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Abstract 
In a typical VLSI design cycle, 

technology-dependent logic optimization 
may occur after the physical synthesis 
to satisfy various design constraints in 
area, power, timing, and testability.  
Recently, it is proposed in [7] an ATPG-
based design rewiring methodology that 
achieves significant performance gains 
in benchmark circuits that are already 
optimized by formal techniques.  This 
case study describes an application of 
this technique as a logic optimization 
platform for Motorola high-performance 
designs: Monarch.  The flow, which 
consists of EDA vendor tools and in-
house software, allows the design error 
diagnosis and correction techniques of 
[7] to be applied to gate-level modules in 
high-performance cores.   Experiments 
in timing optimization show that 
Monarch can improve the slack of a 
module that has been already optimized 
by tools from commercial EDA vendors. 

1. Introduction 
In logic optimization, the gate-level 

netlist from high-level synthesis tools is 
locally re-synthesized to achieve certain 
design constraints, which are often a 
combination of area, power, timing and 
testability. Technology-dependent logic 
optimization operates on designs that 
have been mapped to a technology 
library characterized at physical level.  
Automatic test pattern generation 
(ATPG)-based optimization techniques 
have demonstrated their effectiveness in 
area minimization, power reduction, 

performance optimization, routing, and 
design for testability [1,3,4,5].   

ATPG/Diagnosis-based [7] design 
rewiring (ADDR) combines some 
existing techniques in design error 
diagnosis and correction and ATPG, 
and complements them with new 
theorems and heuristics.  A general flow 
for ADDR is given in Figure 1.   It 
operates on a flattened gate-level 
combinational or full-scan sequential 
netlist.  First, an arbitrary design error is 
injected, which is commonly the removal 
of a wire.  Then using an ATPG tool, a 
set of test vectors are generated which 
can detect the error.   The third step is 
to use a simulation-based design error 
diagnosis and correction algorithm such 
as the one in [6], which returns a set of 
corrections for the vectors used.  Lastly, 
these corrections are formally verified 
against the original netlist.  Multiple 
corrections may exist due to the 
redundancies in the design and the 
method takes advantage of such 
corrections to improve performance. 
The complete ADDR process may be 
repeated multiple times over the newly 
generated netlist.   In theory, ADDR 
allows unlimited type and amount of 
structural logic transformations in the 
circuit [7].  

ADDR can serve as the core engine 
in a logic optimization flow by making 
technology-dependent choices during 
error injection and netlist selection (the 
highlighted blocks in Figure 1). Given an 
optimization constraint, the selection of 
error and correction can greedily bring 
the design closer to satisfying the 
constraint. This case study describes 



one such platform developed at 
Motorola Somerset design center using 
vendor and in-house tools: Monarch.  It 
allows ADDR-based logic optimization, 
which was only available to non-
hierarchical public-domain benchmark 
designs previously, to run on 
hierarchical gate-level modules in high-
performance microprocessor cores. 
Experiments on timing optimization 
show improvement over that obtained 
by vendor tools. 

The rest of the paper is organized as 
follows. The next section outlines the 
implementation of Monarch.  Section 3 
describes the use of Monarch in a 
typical physical synthesis flow. 
Experiment results are given in Section 
4 and conclusions in Section 5. 

2. Implementation 
Monarch implements all the theorems 
and heuristics summarized in [6].  It 
leverages the proven correctness and 
efficiency of vendor tools by using them 
whenever possible.   Its core diagnosis 
and correction engine, which is named 
Chrysalis, is developed in-house.  The 
schematic flow of Monarch is presented 
in Figure 2.  Here, it is tailored to timing 
optimization. 

Monarch accepts a hierarchical 
gate-level combinational or full-scan 
sequential verilog netlist. Physical 

characterizations such as timing, power 
and placement are accessible in 
standard libraries.  The design first 
undergoes static timing analysis.  The 
critical path is identified for each clock 
domain and the flow continues if there is 
any negative slack (Slack is the 
difference between the actual and 
expected signal arrival time. A negative 
slack means a violation of some timing 
requirement.).  

Monarch iteratively tries to shorten 
the critical path by cutting it at various 
places (i.e. removing a wire from the 
path) and find, if it exists, an alternative 
correction that results in a greater slack.  
A new verilog netlist is prepared with the 
injected error by using a netlister. Test 
vectors are then generated with an 
ATPG tool.  Instead of generating 
specific vectors for the injected error, a 
vector set with 100% stuck-at fault 
coverage is generated for the original 
(error-free) design.  It is shown in [7] 
that such a vector set prunes efficiently 
false corrections by simulation.   

The verilog testbench file from the 
ATPG tool is suitably modified to contain 
a number of Verilog PLI (IEEE standard 
1364-2001) calls, which serves as an 
interface between any commercial 
verilog simulator and our diagnosis and 
correction engine: Chrysalis. The former 
simulates the testbench while the latter 
extracts the circuit structure and 

 
Figure 1 General flow for ADDR. 



simulation results through the PLI 
interface, and proposes alternative 
corrections.  Chrysalis augments the 
techniques in [6] by an X-simulation-
based method for capturing sensitized 
paths described in [2] to efficiently prune 
the wires returned by diagnosis. 

Corrections delivered to formal 
verification have already passed two 
stages of simulation in Chrysalis.  First, 
a zero-gate-delay parallel-vector 
simulator verifies the combinational 
portion of the design.  This quickly 
eliminates the majority of the false 
corrections.  If their number is still high, 
the remaining corrections undergoes full 
error simulation with the help of the 
commercial simulator and PLI calls.  
The passing corrections are verified for 
its logic equivalence against the original 
netlist with a formal equivalence 
checker.   

Static timing analysis is run on all 
the equivalent corrections to extract the 
new critical path.  The flow can be 
continued greedily by preparing a netlist 
with the error and correction that have 
the highest slack and repeat the steps 
above.  

The highlighted blocks in Figure 2 
constitute the ADDR flow, which can be 

used as the core component for 
optimization flows targeting other 
constraints such as power and 
routability. In the current 
implementation, the diagnosis and 
correction block makes use of arrival 
and departure information from timing 
analysis to intelligently look for 
corrections that can more likely increase 
the slack.  This approach improves its 
efficiency by eliminating unpromising 
corrections early.  A similar approach 
can be taken in Monarch for other 
optimization settings.  

3. Usage  
A typical physical synthesis engine 

accepts the RTL description of a design 
and timing constraints among others, 
and goes through iterative steps of gate 
synthesis, placement optimization, 
sizing optimization, legalization, etc. to 
produce a technology-mapped gate-
level netlist and its physical-level 
information.   The netlist is re-timed with 
the wire delay extracted from layout.  
Manual hacking of the netlist often 
ensues if the constraints are violated.  

Figure 3 depicts the use of Monarch 
potentially to replace the manual effort. 
It takes the technology-mapped netlist 

 
Figure 2 Detailed implementation of the Monarch flow for timing. 



and the extracted wire delay (not 
shown), and improves the worst slack 
with its Chrysalis engine.  The resultant 
netlist goes through an incremental 
physical synthesis flow, which consists 
of placement, resizing and legalization, 
to produce the final netlist and its 
physical level data.   A designer can 
then verify that the changes are 
acceptable and take further steps if the 
timing characteristics are still not 
satisfactory. 
 

4. Experiment 
We ran the Monarch flow for timing 

on five full-scan sequential modules of a 
high-performance microprocessor core.  
The experiment procedure is similar to 
that in Figure 3. Static timing analysis 
was performed with Synopsys 
PrimeTime™,1 and Synopsys 
Physical Compiler™,2 was used as 
the physical synthesis tool.  Chrysalis 
was configured to perform rewiring 
alone: the three permitted operations 
were 1) remove a connection; 2) make a 

                                                 
1 PrimeTime™ is a registered trademark of  
Synopsys, Inc. 
2 Physical Compiler™ is a registered trademark 
of  Synopsys, Inc. 

new connection; 3) library cell type 
change (e.g. 2-input nand to 3-input 
nand, 2-input nor to inverter).   

 
Worst Slack Ckt Size 

Original Monarch 

Slack 
Improv 

1 2481 -500.17 -462.99 7.6 
2 1482 -10.46 -7.43 29 
3 7841 -36.61 -20.85 44 
4 4484 -428.42 -380.06 11 
5 3621 -231.92 -220.02 5.1 

Avg    19.3 

Table 1 PrimeTime timing result. 

Two sets of timing reports were 
obtained for comparison: from 
PrimeTime™,1 after Monarch and from 
Physical Compiler™,2.  Physical data 
such as core area, average wire length, 
etc. were also extracted and compared.  

Table 1 summarizes the results from 
PrimeTime™,1.  The column “size” is 
the number of combinational primitives 
in the circuit.  The next two columns 
shows the worst slack before and after 
Monarch. The last column has the 
percentage improvement in slacks.   
Monarch introduced between 2 and 10 
rewiring changes for each of these 
circuits.  The last row of the table shows  

 
Figure 3 Monarch in a physical synthesis flow. 



the average slack improvement, which 
is 19.3 %. 

Physical-level timing and layout 
information are summarized in Table 2.  
“Average wire length” refers to the 
average length of nets in the final layout.  
That the change in this length is 
miniscule suggests that the gain in slack 
does not come at the cost of significant 
routing difficulties.  The die area, which 
is not given in the table, remains the 
same.   Slack improvement presented 
here, 12.7 % on average, is more 
accurate because realistic wire delays 
are incorporated in the computation. 

Although the improvement in slacks 
is not large enough to eliminate timing 
violation, we believe that Monarch is a 
new addition to the arsenal of tools for 
timing optimization.  It differs from 
conventional techniques such as buffer 
insertion and gate resizing and 
complements them in achieving timing 
closure.   With the incorporation of more 
error/correction models in the Chrysalis 
engine, a greater improvement is 
expected at a larger impact to the 
eventual physical characteristics. More 
experiments are needed to study the 
potential tradeoff.  

5. Conclusion 
Monarch, a versatile platform for 

gate-level logic optimization, is 
presented in this paper. It uses the 
ADDR algorithm for rewiring and 
154.3+consists of EDA vendor and in-

house tools.  When it is used on several 
modules in a high-performance 
microprocessor core, Monarch improves 
their timing over that achieved by 
vendor tools. 
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Slack 
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(%) 

 

 1 154.3 -490.6 159.7 -459.0 8.4  

 2 182.4 -7.45 178.8 -6.50 12.8  

 3 222.7 -38.21 222.0 -27.43 28.2  
 4 236.1 -418.8 234.0 -376.1 10.2  

 5 139.0 -494.6 138.0 -474.2 4.1  

 Avg 186.9  186.5  12.7  

Table 2 Timing result after physical synthesis. 


