
Revision Debug with Non-Linear Version History
in Regression Verification
John Adler1, Ryan Berryhill1, Andreas Veneris1,2

Abstract—Modern digital designs are relentlessly growing in
complexity, making their verification a daunting task. Verification
and debugging are the bottleneck, accounting for up to 70% of
the design cycle. Most automated debugging tools target failures
in isolation and rely solely on the current version of a design’s
RTL. A recently developed methodology targets multiple failures
simultaneously while leveraging the revision history present in a
version control system. It finds revisions likely to be responsible
for the failures and ranks them such that higher ranked revisions
are more likely to contain bugs. However, this technique treats
the version history as a simple linear list of revisions rather than
a graph structure. To address this limitation, this paper presents
a technique that properly leverages the branching information
in version control systems. It offers two-stage ranking with
improved performance, allowing both branches and branch-local
revisions to be ranked.

I. INTRODUCTION

In modern hardware design, verification often accounts for up to
70% of the design effort, with 50% of the verification time spent in
debugging [1]. This substantial effort is spent to reveal functional
errors before chips are manufactured, at which point correcting
them is significantly more costly. Due to the extensive engineering
resources required by debugging and its importance, automation is
necessary to both improve the accuracy of the process and reduce its
expense.

Verification can be broadly classified as either on-line or off-line.
On-line verification involves processes such as simulation and formal
property checking. From these tasks, an error trace that exposes
the failure is readily available and can be used with a Boolean
Satisfiability (SAT)-based automated debugging tool [2] to accelerate
the fine-grain debugging process. Conversely, it may be found that a
particular state is unreachable in violation of the design specification,
in which case no error trace is available. An alternative technique
can be applied to automate the debugging process [3] for this type of
failure. In either case, the tools identify suspect locations in a Register
Transfer Level (RTL) model of the design that may be responsible
for the observed failure. Subsequently, these locations are mapped to
lines of Hardware Description Language (HDL) code and presented
to the engineer. The set of locations returned is guaranteed to include
the actual error source, but may also include several other locations
that can merely be used to mask the failure without correcting its
root cause.

On the other hand, off-line verification involves large suites of
regression tests that exercise a large portion of the design func-
tionality. These tests are often executed overnight or even over the
course of several days. Upon completion of the regression suite,
verification engineers perform a coarse-grain debugging step in which

1University of Toronto, ECE Department, Toronto, ON M5S 3G4 ({adler,
ryan, veneris}@eecg.toronto.edu)

2University of Toronto, CS Department, Toronto, ON M5S 3G4

they analyze the failures that occurred. This may involve parsing
simulation logs and error messages in an effort to determine which
engineer is responsible for each failing test. Candidate failures are
identified and distributed to engineers appropriately for fine-grain
debugging. This process is done in an ad hoc fashion and as such
it may be inaccurate, resulting in candidate failures being assigned
to the wrong engineers, thereby increasing the number of debug
iterations and wasting valuable engineering resources.

Recent work in revision debugging [4], leverages information from
version control history to rank revisions in order of their likelihood
of being responsible for a failure. It utilizes the results from an auto-
mated debugging tool, along with existing information from a version
control system to generate a list of ranked revisions. Revisions with
higher ranking are expected to be responsible for the observed failure.
This provides the engineer with valuable information regarding the
source of the failure. However, it assumes a linear version control
history.

Modern version control systems (VCS) such as Git [5] support
complex branching schemes, and as such their history is more akin
to a Directed Acyclic Graph (DAG) than a simple linear ordering.
To address this limitation, this paper presents an extension to the
work of [4] that is able to make better use of the non-linear nature
of modern version control systems. In greater detail, sets of revisions
corresponding to each branch are classified in order to obtain bug fix
probabilities for each branch. The sets are then passed to a weighted
ranking system to identify the branches most likely to be the root
cause of the failure. Finally, revisions within each set are ranked to
provide additional information to the engineer.

This technique has several additional benefits. The reduced number
of branches compared to the total number of revisions results in
less manual effort required to explore the ranked results. In addition,
classification performance is improved when considering branches as
a unit. This produces a more accurate final ranking, making it easier
for the engineer to pinpoint the branch, and eventually revision, that
caused the failure. Experimental results show that branch ranking
achieves a 38% better ranking on average, with a 81% increase in
average runtime.

The rest of this paper is organized as follows. Section II provides
background information on traditional SAT-based debugging and
revision debugging techniques. Section III describes the non-linear
revision debug methodology. Section IV presents a set of experiments
demonstrating the benefits of the proposed methodology. Finally,
section V concludes the paper.

II. PRELIMINARIES

A. Version Control Branching

Branching is a commonly-used methodology to isolate code de-
velopment for a particular feature or bug fix. As exampled in Fig. 1,
commits 1, 2, 7 and 11 are on the mainline, usually the most up-to-
date development version of the code. Other commits are branches.
Commits 3 and 6 branch off the mainline while commit 5 branch off
another branch (nested branch). Once development on the feature or
bug fix is ready, the child branch is merged onto the parent branch,

1

2

3

4

5

6

7

8

9

10

11

Fig. 1. Revision history as directed acyclic graph

as seen in Fig. 1, commits 10 and 11. When merging, the diff of the
child branch i.e. the cumulative code changes between the beginning
and end of the branch, is applied to the parent branch.

B. Prior Work

In the related field of software verification, significant research
has focused on the use of machine learning techniques leveraging
version control data. The work of [6] uses machine learning with
historical version control data to prioritize files for human inspection.
As revisions are created, the system learns which files are likely
to contain bugs and therefore should be prioritized for human
review. In a similar vein, the work of [7] uses machine learning
to identify application-specific coding patterns and styles. Using this
information, the framework is able to identify violations of coding
practices common to the application, which may be indicative of
a bug. Finally, the authors of [8] propose a framework that creates
developer-specific prediction models to detect potential defects based
on the style and practices of individual developers. To the best of our
knowledge, the only technique leveraging version control systems in
the field of hardware verification and debugging is that of [4].

C. SAT-Based Debugging

The work of [4] makes extensive use of SAT-based automated
debugging [2]. Due to its importance to our work, it is explained
here in greater detail. Consider a circuit with one or more faults in
the RTL. When regression verification detects a failure due to an
observation value mismatch, firing assertion, scoreboard discrepancy,
or other similar means, an error trace is returned that exposes the
failure. Let F = {f1, f2, ..., f|F |} denote the failures returned by
a regression test run, where different failures may have different
underlying root causes.

SAT-based debugging tools [2] can be used to find a set of
candidate lines where a fix may be implemented to correct the
erroneous behavior exposed by an error trace. For a failure fi, the
tool returns a set of candidate lines Si = {si1 , si2 , ..., s

|S|
i }. Each

element of Si is an entity in the HDL representation of the circuit. It
could be a module, or a block, an expression, etc., but ultimately it is
mapped to a range of lines of HDL source code. Each such candidate

Failures

Debugging

Candidate
lines

Compute source
similarities

Affinity
propagation

Cluster
1

Cluster
K

Get Euclidean
distances

Prioritized
erroneous lines

Ranking

Ranked
revision list

Parse commit
logs

Classification

Bug fix
probabilitiesRevisions

a)

c)

b)

Dimensionality
reduction

Revisions

Fig. 2. Outline of linear revision debug flow

line represents an element in the HDL where a change could be made
to correct the erroneous behavior. The technique is exhaustive, so the
set Si is guaranteed to contain the actual error source causing the
observed failure fi. However, in practice it may contain many other
locations that can merely be used to mask the failure. As an engineer
must investigate entries in Si to correct the failure, investigating these
additional locations may involve substantial engineering effort.

D. Revision Debugging

Towards the goal of alleviating the time spent by engineers
investigating each candidate line returned by an automated debugging
tool, the work of [4] provides a means of ranking them. Given a set
of failures, the algorithm returns a ranked list of revisions, where
higher-ranked revisions are expected to have a higher likelihood of
being responsible for some or all of the observed failures.

In greater detail, the approach works as follows. It is divided into
three broad phases, which are shown in Figure 2. The first step,
shown in Figure 2(a), uses SAT-based debugging to identify a set of
candidate lines for each failure. Since each error in the RTL may
be responsible for multiple failures, Affinity Propagation [9] is then
used to cluster the failures. The clustering is such that failures in the
same cluster may have the same underlying root cause in the RTL,
while failures in two different clusters definitely do not have the same
root cause. As such, the number of clusters is intuitively equal to the
minimum number of errors in the RTL. Additionally, each cluster
has an exemplar, which is a line of source in the region of greatest
overlap. This exemplar is expected to be close to the actual error
source.

Figure 3 shows a sample clustering, demonstrating this concept.
In the figure, each axis represents a different HDL source file. Each

y

x

B

A

C

B
A

A A

B

A

7525

75

0

S5

S4

S2S1

175125

50

S3

Fig. 3. Example clustering generated during revision debug

x

y

Fig. 4. Affinity propagation clustering

of S1 through S5 is the set of candidate lines returned for the
corresponding failure. It can be seen that S1 contains lines 50-75
of the file represented by the y-axis and lines 25-75 of the file
represented by the x-axis. The dashed circles represent two clusters,
meaning that there are at least two separate errors in the RTL. It
can be seen that a correction in the region labeled C may be able to
correct S1, S2, and S3 simultaneously.

The second phase shown in Figure 2(b) parses the commit logs
to determine which commits are bug fixes. Intuitively, it is expected
that bug fixes are less likely to introduce bugs than other types of
changes are. The results of this step will be used in the ranking phase
to reduce the ranking of bug fix revisions. This step begins by parsing
and tokenizing the commit logs. The set of N commit messages is
converted to an N ×M matrix, where entry i, j for 1 ≤ i ≤ N
and 1 ≤ j ≤ M is the number of times word j appears in commit
message i. As such, M is the number of unique words in the commit
logs. This mirrors how a human would attempt to identify bug fix
revisions, by looking for words such as “fix” in the commit log.

After converting the version control history to its matrix representa-
tion, dimensionality reduction is done. Naturally, the problem has an
extremely high dimensionality, as each unique word is a dimension.
However, words that appear very rarely, such as individual email
addresses, provide very little information. Additionally, words that
appear very frequently such as “a,” “and,” “the,” etc. also provide

very little information. The most common and least common words
are therefore ignored, such that the number of dimensions M is made
to respect the constraint M < N

2
. Finally, the matrix is fed to a

trained Support Vector Machine [10] classifier. For each revision i it
returns bugF ixi, which is a real number between 0 and 1, indicating
the confidence that revision i is a bug fix.

The final phase generates the ranked list of revisions. For each
revision 1 ≤ l ≤ N , a weight wl is computed according to the
following equation:

wl = mini,j

(1
2

(D(i, j)

maxi,j(D(i, j))
+ bugF ixl

))
∀i, j|sji ∈ Rl

(1)

where D(i, j) is the Euclidean distance from the line of HDL source
sji to its cluster exemplar and Rl is the set of lines changed by
revision l. It can be seen that revisions containing lines closer to
the cluster exemplar have a lower weighting. Additionally, revisions
believed to not be bug fixes have a lower weight. As such, revisions
with lower weight are ranked higher.

The ranked list is computed by first computing one ranked list per
cluster. The list for a cluster contains only revisions that match HDL
code in that cluster. These revisions are simply sorted in ascending
order of weight. Subsequently, the lists are merged into a single
master list. This process is explained in the following example, where
lists A and B are the lists for each of the two clusters, and list C is
the merged list.

A =

R1

R2

R4

. . .

 , B =

R1

R3

R4

. . .

 , C =

R1

R2, R3

R4

. . .

The list is intended to be used as follows. The engineer should

first examine revision R1, as it has been identified as highly suspect
and on its own explains both failures. If it is found not be the root
cause, revisions R2 and R3 should then be examined, as they are
the next most suspicious and together they can explain both failures.
The engineer should proceed through the list in this fashion until a
suitable fix is implemented.

III. NON-LINEAR REVISION DEBUG

This section describes the novel methodology. A high-level
overview is presented first, in order to give an intuitive understanding
of the flow. The algorithm is then presented in more detail.

The linear revision debugging algorithm of [4] does not make use
of branch information. In modern version control systems, branches
are commonly used to isolate development of a single feature or bug
fix. One or more revisions are associated with each such branch. This
information can be leveraged to improve classification performance.
By considering branches in addition to revisions, a ranked branch list
can be generated.

An overview of the proposed flow is shown in Fig. 5. The failure
clusters (Fig. 5(a)) and revision bug fix probabilities (Fig. 5(b)) are
computed similarly to those in [4]. Fig. 5(c) introduces the novel
addition that makes use of branch information. Branch information
is passed to an SVM classifier to determine the probability that each
branch is a bug fix. This step is shown in more detail in Section III-C.
Branches, and revisions associated with each branch, are then ranked,
as seen in Fig. 5(d), and detailed in Section III-D.

a)

d)

Clustering

c)
Branches Revisions

Tagging

Tagged
revisions

Redundancy
elimination

Parse commit
logs

Dimensionality
reduction

SVM
classification

Prioritized
error lines Revisions Branches

Ranking

SVM
classification

b)

Bug fix
probs.

Bug fix
probs.

Ranked
branches

Ranked
revisions

Fig. 5. Non-linear revision debug flow

A. Motivations

The intuitive motivation behind leveraging branch information
is twofold. First, branches contain a natural grouping of similar
revisions. Usually, if a branch is made for a bug fix, all revisions
associated with the branch would be considered bug fixes, and vice
versa. Revisions that would be difficult to classify when isolated can
be assigned a more accurate class when considered as part of a whole.

Second, many revisions within a branch may be redundant, i.e.
will not affect the mainline that experienced the failure. In the case
of a feature addition, it is common to insert debugging code or
comments during development. Some or all of this code will be
removed before the branch is merged back into the mainline. These
additional revisions do not contribute any useful information, and can
be ignored. By considering branches as a whole, the effects of these
revisions will naturally be eliminated with no additional work.

B. Branch Analysis

By modelling the revision history as a DAG, as seen in Fig. 1,
branch nesting is determined and redundant branches are identified.

Using a depth-first search (DFS) on the DAG representation,
revisions along the mainline are visited first. Revisions branching
off the mainline are visited next, and so on. As revisions are visited
during the search, they are tagged with the appropriate branch nesting
level.

During the same graph search, redundant branches can be identi-
fied, for example the branch consisting of commits 6 and 7 in Fig. 1.
If the DFS visits the last revision of a branch that is not merged

(either into the mainline or into a branch that is eventually merged
into the mainline), then it is a redundant branch. Revisions tagged as
belonging to a redundant branch are considered redundant revisions,
and can be ignored for classification and ranking, as they do not
contribute to the mainline that encountered a failure.

C. Branch Classification

In order to classify branches, revisions are first tagged with
branches they belong to. In the case of nested branches, revisions
are tagged with more than one branch. More formally, let B =
B1, B2, ..., B|B| denote the branches. Each revision Rl is tagged
with a subset of the branches Bl ⊆ B. A combined commit log for
each branch is generated by concatenating the commit log of each
revision tagged with the branch.

In order to improve classification performance, functionally redun-
dant revisions (i.e. revisions that do not affect the final functionality
of the branch) will be excluded. To this end, a combined diff for
each branch is generated by accumulating the diff of each revision
tagged with the branch. These combined diffs are used to locate
any redundant lines that do not affect the final contribution of the
branch. Redundant lines are lines in the diff of a revision that are
completely negated by lines in the diff of another revision within the
same branch. Redundant lines for each revision are tagged as such,
as this information will be used later during the ranking process.

Once all the redundant lines are determined, revisions that only
contain redundant lines are redundant revisions. The commit logs for
such revisions are then excluded from the combined commit log for

each branch.
Now that each combined commit log only contains useful commit

logs, they are passed to an SVM classifier, similarly to [4]. In order to
ensure that the classifier performs adequately with combined commit
logs, it is trained using branches labelled as bug fixes or not, rather
than single revisions. The classifier outputs a probability that each
branch Bb is a bug fix, bugF ixb. Each revision tagged with the
branch is assigned a probability of being a bug fix. For nested
branches, the probabilities of the innermost branch take precedence
(for example, a bug fix branch within a large feature branch would
be considered a bug fix).

D. Weighted Branch Ranking

Branch ranking is performed similarly to revision ranking in [4].
Candidate lines that match changes made by non-redundant revisions
are mapped to branches: sji ∈ Bb. The weight wb of each branch is
then calculated with the following formula:

wb = mini,j

(1
2

(D(i, j)

maxi,j(D(i, j))
+ bugF ixb

))
∀i, j|sji ∈ Bb

(2)

Intuitively, the weight of a branch is the minimum weight of all
the non-redundant revisions tagged with the branch. The higher the
probability that the branch is a bug fix (i.e. not a feature addition),
the higher the weight. Because of this, branches with lower weight
will be assigned a higher rank.

Once weights for each branch are calculated, lists of locally ranked
branches are generated. Each list corresponds to a single cluster
from Section III-C, and contains the branches whose non-redundant
revisions match candidate lines assigned to the cluster. The branches
in these lists are sorted in ascending weight order.

To generate global branch rankings, the lists are merged. The
branches in the merged list are the union of the branches at the same
index in the individual lists. An example is shown below:

A =

B1

B2

B4

. . .

 , B =

B1

B3

B4

. . .

 , C =

B1

B2, B3

B4

. . .

The merged list C contains the final ranked branches. The highest
ranked branch is B1, as it is ranked highest in each of the individual
lists A and B. The second highest ranked branches are B2 and B3,
with the same ranking, as the are both ranked second in different
lists.

Finally, revisions within each branch are locally ranked. Using a
similar ranking scheme as above, merged lists for branch-local non-
redundant revisions are generated. For each branch, lists are generated
for each cluster containing only revisions tagged with the branch,
which are then sorted in ascending weight order. These lists are then
merged to get the branch-local ranking of each revision.

IV. EXPERIMENTAL RESULTS

This section presents experiments results. The linear revision
debugging methodology of [4] is contrasted against the proposed non-
linear methodology. All experiments are conducted on a workstation
with an Intel Core i5-3570K processor clocked at 3.40 GHz, with
16 GB of RAM. A total of nine RTL designs are used – eight from
OpenCores [11] and one in-house design, with Subversion revision
history available for each design. From these designs, a total of 18
testcases are generated.

A SAT-based automated debugging tool based on [2] is used to
find candidate lines. A Python platform is used to parse revision

and branch information, along with performing AP clustering, clas-
sification, and ranking. Branch classification is performed without
a priori knowledge of whether branches are bug fixes or not. Prior
to running experiments, an SVM classifier is trained for this task.
Finally, branches and branch-local revisions are ranked for each
testcase.

Individual testcases are generated from golden design by injecting
errors into the RTL. Injected errors are generated by reverting
previous bug fixes that were made in the revision history. Anywhere
between one and three different subsets of these errors are selected
for each design, then injected to create each of the 18 testcases. The
testcases are run against the pre-existing testbench and erroneous
responses are recorded, which are passed to the SAT-based automated
debugging tool.

The SVM classifier is trained using a separate script to obtain a
prediction model. To this end, revisions are first parsed for branch
information, then tagged with branches. Dimensionality reduction
is subsequently performed on the commit logs in order to remove
unnecessary words and mitigate the “Curse of Dimensionality.”
Remaining words after dimensionality reduction are used for both
training the SVM and branch classification.

Design and testcase information is summarized in Table I. The
columns in this table are arranged as follows. The first three columns
show design name and testcase number, followed by the number of
logic elements in the synthesized design. The next two columns show
the number of errors injected into testcase, and the resulting number
of failures. The last two columns show the total number of revisions
and branches in the repository. It is of interest that the number of
branches is, for most cases, substantially lower than the number of
revisions.

TABLE I
TESTCASE STATISTICS

Design Test Logic Num. Num. Num. Num.
Num. Elem. Err. Fail. Rev. Br.

ethernet 1 76408 6 10 332 37
2 76408 1 4 332 37

HA1588 3 9152 4 6 70 6
4 9152 3 6 70 6
5 9152 7 12 70 6

I2C Core 6 3640 3 4 70 2
7 3640 3 12 70 2

Tate Pairing 8 106786 4 4 33 5
9 106786 5 37 33 5

SD Card 10 38211 1 20 127 43
11 38211 4 36 127 43

SDR Ctrl 12 18374 2 5 72 22
13 18374 8 10 72 22

6507 CPU 14 9416 2 3 259 51
15 9416 2 3 259 51

VGA 16 109797 3 5 59 8
Packet 17 40197 2 16 177 4
Forwarder 18 40197 4 23 177 4

Table II compares the performance of the linear revision debugging
technique [4] with our proposed methodology. Ranks are of the
branch/revision(s) responsible for the failure. The first column in
the table shows the testcase index. The next three columns show
the performance of [4], the first two showing the rank achieved and
the minimum rank, while the last shows the runtime. The next five
columns are arranged similarly, with the first two showing branch
ranking and minimum, the next two showing branch-local revision
ranking and minimum, and the last showing the runtime. Finally, the
last column shows the improvement of branch ranking over revision
ranking of [4]. This is calculated as (1− (Br.Rank/Rev.Rank) ∗

TABLE II
REVISION RANKING PERFORMANCE

Test Linear [4] Non-Linear improv.
Num. Rank Time Rank Time (%)

rev. rank rev. total (s) br. rank br. total local rank local total (s)
1 6 27 4.335 2 11 2 6 6.716 67
2 5 10 6.389 1 9 4 8 9.830 80
3 1 5 0.878 1 3 1 4 2.163 0
4 1 7 3.322 1 4 1 6 5.334 0
5 1&2 7 3.432 1 3 1&2 3&3 5.792 0*
6 1 13 2.147 1 2 1 12 4.471 0
7 1&3 14 1.931 1&2 2 1&1 5&4 3.560 33
8 4 6 0.710 2 4 2 5 2.043 50
9 1&2 3 0.611 1&2 3 1&1 5&7 1.284 0
10 4 9 3.213 2 6 3 4 7.672 50
11 2 10 3.022 3 9 1 6 8.021 -50
12 2 12 27.328 1 8 2 7 40.631 50
13 2 13 17.976 1 5 2 3 35.557 60
14 35 49 2.339 4 14 7 11 4.169 89
15 41 48 2.486 6 17 5 8 4.428 85
16 11 15 1.126 3 7 3 5 3.830 73
17 2 15 0.905 1 3 2 3 2.095 50
18 4&8 16 1.207 2 4 2&6 4&7 3.436 50*
AVG. 7 16 4.630 2 6 3 7 8.391 38

100%. In the cases where a single branch with two revisions was the
root cause, the higher ranked revision is used.

Branch ranking invariably takes longer than revision debugging,
as both branches and revisions must be ranked. This is seen as a
81% average increase in runtime. However, both ranking systems
take only a fraction of the total time spent generating candidate lines
using automated debugging, which takes anywhere between 400 and
3600 seconds.

The effectiveness of branch ranking can be seen in tests 1-2,
10, and 12-15. For these cases, the responsible branch is ranked
higher than the responsible revision from linear revision ranking.
The end result is that engineers would find the root cause of the
failure sooner, as they can begin looking at the responsible set of
changes sooner. Another factor that makes branch ranking useful is
exemplified in tests 5 and 18. In these cases, all the responsible
revisions are located in a single branch, so the engineer would only
need to look at one branch in isolation to determine the root cause,
rather than look through two or more potentially distant commits.

Branch ranking provides less useful results in cases where the
number of branches is too small, such as in tests 6-7. In these
cases, branch ranking does not outperform revision ranking by any
meaningful margin. Finally, it is possible for branch ranking to rank
the responsible branch lower than the responsible revision of revision
ranking. This is seen in test 11. This can occur because branches
cover more changes than single revisions. A branch that matches
with more suspects could end up ranked higher than the responsible
branch, if the latter matches with fewer suspects.

In order for branch ranking to perform optimally, good coding
practices should be followed, were branches are used for any feature
additions or bug fixes. Changes made in branches should also be
isolated to a single feature or bug fix.

V. CONCLUSION

This paper introduces a novel extension for revision debugging
that makes use of branch information available in revision history.
The methodology identifies redundant revisions and lines, then ranks
branches and branch-local revisions. An extensive set of experiments
demonstrate its benefits over a linear revision debugging approach,
with improved ranking performance and a marginal runtime increase.

A promising direction for future work in this area includes leveraging
features available in issue tracking systems to enhance basic revision
history.

REFERENCES

[1] H. Foster, “From volume to velocity: The transforming landscape in
function verification,” in Design Verification Conference, 2011.

[2] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and
logic debugging using boolean satisfiability,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst, vol. 24, no. 10, pp. 1606–1621, Oct.
2005.

[3] R. Berryhill and A. Veneris, “A complete approach to unreachable state
diagnosability via property directed reachability,” in 2016 21st Asia and
South Pacific Design Automation Conference (ASP-DAC), Jan 2016, pp.
127–132.

[4] D. Maksimovic, A. Veneris, and Z. Poulos, “Clustering-based revision
debug in regression verification,” in Computer Design (ICCD), 2015
33rd IEEE International Conference on, Oct 2015, pp. 32–37.

[5] Linus Torvalds, “git, Release 2.8.1.” [Online]. Available: https:
//github.com/git/git

[6] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu,
“Bugcache for inspections: Hit or miss?” in Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering, ser. ESEC/FSE ’11. New
York, NY, USA: ACM, 2011, pp. 322–331. [Online]. Available:
http://doi.acm.org/10.1145/2025113.2025157

[7] B. Livshits and T. Zimmermann, “Dynamine: Finding common
error patterns by mining software revision histories,” in Proceedings
of the 10th European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. ESEC/FSE-13. New
York, NY, USA: ACM, 2005, pp. 296–305. [Online]. Available:
http://doi.acm.org/10.1145/1081706.1081754

[8] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in Auto-
mated Software Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on, Nov 2013, pp. 279–289.

[9] B. J. Frey and D. Dueck, “Clustering by passing messages between
data points,” Science, vol. 315, no. 5814, pp. 972–976, 2007. [Online].
Available: http://science.sciencemag.org/content/315/5814/972

[10] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27:1–
27:27, May 2011. [Online]. Available: http://doi.acm.org.myaccess.
library.utoronto.ca/10.1145/1961189.1961199

[11] OpenCores.org, “http://www.opencores.org,” 2007.

