into C
(13) set L to be the representative member of C
(14) compile a output matching statistics and attach to C
(15) restore the logic values in the circuit
(16) sort all the classes according to their matching score
(17) END

Figure 6. Class compaction algorithm

A B C

F G HD E

J Successful
Leaf

A

D E

B
N0

N1 N2

N4N3

Root Node

Figure 7. Search tree.

children for {N3} and {N2} (not shown in figure). At the
end of the Phase I, all the successful leaves are examined to
extract tuples of candidate classes. The Cartesian product
of all lines in these classes is computed and this is the input
to Generalized Fault Simulation in Phase II, described next.

5. Phase II: Generalized Fault Simulation

Phase I has the advantage of pruning the diagnostic space
quickly. However, the list of candidate tuples it returns can
be large due to the pessimistic nature of the underlying al-
gorithms and the logic unknown. In Phase II, each of the
the candidate tuples undergoes a full or partial enumeration
of its values in a process called Generalized Fault Simula-
tion (GFS). GFS is a generalization of the error simulation
process developed in [15].

GFS emulates the effect of an arbitrarily complex fault
on a line tuple. It accepts as inputs the circuit specification,
a symptom and a list of candidate tuples, returned by Phase
I in this case. As explained in Section 3, stems are replaced
with their branches to comply to the worst-case fault model
of Section 2. Next, GFS simulates all possible logic values
on lines of the candidate tuples and for all test vectors, as
explained below.

X

X

X

X

0

0

1

1

0

1

X

X

1

1

0 / 1

0 / 1

1 / 0

0 / 1

0 / 1

1 / 1

1 / 1

1 / 1

1 / 1

1 / 0

0 / 0

0 / 0

0 / 0

O2G

16

G15

12G

G O1

.

I5

I4

I3

I2

I1
G

.

8

17

.

G 9

Figure 8. Generalized fault simulation.

Assume tuple with two lines A and B. In the following
discussion, letters are used to indicate both the line and its
logic value for a test vector. GFS will simulate a total of
four logic value combinations for each vector: AB, ĀB,
AB̄, and ĀB̄ (AB is included because neither errors are ac-
tivated for some vectors). These combinations enumerate
all the possible logic values any opens on A and B can pro-
duce. It can be shown [15], that for n candidate lines, GFS
requires 2

n simulations at the fan-out cones of the respec-
tive lines. A suspect tuple qualifies as a worst-case open
fault candidate if it reproduces the observed behavior with
at least one logic value combination. Parallel GFS is imple-
mented so that many tuples are screened in each simulation
pass. We omit implementation details which can be found
in [15]

When the number of branches is large, it may be compu-
tationally expensive to simulate all applicable combinations
of logic values. Instead, we place a logic unknown on a sub-
set of them and perform the complete GFS on the remain-

ckt wire # nodes Phase I Phase II hit
name count visited # tuples # probe sites time(s) # tuples # probe sites time(s) ratio
C432 412 9 36.5 6.3 0.94 16 6.3 0.078 100
C499 1249 8 83.4 12.8 2.37 24.6 6 0.39 100
C880 915 9 32 7.8 0.45 11.6 6.2 0.23 100
C1355 1238 6 37 10.5 1.99 14.8 5.7 0.34 100
C1908 859 8 77.6 13 1.5 10.5 6 0.21 100
C2670 1377 9 41 8 3.95 15.3 8 0.40 100
C3540 2282 11 47.9 5.5 17 22 5.5 0.81 100
C5315 3697 10 37 8 5.1 13.0 3.5 1.47 100
C6288 6319 13.2 67.0 16.5 25.2 6.5 3 2.24 70
C7552 5262 6 65.3 12.7 7.54 22.8 9.4 2.22 100
S838 404 9.7 30 4.6 0.13 21.5 4.6 0.16 100
S1196 593 9 107.2 11.8 0.54 52.6 9.3 0.42 100
S1494 625 11 42 7.1 1.1 16 7.1 0.44 100
S9234 2339 9.65 26.8 5 3.11 16 5 1.89 100
S38417 25585 10 21.8 12.4 57.1 11.4 11 9.7 100
S38584 22447 10.5 14.3 6.3 36.3 5 5 17.2 100

Table 1. Results for one open fault.

ing branches. For example, in the circuit of Figure 8, an
unknown is placed on G9→15 and GFS is performed on G8

and G9→12. Again, we show the results of simulating only
two fault excitation situations in that figure. When qualify-
ing tuple {G8, G9}, we ignore output O2, which has logic
unknown on it. Only the other output needs to produce the
faulty response.

6. Experimental Results

We run experiments on ISCAS’85 and on full-scan ver-
sions of ISCAS’89 circuits. Circuits are first optimized for
area (script.rugged) using SIS [13]. For every circuit,
we perform sixty experiments. In the first twenty a sin-
gle open fault is randomly injected, in the next twenty two
opens are injected and in the last twenty the circuit is cor-
rupted with three opens. Most faults are injected on stems
which is a worst-case location scenario for an open. In all
experiments, diagnosis uses less than 1000 vectors, a com-
bination of stuck-at fault vectors [6] and random vectors.
Test vector generation for open faults is not the subject of
this work [12]. Experiments are reported on a Sun Ultra 10
machine with 256 MB of memory.

During diagnosis, the search tree is not fully traversed.
This is because suspect compaction places the candidates
close to the top of the tree. Recall that the algorithm tra-
verses the search tree in rounds. The more rounds the more
coverage achieved. When conducting experiments, we ob-
served that the first actual defect is discovered within 5
rounds. So rather arbitrarily, we execute 5, 10 and 15 rounds
for circuits corrupted with one, two and three opens respec-

tively.

Results for circuits with one open fault are in Table 1.
The first column has the name of the benchmark and the
second the number of lines it contains. The next column
contains the average number of search tree nodes visited
during diagnosis. Next, the average values for the number of
candidate tuples, of probe sites and of time spent (in CPU
seconds) are shown. The probe sites are the distinct loca-
tions a test engineer needs to examine. In most cases, Phase
II reduces the number of candidate tuples by a factor of 3 or
more, and the probe sites as well.

The last column contains the hit ratio to identify the
actual fault. The algorithm identifies both actual and
equivalent fault tuples. The injected faults are found
with 100% success rate in almost all circuits within short
time. The multiplier C6288 contains many fan-outs and re-
convergences, which create an unfavorable environment for
diagnosis. We find experimentally that it usually takes twice
as many rounds to capture the injected faults than in other
circuits.

The results for two and three open faults diagnosis are
summarized in Table 2. We present the average number of
probe sites, total CPU time and hit ratio (h.r.). The algo-
rithm achieves 100% hit ratio in most cases while the num-
ber of probe sites remains small. These results demonstrate
the flexibility of the proposed approach as it can capture
most faults with good resolution (i.e. short probe list). It
was also observed that the compaction heuristic reduces the
width of the tree (i.e., number of nodes per level) by one or-
der of magnitude or more. Therefore, few rounds are needed
to achieve high hit ratio.

ckt 2 Faults 3 Faults
name sites time(s) h.r. sites time(s) h.r.
C432 15.6 7.9 100 17.4 42.1 100
C499 30 30.8 100 47.8 354 100
C880 10.4 7.9 100 15 191.8 97
C1355 29.6 29.8 100 35.8 522 100
C1908 19.6 18 95 22.6 276.3 100
C2670 17.4 11.8 95 18.4 632 100
C3540 14.8 94.8 90 21.6 490 90
C5315 20.8 139.2 100 30.2 885 100
C6288 7 201.6 80 20.5 1442 87
C7552 17 60.5 100 22.2 898 93
S838 12 2.8 95 19 32.67 90
S1196 13.4 20.2 100 30 220.8 97
S1494 16.2 35.9 100 30.7 346.4 100
S9234 11.6 143.3 100 21 675 100
S38417 18.3 413.8 100 11 1455 100
S38584 14.3 465.7 100 8.3 1133 100

Table 2. Results for two and three open faults.

7. Conclusion

In this paper, we describe a model-free diagnostic algo-
rithm for multiple open-interconnect faults. We use a worst-
case model for the logic effect open faults may have on the
circuit and argue that the independence from any explicit
fault models is beneficial in dealing with physical defects
that are difficult to model. The diagnostic algorithm is dis-
cussed in its two separate phases. The algorithm is applied
to combinational and full-scan sequential circuits injected
with one, two, or three open faults. The results exhibit
the robustness of the method as it achieves good resolution
within short computational time. In the future we plan to
apply this approach to diagnosis of other types of faults as
well as different types of faults present together.

References

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital
Systems Testing and Testable Design. IEEE Press, Piscat-
away, New Jersey, 1994.

[2] V. Boppana and M. Fujita. Modeling the unknown!towards
model-independent fault and error diagnosis. Proc. ITC,
pages 1094–1101, 1998.

[3] M. L. Bushnell and V. D. Agrawal. Essentials of Electronic
Testing for Digital, Memory & Mixed-Signal VLSI Circuits.
Kluwer Academic Publishers, 2000.

[4] V. Champac, A. Rubio, and J. Figueras. Electrical model
of the floating gate defect in cmos ics: Implication on iddq
testing. IEEE Trans. CAD, pages 359–369, 1994.

[5] C. Di and J. A. G. Jess. On accurate modeling and efficient
simulation of cmos opens. Proc. IEEE ITC, pages 875–882,
1993.

[6] I. Hamzaoglu and J. H. Patel. New techniques for determin-
istic test pattern generation. Proc. IEEE VTS, pages 138–
148, 1998.

[7] S. Y. Huang and K. T. Cheng. Errortracer: Design error
diagnosis based on fault simulation techniques. IEEE Trans.
CAD, 18(9):1341–1352, September 1999.

[8] H. Konuk. Fault simulation of interconnect opens in digital
cmos circuits. Proc. IEEE ICCAD, pages 548–554, 1997.

[9] H. Konuk and F. J. Ferguson. Oscillation and sequential be-
havior caused by opens in the routing of digital cmos cir-
cuits. IEEE Trans. CAD, 18:1200–1210, 1998.

[10] D. B. Lavo, T. Larrabee, and B. Chess. Beyond the byzantine
generals: Unexpected behavior and bridging fault diagnosis.
Proc. IEEE ITC, pages 611–619, 1996.

[11] J. B. Liu, A. Veneris, and M. S. Abadir. Efficient and ex-
act diagnosis of multiple stuck-at faults. Proc. IEEE LATW,
2002.

[12] S. M. Reddy, H. Tang, I. Pomeranz, S. Kajihara, and K. Ki-
noshita. On testing of interconnect open defects in com-
binational logic circuits with stems of large fanout. Proc.
European Test Workshop, pages 127–128, 2002.

[13] E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton, and
A. Sangiovanni-Vincentelli. Sequential circuit design using
synthesis and optimization. Proc. Int’l Conference on Com-
puter Design, pages 328–333, 1992.

[14] N. Sridhar and M. S. Hsiao. On efficient error diagnosis of
digital circuits. Proc. IEEE ITC, pages 678–687, 2001.

[15] A. Veneris and I. N. Hajj. Design error diagnosis and
correction via test vector simulation. IEEE Trans. CAD,
18(12):1803–1816, December 1999.

[16] A. Veneris, J. B. Liu, M. Amiri, and M. S. Abadir. Incre-
mental diagnosis and debugging of multiple faults and er-
rors. Proc. IEEE DATE, pages 716–721, 2002.

[17] S. Venkataraman and S. B. Drummonds. A technique for
logic fault diagnosis of interconnect open defects. Proc.
IEEE VTS, pages 313–318, 2000.

[18] S. Venkataraman and S. B. Drummonds. Poirot: Applica-
tions of a logic fault diagnosis tool. IEEE Design and Test
of Computers, pages 19–30, Jan.-Feb. 2001.

[19] S. Venkataraman and W. K. Fuchs. A deductive technique
for diagnosis of bridging faults. Proc. IEEE ICCAD, pages
562–567, 1997.

[20] J. Wu and E. M. Rudnick. Bridge fault diagnosis using stuck-
at fault simulation. IEEE Trans. CAD, 19(4):489–495, 2000.

