
Monarch: A Platform for Logic Optimization
using ATPG/Diagnosis-based Design Rewiring

 J. Brandon Liu Magdy S. Abadir Robert Chang Andreas Veneris

SPS, Motorola
Austin, TX

{Brandon.Liu, M.Abadir}@motorola.com

Dept. of ECE and CS
University of Toronto

{rchang, veneris}@eecg.utoronto.ca

Abstract
In a typical VLSI design cycle,

technology-dependent logic optimization
may occur after the physical synthesis
to satisfy various design constraints in
area, power, timing, and testability.
Recently, it is proposed in [7] an ATPG-
based design rewiring methodology that
achieves significant performance gains
in benchmark circuits that are already
optimized by formal techniques. This
case study describes an application of
this technique as a logic optimization
platform for Motorola high-performance
designs: Monarch. The flow, which
consists of EDA vendor tools and in-
house software, allows the design error
diagnosis and correction techniques of
[7] to be applied to gate-level modules in
high-performance cores. Experiments
in timing optimization show that
Monarch can improve the slack of a
module that has been already optimized
by tools from commercial EDA vendors.

1. Introduction
In logic optimization, the gate-level

netlist from high-level synthesis tools is
locally re-synthesized to achieve certain
design constraints, which are often a
combination of area, power, timing and
testability. Technology-dependent logic
optimization operates on designs that
have been mapped to a technology
library characterized at physical level.
Automatic test pattern generation
(ATPG)-based optimization techniques
have demonstrated their effectiveness in
area minimization, power reduction,

performance optimization, routing, and
design for testability [1,3,4,5].

ATPG/Diagnosis-based [7] design
rewiring (ADDR) combines some
existing techniques in design error
diagnosis and correction and ATPG,
and complements them with new
theorems and heuristics. A general flow
for ADDR is given in Figure 1. It
operates on a flattened gate-level
combinational or full-scan sequential
netlist. First, an arbitrary design error is
injected, which is commonly the removal
of a wire. Then using an ATPG tool, a
set of test vectors are generated which
can detect the error. The third step is
to use a simulation-based design error
diagnosis and correction algorithm such
as the one in [6], which returns a set of
corrections for the vectors used. Lastly,
these corrections are formally verified
against the original netlist. Multiple
corrections may exist due to the
redundancies in the design and the
method takes advantage of such
corrections to improve performance.
The complete ADDR process may be
repeated multiple times over the newly
generated netlist. In theory, ADDR
allows unlimited type and amount of
structural logic transformations in the
circuit [7].

ADDR can serve as the core engine
in a logic optimization flow by making
technology-dependent choices during
error injection and netlist selection (the
highlighted blocks in Figure 1). Given an
optimization constraint, the selection of
error and correction can greedily bring
the design closer to satisfying the
constraint. This case study describes

one such platform developed at
Motorola Somerset design center using
vendor and in-house tools: Monarch. It
allows ADDR-based logic optimization,
which was only available to non-
hierarchical public-domain benchmark
designs previously, to run on
hierarchical gate-level modules in high-
performance microprocessor cores.
Experiments on timing optimization
show improvement over that obtained
by vendor tools.

The rest of the paper is organized as
follows. The next section outlines the
implementation of Monarch. Section 3
describes the use of Monarch in a
typical physical synthesis flow.
Experiment results are given in Section
4 and conclusions in Section 5.

2. Implementation
Monarch implements all the theorems
and heuristics summarized in [6]. It
leverages the proven correctness and
efficiency of vendor tools by using them
whenever possible. Its core diagnosis
and correction engine, which is named
Chrysalis, is developed in-house. The
schematic flow of Monarch is presented
in Figure 2. Here, it is tailored to timing
optimization.

Monarch accepts a hierarchical
gate-level combinational or full-scan
sequential verilog netlist. Physical

characterizations such as timing, power
and placement are accessible in
standard libraries. The design first
undergoes static timing analysis. The
critical path is identified for each clock
domain and the flow continues if there is
any negative slack (Slack is the
difference between the actual and
expected signal arrival time. A negative
slack means a violation of some timing
requirement.).

Monarch iteratively tries to shorten
the critical path by cutting it at various
places (i.e. removing a wire from the
path) and find, if it exists, an alternative
correction that results in a greater slack.
A new verilog netlist is prepared with the
injected error by using a netlister. Test
vectors are then generated with an
ATPG tool. Instead of generating
specific vectors for the injected error, a
vector set with 100% stuck-at fault
coverage is generated for the original
(error-free) design. It is shown in [7]
that such a vector set prunes efficiently
false corrections by simulation.

The verilog testbench file from the
ATPG tool is suitably modified to contain
a number of Verilog PLI (IEEE standard
1364-2001) calls, which serves as an
interface between any commercial
verilog simulator and our diagnosis and
correction engine: Chrysalis. The former
simulates the testbench while the latter
extracts the circuit structure and

Figure 1 General flow for ADDR.

simulation results through the PLI
interface, and proposes alternative
corrections. Chrysalis augments the
techniques in [6] by an X-simulation-
based method for capturing sensitized
paths described in [2] to efficiently prune
the wires returned by diagnosis.

Corrections delivered to formal
verification have already passed two
stages of simulation in Chrysalis. First,
a zero-gate-delay parallel-vector
simulator verifies the combinational
portion of the design. This quickly
eliminates the majority of the false
corrections. If their number is still high,
the remaining corrections undergoes full
error simulation with the help of the
commercial simulator and PLI calls.
The passing corrections are verified for
its logic equivalence against the original
netlist with a formal equivalence
checker.

Static timing analysis is run on all
the equivalent corrections to extract the
new critical path. The flow can be
continued greedily by preparing a netlist
with the error and correction that have
the highest slack and repeat the steps
above.

The highlighted blocks in Figure 2
constitute the ADDR flow, which can be

used as the core component for
optimization flows targeting other
constraints such as power and
routability. In the current
implementation, the diagnosis and
correction block makes use of arrival
and departure information from timing
analysis to intelligently look for
corrections that can more likely increase
the slack. This approach improves its
efficiency by eliminating unpromising
corrections early. A similar approach
can be taken in Monarch for other
optimization settings.

3. Usage
A typical physical synthesis engine

accepts the RTL description of a design
and timing constraints among others,
and goes through iterative steps of gate
synthesis, placement optimization,
sizing optimization, legalization, etc. to
produce a technology-mapped gate-
level netlist and its physical-level
information. The netlist is re-timed with
the wire delay extracted from layout.
Manual hacking of the netlist often
ensues if the constraints are violated.

Figure 3 depicts the use of Monarch
potentially to replace the manual effort.
It takes the technology-mapped netlist

Figure 2 Detailed implementation of the Monarch flow for timing.

and the extracted wire delay (not
shown), and improves the worst slack
with its Chrysalis engine. The resultant
netlist goes through an incremental
physical synthesis flow, which consists
of placement, resizing and legalization,
to produce the final netlist and its
physical level data. A designer can
then verify that the changes are
acceptable and take further steps if the
timing characteristics are still not
satisfactory.

4. Experiment
We ran the Monarch flow for timing

on five full-scan sequential modules of a
high-performance microprocessor core.
The experiment procedure is similar to
that in Figure 3. Static timing analysis
was performed with Synopsys
PrimeTime™,1 and Synopsys
Physical Compiler™,2 was used as
the physical synthesis tool. Chrysalis
was configured to perform rewiring
alone: the three permitted operations
were 1) remove a connection; 2) make a

1 PrimeTime™ is a registered trademark of
Synopsys, Inc.
2 Physical Compiler™ is a registered trademark
of Synopsys, Inc.

new connection; 3) library cell type
change (e.g. 2-input nand to 3-input
nand, 2-input nor to inverter).

Worst Slack Ckt Size

Original Monarch

Slack
Improv

1 2481 -500.17 -462.99 7.6
2 1482 -10.46 -7.43 29
3 7841 -36.61 -20.85 44
4 4484 -428.42 -380.06 11
5 3621 -231.92 -220.02 5.1

Avg 19.3

Table 1 PrimeTime timing result.

Two sets of timing reports were
obtained for comparison: from
PrimeTime™,1 after Monarch and from
Physical Compiler™,2. Physical data
such as core area, average wire length,
etc. were also extracted and compared.

Table 1 summarizes the results from
PrimeTime™,1. The column “size” is
the number of combinational primitives
in the circuit. The next two columns
shows the worst slack before and after
Monarch. The last column has the
percentage improvement in slacks.
Monarch introduced between 2 and 10
rewiring changes for each of these
circuits. The last row of the table shows

Figure 3 Monarch in a physical synthesis flow.

the average slack improvement, which
is 19.3 %.

Physical-level timing and layout
information are summarized in Table 2.
“Average wire length” refers to the
average length of nets in the final layout.
That the change in this length is
miniscule suggests that the gain in slack
does not come at the cost of significant
routing difficulties. The die area, which
is not given in the table, remains the
same. Slack improvement presented
here, 12.7 % on average, is more
accurate because realistic wire delays
are incorporated in the computation.

Although the improvement in slacks
is not large enough to eliminate timing
violation, we believe that Monarch is a
new addition to the arsenal of tools for
timing optimization. It differs from
conventional techniques such as buffer
insertion and gate resizing and
complements them in achieving timing
closure. With the incorporation of more
error/correction models in the Chrysalis
engine, a greater improvement is
expected at a larger impact to the
eventual physical characteristics. More
experiments are needed to study the
potential tradeoff.

5. Conclusion
Monarch, a versatile platform for

gate-level logic optimization, is
presented in this paper. It uses the
ADDR algorithm for rewiring and
154.3+consists of EDA vendor and in-

house tools. When it is used on several
modules in a high-performance
microprocessor core, Monarch improves
their timing over that achieved by
vendor tools.

Bibliography
1. Chang, S. C., K. T. Cheng, N. S. Woo

and M. Marek-Sadowska, “Post-layout
logic restructuring using alternative
wires,” IEEE TCAD, vol. 16, Jun. 1997.

2. Liu, J. B., A.Veneris and H.Takahashi,
“Incremental diagnosis of multiple open
interconnects,” in IEEE Int'l Test
Conference 2002.

3. Rohfleisch, B. A. Lolbl, and B. Wurth,
“Reducing power dissipation after
technology mapping by structural
transformations,” in Proc. DAC
conference 1996.

4. Steiz, G. B. M. Riess, B. Rohfleisch,
and F. M. Johannes, “Performance
optimization by interacting netlist
transformation and placement,” IEEE
TCAD, vol. 19, Mar. 2000.

5. Veneris, A., M.Amiri and I.Ting,
“Design rewiring for power
minimization,” ISCAS conference 2002.

6. Veneris, A., J. B.Liu, M.Amiri and
M.S.Abadir, ``Incremental diagnosis
and debugging of multiple faults and
errors,'' IEEE DATE Conference 2002.

7. Veneris, A. and M.S.Abadir, ``Design
rewiring using ATPG'', IEEE TCAD,
vol. 21, no,12, pp.1469-1479, Dec 2002.

 Original Monarch

Ckt

Average
wire

length

Slack Average
wire

length

Slack
Slack
Improv

(%)

 1 154.3 -490.6 159.7 -459.0 8.4

 2 182.4 -7.45 178.8 -6.50 12.8

 3 222.7 -38.21 222.0 -27.43 28.2
 4 236.1 -418.8 234.0 -376.1 10.2

 5 139.0 -494.6 138.0 -474.2 4.1

 Avg 186.9 186.5 12.7

Table 2 Timing result after physical synthesis.

