
Incremental Design Debugging in a Logic Synthesis Environment

Abstract

In today’s complex and challenging VLSI design pro-
cess, multiple logic errors may occur due to the
human factor and bugs in CAD tools. The de-
signer often faces the challenge of correcting an erro-
neous design implementation. This study describes
a simulation-based logic debugging solution for com-
binational circuits corrupted with multiple design er-
rors. Unlike other simulation-based techniques that
identify all errors at once, the proposed method
works incrementally. At each iteration of incremen-
tal debugging, a single candidate location is rectified
with linear time algorithms. This is done so that
the functionality of the erroneous design gradually
matches the correct one. A number of theorems,
heuristics and data structures help identify a single
candidate solution at each iteration and they also
guide the search in the large solution space. Exper-
iments on benchmark circuits confirm the effective-
ness of incremental logic debugging.

Andreas Veneris Jiang Brandon Liu

University of Toronto Freescale Semiconductors

Dept ECE and CS High Performance Tools Group

Toronto, ON M5S 3G4 Austin, TX 78729

veneris@eecg.toronto.edu brandon.liu@freescale.com

1 Introduction

The digital VLSI design cycle commonly starts with
a behavioral description coded in some Hardware De-
scription Language (HDL). This description is next
translated to a Register-Transfer Level (RTL) repre-
sentation and synthesized to a gate-level (logic) im-
plementation. Design validation and optimization
steps guarantee the correctness and performance of
the final product.

Although automated Computer-Aided Design
(CAD) tools for synthesis and optimization are com-
monly used, circuit designers often need to manu-
ally modify the netlists generated by these tools to
achieve specific optimization constraints and/or to
make small specification changes. As the circuits
grow in size and complexity, this manual resynthesis
process becomes increasingly prone to error [1, 8].
Additionally, software bugs in CAD tools may intro-
duce errors that alter the functionality of the syn-
thesized design [1, 8]. These errors, known as design
errors, are functional mismatches between a logic
netlist and its functional specification. Experimental
data has revealed that the nature of these errors usu-
ally involves the functional misbehavior of some gate
elements and/or wire interconnection errors [1, 8].
The same experiments show that the number of er-
rors is usually small (less than or equal to 4 errors).

Given a correct implementation of a specification
and an erroneous logic netlist, Design Error Di-
agnosis and Correction (DEDC) is the auto-
mated process that identifies erroneous lines and pro-
poses corrections on these lines to rectify the netlist
[5, 7, 10, 11, 12, 15, 16, 17, 18]. DEDC methods
are broadly classified as either simulation- or BDD-
based [6]. Corrections proposed by a DEDC method
are usually selected from a predetermined set of dif-
ferent types of permissible logic transformations, also
known as design error model. A design error model
should be simple to preserve the engineering effort
invested on the design.

It is notable that DEDC is an inherently difficult
problem. Because the implementation of the specifi-
cation (in the form of HDL, RTL, etc) is an arbitrary
one, it has to be treated as a “black box” control-

lable at primary inputs and observable at primary
outputs. Consequently for the erroneous netlist, the
solution (search) space for diagnosis grows exponen-
tially with circuit lines and increasing number of er-
rors [18]:

diagnosis space = (# circuit lines)(# errors)

The correction space is further compounded by the
large number of potential corrections applicable to
each line, which is usually determined by the cardi-
nality of the design error model that is used. Thus,
the development of efficient DEDC tools to rectify
designs with multiple errors is a challenging task.

The exponential growth of the solution space in
terms of the number of errors also avails DEDC more
options to correct a design [18]. This is because
an error may be corrected by the actual or another
functionally equivalent transformation [7]. Equiva-
lent corrections exist because there may be many
ways to synthesize a function and correct the design.
We call an actual or an equivalent correction a valid
correction. Since design errors and corrections are
symmetric terms in this context, we do not make a
distinction between them in our presentation.

In this paper, we describe a simulation-based in-
cremental DEDC (debugging) approach for
combinational circuits. Given an erroneous design,
an implementation of its specification and a set of
random input test vectors V , the method iterates
to identify and correct one error at a time and
bring the design functionally “closer” to its specifi-
cation. Incremental debugging terminates when the
design is fully rectified in terms of the test vector set
used. Test vector generation for these errors and de-
sign verification following a simulation-based DEDC
method are not topics of this work [2, 4, 6].

The main difference between this approach and
other incremental DEDC approaches [11, 15, 16] lies
in the methods used to identify each single error lo-
cation and its correction(s). In detail, we prove a
theorem that asserts a lower bound on the number
of failed vectors each valid correction must partially
rectify. This result allows us to exclude corrections
that might not lead to a solution and curtails the
exponential explosion for the problem in practice.

Another advantage of the proposed incremental
DEDC process lies its simplicity and efficiency. All
steps at each iteration are adapted from single er-
ror DEDC algorithms. Single error DEDC is a
well examined problem with linear time solutions

[5, 7, 10, 11, 12, 15, 16, 17, 18]. We also show that
during the execution of an incremental DEDC algo-
rithm, it may be necessary to consider corrections
that do not look attractive but may have the po-
tential to lead to a solution in later stages. Finally,
a novel decision making process on a search tree is
presented to explore the solution space efficiently.

Experiments on combinational ISCAS’85 and full-
scan sequential ISCAS’89 benchmark circuits con-
firm that the approach returns accurate corrections
and it scales well with increasing number of errors.
In fact, in all experiments it returns with a set of
corrections that rectify the design for all test vectors
used. Intuitively, its success is attributed to the fact
that the solution space usually contains many equiv-
alent corrections. Theoretically, since it utilizes a set
of heuristics, the method may not return a solution
and/or it may not find the complete set of all actual
and equivalent solutions.

The paper is organized in the following. In the
next section, we give relevant definitions and de-
scribe the error model. Incremental DEDC approach
is presented in Section 3. Experiments are found in
Section 4 and Section 5 contains the conclusions.

2 Preliminaries

We investigate erroneous structural netlists imple-
mented with logic NOT, BUFFER, AND, NAND, OR and
NOR primitive gates. The algorithm can accommo-
date XOR and XNOR gates but we do not consider them
explicitly. Further, we assume that both the correct
implementation of the specification and the design
are completely simulatable. This assumption can be
relaxed as discussed in [2, 20].

Throughout the discussion, line l, fan-in to an AND

or NAND (OR or NOR) gate has a controlling value for
input vector v if the value of l is 0 (1). If l drives a
NOT or a BUFFER it always has a controlling value. A
line whose value changes during simulation under the
presence of some fault(s) is called a sensitized line
and a path of sensitized lines is called a sensitized
path.

This work considers logic error types similar to
those from the model of [2], shown in Fig. 1. This
model contains a collection of simple logic gate or
wire interconnection errors, such as gate replace-
ment, missing input wire, extra input wire, etc, that
may occur in logic synthesis [1, 8]. Most DEDC tech-
niques [5, 7, 10, 11, 12, 15, 16, 17, 18, 19] use the er-

Extra
Inverter

BUFFER

BUFFER
Missing
Inverter

Gate

a
b

a
b

Gate
Replacement

b

Input Wire

a

c

a

c
Input Wire

Incorrect
bb

Extra
b
a

b
a

a
b

c c

c c

c
d

a

Missing
Output Gate

b

b
a

c

Missing
Input Gate

Missing

b

Input Wire

b
a

c

Missing

Error
Circuit

a

c c
d

a
b f

g

b

INCORRECT CORRECT

a

d

f

d

g

a

c

Figure 1: Common design error types

ror model by Abadir et al. [2] due to its practicality
and its simplicity. Complex resynthesis algorithms
during correction may alter the design globally and
jeopardize the engineering effort already invested in
it.

A simple design error model is desirable but it
may not be adequate when a DEDC method is used
as a platform to perform engineering changes. In
the problem of engineering change one is required
to modify a netlist to meet a new specification. Its
relation to DEDC is discussed in detail in [14, 18].
Although the proposed DEDC method may be able
to tackle some simple instances of the engineering
change problem, a solution to the general problem is
not the topic of this work.

Prior to the execution of the algorithm, we simu-
late a set V of random input test vectors and vectors

for stuck-at vectors [9]. These types of vectors have
been shown to detect more than 92% of design errors
[2, 4, 18]. We use these vectors to create two indexed
bit-lists, V l

err
and V l

corr
, on every line l in the circuit.

The i-th entry of the V l
err (V l

corr) list contains the
logic value of l when the i-th failing (non-failing) in-
put test vector from V is simulated. These bit-lists
are properly updated and utilized during diagnosis
and correction.

Most methods use simulation because it has been
shown [2, 8, 18] that simulation with a small (100
to 3000) number of input vectors provides a reliable
guide to DEDC. On average, 92% of corrections qual-
ified this way are valid ones and pass formal verifi-
cation.

In diagnosis we use path-trace, a line marking rou-
tine developed for fault diagnosis in [21] and similar
to critical-path tracing [3]. For an erroneous vector
v, path–trace starts from an erroneous primary out-
put for v and traces backwards toward the primary
inputs of the circuit, while marking lines of interest.
Details and examples of this linear time algorithm
are found in [21]. Path-trace is important for multi-
ple fault diagnosis because it always marks one line
from every set of valid corrections [18].

3 Incremental Debugging

The input to incremental debugging is an erroneous
design, a high-level implementation of the specifica-
tion, the maximum number of possible design errors
N and a set of input test vectors V . The output of
the algorithm is a set of circuit lines associated with
the corrections that rectify the design for the vec-
tor set V . For an erroneous circuit, we can estimate
N empirically if we simulate vectors and record the
percentage of failing primary output responses [18].
Usually the algorithm starts with a small value for N
and increases this user-specified parameter if it fails
to return with a correction(s).

The algorithm works in an iterative manner shown
in Fig. 2. It bases its operational flow on a decision
tree. Each iteration is represented by a different level
in the tree where different options (decisions) are
available. At each iteration, it identifies a set of sus-
pect lines (diagnosis) and devises a set of corrections
for these lines according to the parameters described
in subsections 3.1 and 3.2.

In most cases, each correction reduces the number
of erroneous primary outputs for all vectors in V .

However, the algorithm does not discard interme-
diate corrections that may not look attractive. As
reported in [16], the number of erroneous primary
output responses does not increase monotonically
with the number of injected errors. Subsection 3.2
presents heuristics that prevent deleting such correc-
tions.

The decision flow of the incremental algorithm
(that is, the sequence of decisions made at different
levels of the tree) is crucial for its success. At each it-
eration, there may be a large amount of corrections
that can model the error effects and their interac-
tion. Total run-time and final resolution are greatly
affected by early decisions. If a greedy Depth-First-
Search (DFS) approach is used, a wrong decision at
the top level of the tree may lead us to explore por-
tion of the search space with no solution. A naive
Breadth-First-Search (BFS) approach may result in
excessive computation. Consequently we use an ap-
proach which is a trade-off between DFS and BFS,
described in subsection 3.3.

Diagnosis

Correction

correction(s)
YES

NO

94% valid

Path-Trace

Select the
the Top-Ranked

Correction

Corrected
Design

and Ranking
Correction

Rectified?

Suspect Line
Ranking

Figure 2: Algorithm description.

3.1 Diagnosis

Diagnosis quickly reduces the error space and elim-
inates lines with no potential to lead to a solution.
This process is done in two steps. In the first step,
path-trace marks suspect lines in the circuit. Path-
trace always marks at least one location from every
set of locations where valid corrections exist. We al-
low lines with high path-trace counts to qualify for
the subsequent diagnosis, usually the top 15-20% of
these lines.

In the second step, for each line l, we invert the
logic values in its V l

err bit-list and propagate this dif-
ference throughout the fan-out cone of l, a process
known as error simulation [18]. Recall that V l

err con-
tains the logic values of line l for the subset of vectors
that activate the errors. Once done, we count the
number of erroneous primary outputs that are now
rectified and rank all the lines according to these
counts (heuristic 1). In a sense, the suspect lines
are ranked by how much correcting potential they
have. During correction, we visit these lines in a de-
creasing order of the counts. Experiments indicate
that lines with high counts often lead to valid cor-
rections.

0/0

1/1

1/1

1/1A

1/1B
C
D
E

**

*G1
1/1

G2
G3**

*
*

*

0/0*

*

*
*

*
1/0

1/1

Y

X
0/1

0/1

Figure 3: Line ranking during diagnosis

Example 1: Fig. 3 shows an erroneous implementa-
tion for ISCAS’85 benchmark C17 circuit. Gate G1
has an extra input wire and G2 is a NAND gate re-
placed by an OR. Test vector v = (1, 1, 1, 0, 1) is sim-
ulated and pairs of fault-free/faulty values are shown
next to each lines. Path-trace marks the lines with
an asterisk “ * ”. Recall, error simulation inverts
the logic value at a line and simulates at its fan-out
cone for many vectors in parallel. Table 3.1 summa-
rizes results of the ranking process performing error
simulation with the vector v and two more vectors.
Letter “C” (“E”) in this table indicates that error
simulation value agrees (does not agree) with the
logic simulation one. We observe, line G1 matches
more correct values for three vectors. For this rea-

son, it ranks higher than G3 for these vectors in this
stage of the algorithm.

test vector err. design inv G3 inv G1
(A, . . . , E) X Y X Y X Y
1 1 1 0 1 C E C E C C
1 0 1 1 0 C E C C C E
1 0 1 0 1 C E C E C C

Table 1: Error Simulation on Suspect Lines

3.2 Correction

In correction, an instance of design error model is
assigned to each suspect line that qualified diagno-
sis. This is done exhaustively for each correction
as in [18]. As discussed, the ability to base deci-
sions on valid corrections at each iteration influences
the overall performance dramatically. The search for
valid corrections is not an easy task if we consider
the vast amount of possibilities that can model var-
ious error effects and different sensitized paths or
co-sensitized paths (i.e. sensitized to more than one
error) at each iteration of incremental diagnosis.

In this section we present a number of techniques
and heuristics to prune the large solution space and
guide the search. The following theorem gives a nec-
essary condition all valid corrections must satisfy.
We use this theorem to screen corrections that can-
not lead to any optimal solution. As indicated in
the experiments, that this simple theorem provides
a reliable guide to correction.

Theorem 1: Let L = {l1, l2, . . . , lN} be the set of
lines where a set of valid corrections exists. Let Verr

be a set of input test vectors with failing primary
output responses and let V li

err be the set of vectors
from Verr that produce an erroneous logic value on
li (i.e., excite the error) and propagate this difference
to some primary output(s). Then there exists a set

V li
err, 1 ≤ i ≤ N, whose size is at least |Verr|

N
.

Proof: The theorem is a direct application of the
pigeonhole principle of counting. By definition, each
vector in Verr excites at least one error to create sen-
sitized path(s) to some primary output(s). In other
words, each vector in Verr is attributed to at least one
V li

err for some li, 1 ≤ i ≤ N . Using the pigeonhole
principle and the above observations, it becomes ev-
ident that there exists at least one set V li

err
with at

least |Verr|
N

test vectors from Verr.

The correction algorithm proceeds as follows. Given
a suspect location l, it exhaustively compiles a list
of corrections from the design error model. From
these corrections, it keeps the ones that satisfy the
following screening tests:

Screening test on V l
err

vectors: Any qualifying

correction must complement at least
|Vl

err
|

N
bits in

V l
err when the correction is present on line l (heuris-

tic 2). This screening test is a direct application of
Theorem 1 as it implies that for every set of lines
L where valid correction(s) exist, there is at least
one location l ∈ L responsible for some erroneous

primary output(s) in at least
|Vl

err
|

N
failing primary

output test vectors. Since these erroneous primary
outputs are sensitized to respective V l

err
bit-list en-

tries, a valid correction should complement the bit-
list entries.

Evidently, the nature of this screening test may
qualify corrections on lines that do not belong in any
such set L. It may also discard corrections on lines
from a set L just because the number of failing out-
put vectors attributed to them is not large enough
to qualify the requirement of the theorem. The for-
mer set of (false) corrections will simply degrade the
performance of the algorithm. On the other hand,
since it always qualifies one element from L, valid
corrections discarded at the present iteration will be
discovered at later iterations of the algorithm. This
is because the algorithm examines incrementally the
complete error space, as discussed later in subsec-
tion 3.3.

The test required by heuristic 2 can be performed
efficiently with a single local simulation step on the
driver gate of l. The newly obtained logic values are
compared to V l

err. This set V l
err is also updated ap-

propriately once a line l qualifies to accommodate
future iterations of the algorithm. Experiments in-
dicate that this inexpensive simulation step disqual-
ifies many inappropriate corrections improving the
correction selection process dramatically.

Our implementation follows an aggressive ap-
proach and initially necessitates that a correction
complements a high number of bit entries. This limit
is empirically set to a value of 70% and reduced pro-
gressively when the algorithm returns with no correc-
tions. This is because some errors are easy to excite
such as errors with inversion. A vector with erro-
neous primary output response from in V may also

excite more than one error and attribute to multiple
V l

err sets in Theorem 1.

Screening Test on V l
corr: Any qualifying correction

can sensitize a small number of new paths to previ-
ously correct primary outputs (heuristic 3). The
number of erroneous primary outputs does not nec-
essarily increase with the number of injected errors.
This heuristic accounts for corrections that may in-
crease the number of erroneous outputs and performs
a screening with simulation of the V l

corr
bit-list at the

fan-out cone of l. We elaborate on its rationale with
the following example.

Example 2: Fig. 4 depicts the situation where the ef-
fects of two design errors on lines l1 and l2 have two
sensitized paths that merge in gate G with logic val-
ues 0 and 1 respectively. Also assume that this vector
v produces correct primary output responses. It can
be seen that in the correct implementation, l1 pro-
duces a logic 1 in the first input of G and l2 produces
a logic 0 in the second input of that gate. Therefore,
when a valid correction is applied to l1, under the
presence of the second error, the logic value at the
fan-out of G switches to 1. If a primary output is
sensitized to the fan-out of G, it now becomes er-
roneous. It remains so until a valid correction is
applied to l2 and the fan-out of G switches back to
its correct logic value.

G

2

01

1

1

l1
0

err
1l
corr

l
err

Figure 4: Example of Screening on V l
corr

This example suggests we may need to qualify cor-
rections that sensitize a number of new erroneous
primary outputs. Experiments permit a correction
to create no more than 3-8% new erroneous outputs
on the average. Empirically, this number has shown
to be sufficiently large to allow valid corrections to
qualify in most cases.

An exception is the case for NAND-implemented XOR

circuits (e.g. C499, C432, etc) [15]. Consider XOR

gate implemented with four NAND gates, as in Fig. 5,
for example. Assume errors that replaces gates G1
and G2 with AND. If we correct any single error, it
gives a larger number (> 20%) of new erroneous pri-
mary outputs. In experiments for such circuits, the

algorithm relaxes this constraint rapidly as lower val-
ues fail to qualify any corrections.

G1 G2

Figure 5: A NAND-based XOR

3.3 Decision Flow

Incremental debugging uses an underlying data
structure based on a decision tree. At every node
of this tree, the algorithm computes a set of cor-
rections. It then ranks these corrections according
to some criteria described later in this subsection.
Next, it selects some of them to build its children
nodes and it also updates the V l

err
/V l

corr
bit-lists of

each line appropriately. The decision making pro-
cess has an important impact on the performance
and resolution of the algorithm. To avoid pitfalls of
stand-alone BFS or DFS, it makes decisions using a
BFS/DFS trade-off.

We explain the decision making with the decision
tree shown in Fig. 6. Every node in this tree rep-
resents a set of potential corrections—a correction
is a single error model applied to one suspect line—
returned by a single iteration of the algorithm; an
edge represents the application of a single (highly-
ranked) correction to enter the next tree level; the
level of a node indicates the number of corrections
performed on the implementation so far. In other
words, a path in the tree from the root to a leaf rep-
resents a set of corrections that potentially rectify
the design.

To make a decision, we visit these nodes in rounds.
At each round, a single (highly-ranked) correction
is selected from every node currently present. The
correction is applied to obtain a new node in the
next level of the tree. This tree traversal guarantees
to reach a solution in finite time [13].

The round in which a node is created is shown next
to the node in Fig. 6. Observe that the number of
nodes in the tree at most doubles with each round as
the tree grows both in depth and breadth. However,

������������

���
�

������������

���
�

		

���
�

�
�

������
������
������
������
������

������
������
������
������
������

��

��

������
������
������
������
������
���

������
������
������
������
������
���

������
������
������
������
������
���

������
������
������
������
������
���

���

���

���
�

1

3 42

3 4 4

4

level 2

level 4

ievel 1

level 3

round 3

round 4

Figure 6: Decision Flow: A BFS/DFS trade-off

experiments indicate that the number of tree nodes
visited before reaching a solution remains small in
all cases.

Finally, we elaborate on the parameters of the
three heuristics introduced with the algorithm. On
each suspect line, let h1 be the percentage of erro-
neous primary outputs rectified in heuristic 1; h2

the percentage of bit-entries that are complemented
in heuristic 2; and h3 the percentage of correct pri-
mary outputs required by heuristic 3. Runs of the
algorithm start with h1/h2/h3 = 1/1/1 and they are
reduced progressively if it returns with no correc-
tions. Observe, incremental debugging with param-
eters h1/h2/h3 = 1/1/1 equals to the single error
case in traditional DEDC.

When many errors are present, h1 reduces be-
fore h2 and h3, since h2 and h3 are error type de-
pendent. An aggressive relaxation of the parame-
ters can lead to numerous correction candidates. A
combination which is typical for three suspected er-
rors when higher values do not work is h1/h2/h3 =
0.3/0.7/0.95. If this also fails, parameters are re-
laxed as h1/h2/h3 = 0.3/0.5/0.85 etc. We also set
0.1/0.3/0.5 as a lower limit where a correction path
is declared to terminate with failure and it is no
longer attempted. For NAND-based XOR gates, strin-
gent values of h1/h2/h3 fail to return corrections un-
til h1/h2/h3 = 0.4/0.5/0.5 is reached.

The corrections returned at level i are ranked ac-
cording to the formula:

(1 − Vratio)h3 + Vratioh1

and they are visited in the decreasing order of ranks
during execution. In this formula, Vratio indicates
the percentage of vectors with erroneous output re-
sponses in V prior to the correction. The experi-
ments show that this formula provides a good guid-

ance. In all of the cases valid corrections rank in
the top 5-10% in their node and a solution is found
before much of the decision tree is explored.

4 Experiments

We implemented the algorithm of Section 3 using
C language and ran it on a SUN Ultra 5 worksta-
tion with 128 MB of memory for ISCAS’85 and full-
scan versions of the ISCAS’89 benchmark circuits
corrupted by up to 4 design errors. The locations of
the design errors are selected at random. Error types
are also selected at random from Fig. 1. We perform
twenty experiments per circuit and per error case.
Ten of these experiments involve gate related errors
and the remaining ten are wire related errors.

This section presents and discusses results of the
above experiments. All run-times are in CPU sec-
onds and do not include the initial random simula-
tion step for V which is performed only once with
parallel vector simulation. Run-times include the
time to update the bit-lists at each step of the in-
cremental approach.

Table 2 shows average values for the performance
of the algorithm for 2, 3 and 4 design errors. Detailed
results for single errors are found in [18]. To emu-
late a realistic diagnostic environment, we use the
original versions of all benchmarks with redundan-
cies (that is, circuit c1908 has 1908 lines, c5315 has
5315 lines etc). Redundancies increase the solution
space and the complexity of the problem.

The first column of Table 2 contains the circuit
name. Columns 2, 6 and 10 of the table contain the
average run-time for diagnosis in a single algorithm
execution when 2, 3 and 4 errors are present, respec-
tively. As explained in subsection 3.1, diagnosis tries
to eliminate lines that cannot serve as potential er-
ror locations for a valid correction. The CPU times
reported in these columns show that heuristic 1 suc-
cessfully eliminate 70-90% of the lines in roughly a
second. The experimental results on correction, dis-
cussed next, indicate that error modeling and rank-
ing according to heuristics 1, 2 and 3 favors valid
corrections.

The average time spent to compile and rank the
corrections in a single algorithm execution is listed
in columns 3, 7 and 11. The number of corrections in
single algorithm iteration varies from 1 (the original)
to a few thousand and it does not seem to give a pat-
tern. Columns 4, 8 and 12 contain the total number

Table 2: Results for multiple errors

ckt 2 errors 3 errors 4 errors
name diag. corr. nodes time diag. corr. nodes time diag. corr. nodes time
C499 0.42 0.41 8.9 7.36 0.43 0.44 13.5 11.75 0.43 0.5 25.1 23.35
C880 0.14 0.47 29.3 17.87 0.14 0.53 34.9 23.38 0.15 0.57 120.8 87.18
C1355 0.26 0.66 34.9 32.11 0.28 0.72 41 41 0.31 0.86 193.3 226.11
C1908 0.3 1.22 16.3 24.78 0.32 1.31 20.6 33.58 0.35 1.38 50.6 88.16
C2670 0.81 0.52 10.2 13.57 0.87 0.57 16.2 23.33 0.91 0.62 44.3 67.66
C3540 0.61 1.98 8 20.7 0.59 2.03 11.8 30.91 0.63 2.26 28.4 82.21
C5315 0.92 3.15 25.8 105.01 0.96 3.44 29.9 131.56 1.11 3.8 65.2 320.3
C6288 0.68 3.43 10.2 41.92 0.72 3.53 14.5 61.63 0.82 4.21 23 115.72
C7552 0.95 7.56 10.9 92.76 1.02 8.13 12.2 111.63 1.13 9.16 20.6 212.12
S838 0.11 0.59 6.1 4.27 0.11 0.68 8.9 7.031 0.12 0.79 14 12.82
S953 0.14 0.54 5.9 3.98 0.15 0.55 9.3 6.51 0.17 0.56 11.9 8.81
S1196 0.11 1.07 4.6 5.43 0.13 1.14 8.7 11.05 0.16 1.2 10.5 14.32
S1494 0.31 0.38 3.9 2.69 0.38 0.49 7.4 6.44 0.41 0.51 10.1 7.65
S9234 1.37 9.24 25.9 274.80 1.38 10.03 31.4 358.27 1.52 10.81 55.7 686.93

of algorithm executions (procedure invocations) for
each error case. This corresponds to the number of
nodes in the final decision tree of Fig. 6.

Consider this tree, the leftmost path in any subtree
consists of decisions for corrections with the highest
ranks in each node. For example, the first possible
triple solution is found in a tree with 4 nodes. The
second solution can be found in a tree with 6 nodes,
which completed half the way through the 4th round.
In most cases, the algorithm completes in under 6
rounds with a maximum of 32 nodes after exploring
the first several leftmost paths of the decision tree.
Some circuits such as c1355 and c880 often require
9 rounds and explore a maximum of 256 nodes. For
these circuits, DFS would explore much of the tree
before it returns with a solution.

Figure 7 plots the average number of nodes in the
tree data structure to diagnose some combinational
and sequential circuits with 1, 2, and 4 errors. It is
seen, the number scales well and it roughly doubles
as the number of errors doubles. This means that
the method is space efficient.

The total run-time to return a valid set of correc-
tions is found in columns 5, 9, and 13. These run-
times demonstrate the robustness of this approach
that rectifies benchmarks such as the 16-bit multi-
plier C6288, a hard to diagnose and correct circuit,
in a few minutes of CPU time.

Since the proposed algorithm uses a set of heuris-
tics to search efficiently in the search space for cor-

rections, in theory, it cannot guarantee that it will
return with a set of corrections. Nevertheless, in all
experiments of Table 2 it always returned with a set
of modifications that rectify the design for the set of
test vectors utilized. This confirms the effectiveness
of the theorems and heuristics presented in Section 3.

To demonstrate the effectiveness of the correction
pruning heuristic 2, Figure 8 plots the average num-
ber (for 10 runs) of correction candidates returned
by the correction algorithm in each iteration (white
bars) versus the ones satisfying heuristic for two cir-
cuits. For each circuit, data for correcting 2 errors
(left pair) and 4 errors (right pair) are given. It is
seen, the heuristic reduces the correction candidates
one order of magnitude (for over 1000 corrections,
to less than 100). This, in effect, reduces both the
runtime and memory usage significantly.

Figure 9 shows the average run-time performance
for all combinational and all sequential circuits used
in the experiments as the number of errors increases.
Performance shows to scale well and the algorithm
remains time efficient. It is also seen, incremental
debugging for full-scan sequential circuits outper-
forms this for combinational circuits. This is be-
cause in full-scan mode, memory elements behave as
pseudo outputs/inputs to reduce the structural level
of the circuit. Path-trace is very effective in these
cases and diagnosis benefits from this fact.

C499 C6288 C7552
0

10

20

30

40

50

60

1 error 2 errors 4 errors

A
vg

. N
um

. N
od

es

(a) Combinational circuits.

S953 S1494 S9234
0

10

20

30

40

50

60

A
vg

. N
um

. N
od

es

(b) Sequential circuits.

Figure 7: Search tree size

5 Conclusion

Design errors may occur in a logic synthesis environ-
ment. The designer often needs to debug a design
yet preserve the engineering effort. We propose a
simulation-based incremental debugging method for
multiple design errors. The method rectifies an erro-
neous design through a sequence of interleaving di-
agnosis and correction steps. Each such step is fast
and brings the functionality of the design “closer” to
its specification. Experiments on benchmark circuits
corrupted by many errors demonstrate the efficiency
and practicality of the approach.

References

[1] E. J. Aas, K. Klingsheim and T. Steen, “Quanti-
fying design quality: a model and design exper-

1

10

100

1000

10000

C6288 S9234

A
vg

. N
um

. C
or

re
ct

io
ns

Figure 8: Effectiveness of Heuristic 2

1 2 4
0

10

20

30

40

50

60

70
Combinational Sequential

Num. Errors

T
im

e
(C

P
U

 s
ec

.)

Figure 9: Run-time behavior

iments,” in Proc. of EURO–ASIC, pp. 172–177,
1992.

[2] M. S. Abadir, J. Ferguson and T. E. Kirkland,
“Logic verification via test generation,” in IEEE
Trans. on CAD, vol. 7, pp. 138–148, January
1988.

[3] M. Abramovici, P. R. Menon and D. T. Miller,
“Critical path tracing: an alternative to fault
simulation,” in IEEE Design and Test of Com-
puters, vol. 1, pp. 89–93, February 1984.

[4] H. A. Asaad, and J. Hayes, “Logic Design
Validation via Simulation and Automatic Test
Pattern Generation,” in Journal of Electronic
Testing: Theory and Applications, Kluwer Aca-
demic Publishers, vol. 16, pp. 575-589, 2000.

[5] V. Boppana and M. Fujita, “Modeling the un-
known!Towards model-independent fault and
error diagnosis,” in Proc. of Int’l Test Confer-
ence, pp. 1094-1101, 1998.

[6] R.E.Bryant, “Graph–Based Algorithms for
Boolean Function Manipulation,” in IEEE
Trans. on Computers, vol.C–35, no.8, pp.677–
691, 1986.

[7] P. Y. Chung, and I. N. Hajj, “Diagnosis and
correction of multiple design errors in digital cir-
cuits,” in IEEE Trans. on VLSI Systems, vol. 5,
no. 2, pp. 233-237, June 1997.

[8] D. V. Campenhout, J. P. Hayes and T. Mudge
“Collection and Analysis of Microprocessor De-
sign Errors,” in IEEE Design and Test of Com-
puters, pp. 51-60, Oct.-Dec. 2000.

[9] I. Hamzaoglu and J. H. Patel “New Techniques
for Deterministic Test Pattern Generation,” in
Proc. IEEE VLSI Test Symposium, pp. 446-
452, 1998.

[10] N. Sridhar and M. S. Hsiao, “On efficient error
diagnosis of digital circuits,” in Proc. of Int’l
Test Conference, pp. 678-687, 2001.

[11] S. Y. Huang, K. C. Chen and K. T. Cheng,
“Error correction based on verification tech-
niques,” in Proc. of ACM/IEEE Design Au-
tomation Conf., pp. 258–261, 1996.

[12] S. Y. Huang and K. T. Cheng, “Error-
Tracer: Design Error Diagnosis Based on
Fault Simulation Techniques,” in IEEE Trans.
on Computer–Aided Design, vol. 18, no. 9,
pp. 1341-1352, September 1999.

[13] H. R. Lewis and C. Papadimitriou, “Elements of
Theory of Computation,” Prentice-Hall, 1981.

[14] C. C. Lin, K. C. Chen, S. C. Chang, M.M-
.Sadowska and K. T. Cheng, “Logic synthesis
for engineering change,” in Proc. of ACM/IEEE
Design Automation Conf., pp. 647–652, 1995.

[15] D. Nayak and D. M. H. Walker, “Simulation-
Based Error Diagnosis and Correction in Com-
binational Digital Circuits,” in Proc. IEEE
VLSI Test Symposium, pp. 70-78, 1999.

[16] I. Pomeranz and S. M. Reddy, “On correction
of multiple design errors,” in IEEE Trans. on
CAD, vol. 14, pp. 255–264, February 1995.

[17] A. Smith, A. Veneris and A. Viglas, “Design Di-
agnosis Using Boolean Satisfiability,” in Proc. of
IEEE Asian-South Pacific Design Automation
Conference, pp. 218-223 January 2004.

[18] A. Veneris, and I. N. Hajj, “Design Error Di-
agnosis and Correction Via Test Vector Sim-
ulation,” in IEEE Trans. on Computer–Aided
Design,vol. 18, no. 12, pp. 1803–1816, Decem-
ber 1999.

[19] A. Veneris, J. Liu, M. Amiri and M. S. Abadir,
“Incremental Diagnosis and Debugging of Mul-
tiple Faults and Errors,” in Proc. of Design and
Test in Europe, pp. 716-721, 2002.

[20] J. B. Liu, A. Veneris and H. Takahashi,
“Incremental Diagnosis for Multiple Open-
Interconnects,” in Proc. of Int’l Test Confer-
ence, pp. 1085-1092, 2002.

[21] S. Venkataraman and W. K. Fuchs, “A deduc-
tive technique for diagnosis of bridging faults,”
in Proc. IEEE/ACM Int’l Conf. on Computer
Aided Design, pp. 562–567, 1997.

