
Functional Fault Equivalence and Diagnostic Test Generation in
Combinational Logic Circuits Using Conventional ATPG

Andreas Veneris1,2 Robert Chang1 Magdy S. Abadir3 Sep Seyedi1

Abstract

Fault equivalence is an essential concept in digital design
with significance in fault diagnosis, diagnostic test gen-
eration, testability analysis and logic synthesis. In this
paper, an efficient algorithm to check whether two faults
are equivalent is presented. If they are not equivalent, the
algorithm returns a test vector that distinguishes them.
The proposed approach is complete since for every pair
of faults it either proves equivalence or it returns a dis-
tinguishing vector. The advantage of the approach lies
in its practicality since it uses conventional ATPG and
it automatically benefits from advances in the field. Ex-
periments on ISCAS’85 and full-scan ISCAS’89 circuits
demonstrate the competitiveness of the method and mea-
sure the performance of simulation for fault equivalence.

1 Introduction

Computing the complete set of fault equivalence classes
in a combinational circuit is a classic problem in digital
circuit design [10]. Two faults are functionally equiva-
lent (or indistinguishable) if no input test vector can dis-
tinguish them at primary outputs. Functional fault equiv-
alence is a relation that allows faults in a circuit to be
collapsed into disjoint sets of equivalent fault classes.

There are many reasons why equivalent fault classes
are important to a designer. Fault diagnosis and diagnos-
tic Automated Test Pattern Generation (ATPG) benefits
from this knowledge. The effectiveness of diagnosis de-
pends on its resolution, that is, its ability to identify a
small set of lines that contain fault(s) [5]. A shorter fault

1University of Toronto, Department of Electrical and Com-
puter Engineering, Toronto, ON M5S 3G4 ({ veneris, rchang, sep
}@eecg.toronto.edu)

2University of Toronto, Department of Computer Science, Toronto,
ON M5S 3G4

3Motorola, Austin, TX 78729 (m.abadir@motorola.com)

list is typically preferred by the test engineer who probes
the circuit to search for the failure. Fault equivalence
information may aid diagnosis since only a single fault
from each class needs to be identified [10]. Addition-
ally, knowledge of fault equivalence classes and distin-
guishing input test vectors improves diagnosis by build-
ing compact fault dictionaries [10].

Another use of fault equivalence is in the field of testa-
bility analysis. By definition, each vector that detects a
fault in an equivalence class is guaranteed to detect all
faults in the same class since their detectability is the
same. In turn, this information can be used by testa-
bility enhancement measures such as observation point
and control point calculations [10]. Finally, fault equiv-
alence is important in logic optimization. Existing tools
optimize a design through an iterative sequence of logic
rewiring transformations that reduce power, increase per-
formance, etc [4, 11, 15]. It has been shown [4, 15], that
logic rewiring operations can be modeled with a set of
equivalent stuck-at faults. Therefore, knowledge of fault
equivalence may improve design rewiring algorithms.

Methods to compute fault equivalence are classified as
structural and functional [10]. Structural methods op-
erate on the circuit graph to identify fault equivalence.
These methods are fast but they have pessimistic results
since they operate on fan-out free circuit regions only.
Functional fault equivalence methods are more expensive
but they typically identify more classes [1, 2, 7, 9, 12].
Some of these methods [1, 2, 12] use logic implica-
tions and/or dominator information to prove equivalence.
Since identifying logic implications is NP-hard [11],
these methods do not utilize the complete set of logic
implications and they may not return the complete set of
fault equivalence classes. Other functional methods [7, 9]
develop ATPG specific engines to check fault equiva-
lence. In theory, these engines may be able to prove the
equivalence of any pair of faults but they require signifi-
cant engineering effort to implement and update with the

rapid advances in ATPG.

In this paper, we present an efficient method that
proves the equivalence of a pair of stuck-at faults. The
method also returns a distinguishing vector if the faults
are proven to be not equivalent. To simplify the discus-
sion, we use the term “fault” to indicate a single stuck-at
fault hereafter. To prove fault equivalence or perform Di-
agnostic Automated Test Pattern Generation (DATPG),
the method performs a sequence of simulation- and
ATPG-based steps. It should be noted, ATPG is not ex-
clusive to the method and other test generation and re-
dundancy checking techniques (BDDs, SAT solvers etc)
can be utilized. However, our selection of conventional
ATPG as the underlying test generation engine comes
from the fact that it has been shown [15] to be a com-
putationally efficient platform for this problem.

The proposed methodology, originally presented in
[3, 16], has a number of characteristics that make it both
efficient and practical. Unlike methods that alter exist-
ing ATPG tools [7, 9], it uses conventional ATPG [6, 11]
and a novel hardware construction to either prove equiv-
alence of the fault pair or return a distinguishing vector.
Therefore, it remains straightforward to implement in an
industrial environment and it automatically benefits from
potential advances in the field of ATPG.

When compared to non-ATPG based techniques [10,
1, 2, 12], the proposed approach is complete. In other
words, for every fault pair it guarantees to prove equiv-
alence or return a distinguishing vector, provided com-
pleteness of the underlying test generation engine. Al-
though existing techniques may not be complete, they
are computationally efficient because they use structural
information to find implications and prove fault equiva-
lence. This structural information is usually collected in
linear time. Therefore, these methods can be used as pre-
processing to the proposed approach to screen some fault
pairs and improve overall run-time.

An extensive suite of experiments confirm the compet-
itiveness of the approach when compared with existing
DATPG tools [7]. The completeness of the method also
allows us to measure the performance of test vector sim-
ulation in fault equivalence and DATPG. The results indi-
cate that a small set of random input test vectors provide
sufficient resolution to the fault equivalence problem with
relatively small error bounds.

The paper is organized as follows. Section 2 presents
the two steps of the proposed functional fault collaps-
ing and DATPG algorithm in terms of single stuck-at
faults. Section 3 presents experiments and discusses fu-
ture work. Section 4 concludes this work.

Parallel_Vector_Simulation(C, F, T)

(1) Simulate test vectors in T and create
indexed bit-lists at every circuit line

(2) For every fault f s-a-v on line l do
(3) fault_signature=0
(4) set bit-list of l to value v
(5) simulate at fan-out cone of l
(6) update fault_signature
(7) restore bit-lists at l fan-out cone
(8) Group faults with same signatures in

same class F_i, i=1 ... n

Figure 1: Pseudocode for PVS (Step 1)

2 Fault Equivalence and DATPG

In this Section we present the two steps of the fault equiv-
alence/DATPG method. The first step computes an ap-
proximation of the final set of fault equivalence classes
using structural fault collapsing and input test vector sim-
ulation. Faults in the same class may or may not be equiv-
alent, but faults in different classes are guaranteed to be
not equivalent. The second step uses conventional ATPG
and a novel hardware construction on pairs of faults in
the same class as computed in Step 1 to either formally
prove the faults are equivalent or perform DATPG.

Since Step 2 computes the exact set of fault equiv-
alence classes, it is of interest to know the quality of
test vector simulation (Step 1) for fault equivalence and
DATPG. Experiments presented in Section 3 suggest that
usually a relatively small set of test vectors provides suf-
ficient resolution to the problem. We now describe the
procedures in detail.

2.1 Parallel Vector Simulation

The implementation starts with structural fault collaps-
ing [10] to prove faults that are structurally proximal as
equivalent so that only one representative fault from each
such set needs be considered in later steps of the algo-
rithm. Let set F be the complete set of representative
faults. The faults in F are examined for equivalence by
Parallel Vector Simulation (PVS).

PVS is a simulation-based procedure that classi-
fies these faults into potentially equivalence classes
F1, F2, . . . , Fn with respect to an input test vector set T .
PVS identifies two faults fA and fB as potentially equiv-
alent and places them in the same class if and only if fA

and fB give the exact same primary output responses for

each test vector from T . Faults in different classes are
guaranteed to be not equivalent since they have different
responses for some vector(s) in T which also acts as a
distinguishing vector(s) for these faults.

Pseudocode for PVS is given in Fig. 1. The input to
PVS is a circuit C, the collapsed set of faults F and a set
of input test vectors T . In experiments, T is a relatively
small set of 100-1000 test vectors. This set of vectors
consists of random vectors and vectors with high stuck-
at fault coverage [8]. The output of PVS is a set of fault
classes F1, F2, . . . , Fn such that two faults fa and fb are
in the same class Fi if and only if they have the exact
same responses for all vectors in T .

At first, PVS simulates in parallel all test vectors in
T and creates an indexed bit-list on every line l in the
circuit as in [15] (Fig. 1, line (1)). The i-th entry of this
bit-list for l contains the logic value of l when the i-th
input test vector is simulated. Since the test set contains
only well defined logic values (0 and 1), these bit-lists are
conveniently stored as arrays of single 32-bit unsigned
long int values.

Next, for every stuck-at v fault f ∈ F on line l, value v
is injected on l and simulated at the fan-out cone of l. The
primary output bit-lists are treated as integers and added
to produce the signature of fault f for test set T (lines
2-6). Once the algorithm computes the signature of f ,
bit-list values are restored at the fan-out cone of l in line
7. This process is repeated for every fault in F . Faults
that have the exact same signatures are grouped together
in line 8 and PVS terminates. Signature matching is im-
plemented efficiently with the use of hash tables.

2.2 Fault Equivalence and DATPG

Step 1 of the algorithm is a fast procedure that screens
the initial set of faults F into a set of potentially fault
equivalence classes F1, F2, . . . , Fn. As explained earlier,
faults from the same class may or may not be equivalent.

Given a pair of faults (fA, fB) ∈ Fi, Step 2 performs a
simple hardware construction and employs conventional
ATPG to formally prove their equivalence or return a
test vector that distinguishes them (DATPG). It should be
noted, formal fault equivalence or DATPG is performed
in a single (atomic) step for each pair of faults. As it is
shown, if the ATPG tools exhausts the solution space and
proves a redundancy, then two fault are formally proven
to be equivalent. On the other hand, if it returns with a
test vector(s), this is also a vector that distinguishes the
faults. We now outline the theory and implementation of
this step in more detail.

f’A
f’B

fA

G40
1

I2

I2

I1

G1

G2

G3

G4 O

(a)

I1

G1

G2

G3

f

0

0

(c)

S

S

1

S
0
1

O

B

S
I1

G1

G2

G3
I2

1
0 G4 O

(b)

1 1
0

Figure 2: Circuits for Examples 1 and 2

Assume, without loss of generality, faults fA s-a-0 and
fB s-a-1 on lines lA and lB of the circuit. To examine
their equivalence, the algorithm attaches two multiplex-
ers, MUXA and MUXB, with common select line S.
The 1-input of MUXA is line lA while its 0-input is con-
nected to constant logic 0. Intuitively, logic 0 indicates a
s-a-0 fault on lA. Similarly, the 0-input of MUXB is the
original line lB and the 1-input is a constant 1.

This construction allows us to simulate the original cir-
cuit under presence of fault fA when S = 0 and the origi-
nal circuit under presence of fB when S = 1. Therefore,
if ATPG for select line S s-a-0 2 exhausts the solution
space returning no test vector to report that the fault on
S is redundant, then (fA, fB) is an equivalent fault pair
[15]. In other words, the original circuit under the pre-
sense of each of the (fA, fB) faults behaves identically.
Otherwise, the input test vector returned is a vector that
distinguishes the two faults.

To illustrate this process, we need to em-

2ATPG for select line S s-a-1 produces similar results.

ploy Roth’s 9-valued alphabet [13] with
pairs of logic values taken from the set
{0/0, 1/1, 0/1, 1/0, 0/X, X/0, 1/X, X/1, X/X}.
Pair of values indicate simulation of two faulty circuits;
one under the presence of fA and the other under the
presence of fB. If the stuck-at fault on select line S
is redundant, it implies that no 0/1 and no 1/0 value
propagate(s) to any primary output. In other words, the
two faulty circuits produce the same response for all
input test vectors and the two faults are indistinguishable.

On the other hand, if a single 0/1 (1/0) difference is
propagated to a primary output, then one (and only one)
of the two faults is guaranteed to be detected. Which
fault is detected depends on the logic simulation value; if
logic simulation gives 0 then fB (fA) is detected at the
primary output since circuit under presence of fA (fB)
and logic simulation have identical values.

Similar reasoning shows that if logic simulation gives
1, then fault fA (fB) is detected. Both faults are de-
tected if appropriate0/1, 1/0 and simulation values prop-
agate to different primary outputs. This is a desirable
phenomenon because a single vector distinguishes both
faults at different primary outputs. Such vectors can be
utilized to compile compact fault dictionaries [10] and
aid diagnosis [5].

The examples that follow illustrate the above proce-
dure. The first example illustrates the case where the two
faults are equivalent. The second example describes a
situation where the faults are not equivalent and a distin-
guishing vector is returned.

Example 1: Consider the circuit in Fig. 2(a) and assume
faults from the same class Fi fA = G2 → G4 and
fB = I2 → G1 both s-a-1. To test their equivalence,
we place two multiplexers, shown as boxes in Fig. 2(b),
with common select line S. The 0-input to the first multi-
plexer is line G2 and the 1-input of the multiplexer is 1 to
represent the presence of a s-a-1 fault. Similarly, the 0-
input of the second multiplexer is a logic 1 while I2 feeds
the other input. In both cases, the output of each multi-
plexer connects to the original output in the circuit. We
observe, when S = 0, we operate on a circuit equivalent
to the one in Fig. 2(a) under the presence of fA and when
S = 1 the circuit is equivalent to the one in Fig. 2(a)
under the presence of fB . ATPG for select line S s-a-0
declares that the fault is redundant. This indicates that
the two circuits are functionally equivalent and confirms
that (fA, fB) is an equivalent fault pair.

Example 2: Consider again circuit in Fig. 2(a) and faults
f ′

A
= G2 → G4 and f ′

B
= I2 → G1 this time both

stuck at logic 0. A similar multiplexer construction as

Fault_Equivalence_DATPG(C, F_1, ..., F_n)

(1) flag=0
(2) for i=1 to n do
(3) randomly select f from F_i
(4) for every f’ in Fi do
(5) perform the MUX construction
(6) if f’ not equivalent to f do
(7) flag=1
(8) place f’ in F_n+1
(9) store distinguishing vector
(10) if flag=1
(11) flag=0
(12) n=n+1

Figure 3: Fault Equivalence and DATPG

in Fig. 2(b) gives circuit shown in Fig. 2(c). The differ-
ence is that a logic 0 is placed on appropriate multiplexer
inputs to indicate a stuck-at-0 fault. ATPG on common
select line S s-a-0 returns test vector (I1, I2) = (0, 0).
This proves that the fault on S is not redundant and faults
f ′

A
and f ′

B
are not equivalent. This is true since the test

vector returned detects fault f ′

A
but does not even excite

fault f ′

B
. In this case, the construction returns a distin-

guishing vector for fault pair (f ′

A
, f ′

B
).

Fig. 3 contains pseudocode for Step 2. For each class
Fi (i = 1 . . . n), a representative f is randomly selected.
For each other member f ′ ∈ Fi, we perform the multi-
plexer construction to check whether f and f ′ are equiv-
alent (lines 4-5). If they are not equivalent, f ′ (and all
other such non-equivalent faults from Fi) is placed in
new class Fn+1 (lines 6-9) which will be examined later
and the distinguishing vector is recorded.

Observe, any such fault f ′ is guaranteed
to be not equivalent with faults in any class
F1, . . . , Fi−1, Fi+1, . . . , Fn by PVS. Faults placed
in Fn+1 may or may not be equivalent. Therefore, class
Fn+1 may get decomposed into new classes when it is
examined later. Moreover, parallel fault simulation is
performed with the distinguishing vector (line 9) for
fault f ′ to identify any additional faults in Fi that are not
equivalent. This may speed the process of decomposing
Fi into new classes and it may save the user from
invoking DATPG explicitly for these faults. We omit
these details that can be found in [10].

The set of classes returned are the exact fault equiva-
lence classes for circuit C and fault set F . DATPG can
be invoked explicitly for classes not treated by PVS by
using a similar multiplexer/ATPG construction to get test
vectors that distinguish between these faults.

Table 1: Parallel Vector Simulation (Step 1)

ckt # of faults # ATOM # of fault classes after PVS CPU
name initial after vectors ATOM ATOM and 500 1000 time

faults collaps. vectors 500 random random random (sec)
c432 798 419 110 371 417 413 418 0.11
c499 2434 1314 127 901 1076 1027 1092 0.59
c880 1770 940 133 857 889 853 868 0.17
c1355 2412 1302 192 1046 1088 1010 1079 0.89
c1908 1802 975 210 714 748 684 767 0.50
c2670 3177 1627 242 1141 1178 1160 1184 0.42
c3540 4116 2143 264 1408 1548 1541 1580 10.9
c5315 7042 3743 216 2971 3404 3381 3415 2.06
c6288 14303 7479 64 6397 6597 6593 6597 0.99
c7552 10081 5321 393 4186 4280 4180 4273 5.98
s820 1470 769 190 553 661 628 670 0.09
s1196 2409 1250 227 840 995 964 1030 0.29
s1238 2257 1185 240 740 929 896 953 0.29
s1494 2786 1458 191 1136 1314 1286 1348 1.22
s5378 6052 3254 358 2235 2521 2192 2552 1.70
s9234 18468 6927 660 3329 3558 3438 3611 878.30
s35932 48520 27106 129 24159 24364 24363 24364 62.20
s38417 76522 31024 1458 23293 23458 23460 23467 32921.00

3 Experiments

We tested the proposed method on an Ultra 5 SUN work-
station with 128 Mb of memory. The details of the ATPG
engine employed can be found in [6, 11]. We use a low
level 1 for recursive learning to provide a fair comparison
with DIATEST [7]. Both algorithms are executed on the
same workstation using the same set of circuits. Using
this approach, the comparsion results accurately measure
the competitiveness of the proposed approach.

We evaluate the proposed technique on ISCAS’85
combinational and full-scan ISCAS’89 sequential bench-
marks optimized for area using script.rugged in
SIS [14]. Test vectors with high stuck-at fault coverage
(ATOM vectors) are computed as in [8]. Run-times re-
ported are in seconds.

Table 1 contains information about PVS. The first col-
umn shows the circuit name and the second column has
the total number of stuck-at faults which is roughly twice
the number of lines, including branches. The third col-
umn shows the faults after structural fault collapsing [10].
We examine the performance of PVS with a set of ran-
dom and stuck-at fault input test vectors. The number
of ATOM vectors is shown in column 4. Columns 5–
8 of Table 1 show the number of distinct fault classes
upon termination of PVS for four different cases with re-
spect to the test vector set T used: (i) ATOM vectors, (ii)
ATOM vectors and 500 random vectors, (iii) 500 random
vectors, and (iv) 1000 random vectors.

Intuitively, the more vectors we simulate the more ac-
curate the results in terms of the final number of classes,
as discussed earlier. A study of the numbers indicates
that a relatively small set of random vectors (case (iv))
gives sufficient resolution and there is little to gain with
a pre-computed set of stuck-at fault test vectors. This is
also illustrated in Fig. 4 that depicts the number n of fault
classes F1, F2, . . . , Fn versus the number of random vec-
tors simulated. It is seen that the number of fault classes
converges with a relatively small number of vectors. We
use the classes from case (iv) as input to Step 2. The last
column of the table contains the total run-time for Step 1.
These times can be improved if PVS is performed by re-
using simulation results, as in critical path tracing [10],
or if a compiled simulator is used.

Table 2 contains information that pertain to Step 2.
Given fault pair (fA, fB), it tests whether the two faults
are equivalent and returns a distinguishing vector if they
are not. Columns 2-4 of Table 2 show values that per-
tain to the case when the faults are equivalent. The total
number of fault pairs checked and the number of final
(complete) fault classes are found in columns 2 and 3.

The relative error for PVS (Step 1), a simulation-based
process, when compared to the formal engine of Step 2 is
found in column 4. It is seen that in many cases the rel-
ative error is rather small (less than 10%). This suggests
that simulation of random vectors provides in most cases
sufficient resolution to compute fault equivalence. There-
fore, the designer is presented with a relatively small
trade-off between time and accuracy.

DATPG results are found in columns 5-7. Col-
umn 5 contains the number of distinguishable fault pairs
checked. Columns 6 and 7 contain the manner in
which these faults are detected. Recall from section 2.2,
DATPG guarantees to detect one fault but it may detect
both faults at different primary outputs. The numbers
in these columns indicate that in as many as half of the
cases, DATPG returns a test vector to distinguish both
faults at different primary output (column 7). This may
reduce the load for test vector compaction and the size of
fault dictionaries and/or aid diagnosis [10].

Column 8 of Table 2 contains the average run-time for
ATPG when the faults are equivalent (redundancy check-
ing). Since ATPG tests pairs of faults in the same class,
the less faults per class in the circuit after PVS, the less
effort ATPG is expected to spend. This circuit-dependent
property is depicted for four benchmarks in Fig. 7. The
graph in that figure contains statistics on the the size of
the fault groups after Step 2 (excluding groups of size 1).
It is seen that most benchmarks favor fault equivalence
groups of size two or three.

Finally, the last two columns in Table 2 provide com-
parison results with DIATEST [7] for the same list of
non-equivalent fault pairs. It is seen, that conventional
ATPG and the hardware construction presented here pro-
vide an attractive alternative. In fact, larger values of
implication learning [11] will speed up the ATPG tool
and further improve the performance of the method. This
confirms the practicality of the approach since it automat-
ically benefits from advances in the field.

In the future, we intend to enhance PVS to re-use sim-
ulation results as in critical path tracing [10] and explore
fault equivalence and DATPG for other fault types.

4 Conclusion

Fault equivalence is important in digital circuit design. A
method for fault equivalence and diagnostic ATPG using
simulation-based and ATPG-based techniques was pre-
sented. It uses conventional ATPG and a simple hard-
ware construction to prove equivalence or return distin-
guishing input test vectors. Experiments demonstrate its
effectiveness and competitiveness.

Acknowledgments

The authors thank Dean W. K. Fuchs and Dr. E. Amyeen
for their technical comments and support in this work.

of Random Vectors

s5378

s1494

1300

2600

of Random Vectors

c3540

c1908

1600

800

classes # classes

250 1000500 750 250 1000500 750

Figure 4: Performance of PVS

2

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
������

���
���
���

	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

3

s5378

c5315

of

 g
ro

up
s

of

 g
ro

up
s

1

5

Group Size
> 4432

167

13

Group Size
> 44

c2670

2

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���

���
���
���

�����
�����
�����

���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

3

of
 g

ro
up

s

of
 g

ro
up

s

s1196

3

2

8

Group Size
> 4432

56

11

Group Size
> 44

Figure 5: Fault Class Distribution

References

[1] M. E. Amyeen, W. K. Fuchs, I. Pomeranz and
V. Boppana, “Fault Equivalence identification us-
ing redundancy information and static and dynamic
extraction,” in Proc. of IEEE VLSI Test Symposium,
pp. 124-130, 2001.

[2] M. E. Amyeen, W. K. Fuchs, I. Pomeranz, and
V. Boppana, “Implication and evaluation techniques
for proving fault equivalence,” Proc. IEEE VLSI
Test Symp., pp. 201-207, 1999.

[3] R. Chang, S. Seyedi, A. Veneris and M. S. Abadir,
“Exact Functional Fault Collapsing in Combina-
tional Logic Circuits,” in IEEE Latin American Test
Workshop, pp. 40-46, 2003.

Table 2: Fault Equivalence and DATPG (Step 2)

ckt ATPG DATPG CPU (sec) CPU comparison
name # pairs # final % err # pairs faults detected fault DATPG DIATEST

checked classes PVS checked one both equivalence proposed [7]
c432 1 419 0.2 111 70 41 0.03 0.00 0.00
c499 17 1106 1.3 84 28 56 0.14 0.02 0.08
c880 104 892 2.7 128 45 83 0.02 0.01 0.01
c1355 18 1094 1.4 80 25 55 0.22 0.07 0.05
c1908 335 830 7.6 129 39 90 0.06 0.05 0.01
c2670 6203 1443 18.0 127 73 54 0.07 0.05 0.05
c3540 8914 1839 14.1 116 62 54 0.10 0.09 0.09
c5315 184 3480 1.9 129 42 87 0.11 0.09 0.09
c6288 892 6973 5.4 94 77 17 0.42 0.05 0.09
c7552 8768 4737 9.8 130 46 84 0.50 0.16 0.13
s820 869 754 11.1 82 57 25 0.06 0.00 0.01
s1196 5897 1214 15.1 63 49 14 0.10 0.01 0.06
s1238 8600 1147 16.9 70 60 10 0.09 0.00 0.14
s1494 481 1450 7.0 50 41 9 0.08 0.02 0.08
s5378 5398 2937 13.1 94 36 58 0.08 0.02 0.02
s9234 5090 4103 12.0 108 14 94 0.42 0.04 0.25
s35932 2742 24748 1.5 100 15 85 0.75 0.16 0.71
s38417 6419 29794 21.2 125 18 107 1.28 0.14 0.31

[4] S. C. Chang and M. Marek-Sadowska, “Perturb
and Simplify: Multi-Level Boolean Network Op-
timizer,” in Proc. Int’l Conference on Computer-
Aided Design, pp. 2-5, 1994.

[5] G. Fey and R. Drechsler, “Finding Good Counter-
Examples to Aid Design Verification,” in ACM and
IEEE Int’l Conference on Formal Method and Mod-
els for Codesign (MEMOCODE), pp. 51-52, 2003.

[6] H. Fujiwara and T. Shimono, “On the Acceleration
of Test Generation Algorithms,” in IEEE Trans. on
Computers, vol. C-32, no. 12, December 1983.

[7] T. Gruning, U. Mahlstedt, and H. Koopmeiners,
“DIATEST: A fast diagnostic test pattern generator
for combinational circuits,” in Proc. Int’l Conf. on
Computer-Aided Design, pp. 194-197, 1991.

[8] I. Hamzaoglu and J. H. Patel, “New Techniques for
Deterministic Test Pattern Generation,” in Proc. of
VLSI Test Symposium, pp. 446-452, 1998.

[9] I. Hartanto, V. Boppana, W. K. Fuchs, J. H. Patel,
“Diagnostic Test Pattern Generation for Sequential
Circuits,” Proc. of IEEE VLSI Test Symp., pp. 196-
202, 1997.

[10] N. Jha and S. Gupta, Testing of Digital Systems,
Cambridge University Press, 2003.

[11] W. Kunz and D. K. Pradhan, “Recursive Learning:
A New Implication Technique for Efficient Solu-
tions to CAD Problems–Test, Verification, and Op-
timization,” in IEEE Trans. on Computer-Aided De-
sign, vol. 13, no. 9, pp. 1143-1158 September 1994.

[12] A. V. S. S. Prasad, V. D. Agrawal, and M. V. Atre,
“A New Algorithm for Global Fault Collapsing into
Equivalence and Dominance Sets,” in Proc. IEEE
Int’l Test Conf., pp. 391-397, 2002.

[13] J. P. Roth, “Diagnosis of automata failures: A cal-
culus & a method,” IBM Journal of Research De-
velopment, vol. 10, pp. 278-291, June 1966.

[14] E. Sentovich, K. Singh, C. Moon, H. Savoj,
R. Brayton, and A. Sangiovanni-Vincentelli, “Se-
quential Circuit Design Using Synthesis and Opti-
mization,” in Proc. of Int’l Conference on Computer
Design, pp. 328-333, 1992.

[15] A. Veneris and M. S. Abadir, “Design Rewiring
Using ATPG,” in Proc. IEEE Trans. on Computer-
Aided Design, vol. 21, no. 12, pp. 1469-1479, De-
cember 2002.

[16] A. Veneris, R. Chang, M. S. Abadir and M. Amiri,
“Fault Equivalence and Diagnostic Test Generation
Using ATPG,” in IEEE Int’l Symposium on Systems
and Circuits, 2004.

