
Chapter 1

Automated Logic Restructuring with aSPFDs

1.1 Chapter Overview

This chapter presents a comprehensive methodology to automate logic restructuring

in combinational and sequential circuits. This technique algorithmically constructs

the required transformation by utilizing a functional flexibility representation called

Set of Pairs of Function to be Distinguished (SPFD). SPFDs can express more func-

tional flexibility than the traditional don’t cares and have proved to provide addi-

tional degrees of flexibility during logic synthesis [21, 27].

Computing SPFDs may suffer from memory or runtime problems [16]. There-

fore, a simulation-based approach to approximate SPFDs is presented to alleviate

those issues. The result is called Approximate SPFDs (aSPFDs). aSPFDs approxi-

mate the information contained in SPFDs using the results of test-vector simulation.

With the use of aSPFDs as a guideline, the algorithm searches for the necessary nets

to construct the required function. Experimental results indicate that the proposed

methodology can successfully restructure locations where a previous approach that

uses a dictionary model [1] as the underlying transformation template fails.

The remainder of this chapter is structured as follows. Section 1.2 discusses

the motivation of restructuring logic-level design. Section 1.3 summarizes previ-

ous work in logic restructuring, as well as the basic concept of SPFDs. Section 1.4

defines aSPFDs and the procedures used to generate aSPFDs. Section 1.5 presents

the transformation algorithms utilizing aSPFDs. Experimental results are given in

Section 1.6, followed by the conclusion in Section 1.7.

1.2 Introduction

During the chip design cycle, small structural transformations in logic netlists are

often required to accommodate different goals, For example, the designer needs to

rectify designs that fail functional verification at locations identified by a debugging
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program [23, 6]. In the case of engineering changes (EC) [13], a logic netlist is mod-

ified to reflect specification changes at a higher level of abstraction. Logic transfor-

mations are also important during rewiring-based post-synthesis performance op-

timization [24, 10] where designs are optimized at particular internal locations to

meet specification constraints.

Although these problems can be resolved by another round of full logic syn-

thesis, directly modifying logic netlists is usually preferable in order to preserve

any engineering effort that has been invested. Hence, logic restructuring has signif-

icant merits when compared to re-synthesis. Today, most of these incremental logic

changes are implemented manually. The engineer examines the netlist to determine

what changes need to be made and how they can affect the remainder of the design.

One simple ad-hoc logic restructuring techniquemodifies the netlist by using per-

missible transformations from a dictionary model [1], which contains a set of simple

modifications, such as single wire additions or removals. This technique is mostly

adapted for design error correction [6, 18] and has been used in design rewiring

as well [24]. A predetermined dictionary model, although effective at times, may

not be adequate when complex transformations are required. It has been shown that

a dictionary-model based design error correction tool can only successfully rectify

10-30% of cases [28]. Complex modifications perturb the functionality of the design

in ways that simple dictionary-driven transformations may not be able to address.

Therefore, automated logic transformation tools that can address these problems

effectively are desirable.

The work presented in this chapter aims to develop a comprehensive methodol-

ogy to automate logic restructuring in combinational and sequential circuits. It first

presents a simulation-based technique to approximate SPFDs, or simply aSPFDs.

Using aSPFDs can keep the process memory and runtime efficient while taking ad-

vantage of most of the benefits of SPFDs. Then, an aSPFD-based logic restructuring

methodology is presented. It uses aSPFDs as a guideline to algorithmically restruc-

ture the functionality of an internal node in a design. Two searching algorithms, an

SAT-based algorithm and a greedy algorithm, are proposed to find nets required for

restructuring the transformation. The SAT-based algorithm selects minimal num-

bers of wires, while the greedy algorithm returns sub-optimal results with a shorter

runtime.

Extensive experiments confirm the theory of the proposed technique and show

that aSPFDs provide an effective alternative to dictionary-based transformations. It

returns modifications where dictionary-based restructuring fails, increasing the im-

pact of tools for debugging, rewiring, EC, etc. For combinational circuits, the pro-

posed approach can identify five times more valid transformations than a dictionary-

based one. Experiments also demonstrate the feasibility of using aSPFDs to restruc-

ture sequential designs. Although this method bases its results on a small sample of

the input test vector space, empirical results show that more than 90% of the first

solution returned by the method passes formal validation.
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1.3 Background

This section reviews previous work on logic restructuring and summarizes the con-

cept of SPFDs.

1.3.1 Prior Work on Logic Restructuring

Most research done on logic restructuring deals with combinational designs. In [26],

the authors insert circuitry before and after the original design so that the function-

ality of the resulting network complies with the required specifications. The main

disadvantage of this approach is that the additional circuitry may be too large and

can dramatically change the performance of the design.

Redundancy addition and removal (RAR) [10, 5] is a post-synthesis logic opti-

mization technique. It optimizes designs through the iterative addition and removal

of redundantwires. All logic restructuring operations performed by RAR techniques

are limited to single wire additions and removals. There is little success in trying to

add and remove multiple wires simultaneously due to a large search space and com-

plicated computation [4].

In [24], the authors view logic optimization from a logic debugging angle. It

introduces a design error into the design, identifies locations for correction with

a debug algorithm, and rectifies those locations with a dictionary model [1]. This

method has been shown to exploit the complete solution space, and offers great

flexibility in optimizing a design and achieving larger performance gains. The tech-

nique presented in this chapter adapts the same viewpoint to logic restructuring.

Two recent approaches [14, 3] are similar to the one presented in this chapter.

They construct the truth table of the new function at the location that requires re-

structuring and synthesize the new function based on the table. However, both ap-

proaches provide few descriptions on the application on sequential designs.

1.3.2 Sets of Pairs of Functions to be Distinguished

Sets of Pairs of Function to be Distinguished (SPFD) is a representation that pro-

vides a powerful formalism to express the functional flexibility of nodes in a multi-

level circuit. The concept of SPFD was first proposed by Yamashita et al. [27] for

applications in FPGA synthesis, and has been used in many applications for logic

synthesis and optimization [7, 21, 22].

Formally, an SPFD

R = {(g1a,g1b),(g2a,g2b), · · · ,(gna,gnb)} (1.1)
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Fig. 1.1 The graphical representation of SPFD R = {(ab,ab), (ab,ab)}

denotes a set of pairs of functions that must be distinguished. That is, for each pair

(gia,gib) ∈ R, the output of the node (wire) associated with R must have different

values between a minterm of gia and a minterm of gib.

In [21], an SPFD is represented as a graph, G = (V,E), where

V = {mk | mk ∈ gi j,1≤ i≤ n, j = {a,b}}

E = {(mi,m j) | {(mi ∈ gpa) and (m j ∈ gpb)}

or {(mi ∈ gpb) and (m j ∈ gpa)},

1≤ p≤ n} (1.2)

This graphical representation makes it possible to visualize SPFDs and can ex-

plain the concept of SPFDs more intuitively. Figure 1.1 depicts the graph repre-

sentation of the SPFD, R = {(ab,ab), (ab,ab)}. The graph contains four vertices

that represent minterms {00,01,10,11} in terms of {a,b}. Two edges are added for
(ab,ab) and (ab,ab). The edge is referred to an SPFD edge.

SPFDs of a node or wire can be derived in a multitude of ways, depending on

their application during logic synthesis. For instance, SPFDs can be computed from

the primary outputs in reverse topology order [21, 27]. An SPFD of a node repre-

sents the minterm pairs in which the function of the node must evaluate to different

values. In rewiring applications, the SPFD of a wire, (ηa,ηb), can denote the min-

imum set of edges in the SPFD of ηb that can only be distinguished by ηa (but

none of the remaining fanins of ηb) [21]. In all these methods, the SPFD of a node

complies with Property 1.1, which indicates that the ability of a node to distinguish

minterm pairs cannot be better than the ability of all of its fanins. This property is

the key to performing logic restructuring with SPFDs in this work.

Property 1.1. Given a node ηk whose fanins are {η1,η2, · · · ,ηn}, the SPFD of ηk is

the subset of the union of the SPFDs of its fanin nodes [20].

Finally, a function of a node can be synthesized from its SPFD into a two-level

AND-OR network with an automated approach by Cong et al. [7].

1.4 Approximating SPFDs

SPFDs are traditionally implemented with BDDs or with SAT. However, each ap-

proach has its own disadvantage. Computing BDDs of some types of circuits (e.g.,
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multipliers) may not be memory efficient [2]. The SAT-based approach alleviates

the memory issue with BDDs, but it can be computationally intensive to obtain all

the minterm pairs that need to be distinguished [16].

Intuitively, the runtime and memory overhead of the aforementioned approaches

can be reduced if fewer minterms are captured by the formulation. Hence, this sec-

tion presents a simulation-based approach to “approximate” SPFDs to reduce the

information that needs to be processed. The main idea behind aSPFDs is that they

only consider a subset of minterms that are important to the problem. Although

aSPFDs are based on a small set of the complete input space, experiments show that

aSPFDs include enough information to construct valid transformations.

To determine a good selection of minterms, logic restructuring can be effectively

viewed as a pair of “error/correction” operations [24]. In this context, the required

transformation simply corrects an erroneous netlist to a new specification. From this

point of view, it is constructive to see that test vectors used for diagnosis are a good

means of determining minterms required to construct aSPFDs for logic restructur-

ing. This is because test vectors can be thought of as the description of the erroneous

behavior and minterms explored by test vectors are more critical than others. Since

an aSPFD of a node stores less information than its respected SPFD, it is inherently

less expensive to represent, manipulate and compute.

Due to the loss of information, the transformation is guaranteed to be valid only

under the input space exercised by the given set of input test vectors only. The

transformations may fail to correct designs respected to the complete input space.

Hence, the design has to undergo verification after restructuring to guarantee its

correctness. However, in some cases, such as in rewiring, a full blown verification

may not be required, but a faster proof method can be used [12, 24, 11].

The next two subsections present the procedures used to compute aSPFDs using

a test vector set for nodes in combinational and sequential circuits, respectively.

1.4.1 Computing aSPFDs for Combinational Circuits

Consider two circuits, Ce and Cc, with the same number of the primary inputs and

primary outputs. Let V = {v1, · · · ,vq} be a set of vectors. For combinational cir-

cuits, each vi ∈ V is a single vector, while for sequential circuits, each vi is a se-

quence of input vectors. Let ηerr be the node inCe where the correction is required,

such that Ce is functionally equivalent to Cc after restructuring. Node ηerr can be

identified using diagnosis [6, 23] or formal synthesis [13] techniques, and is referred

to as a transformation node in the remaining discussion.

Let f ′ηerr
denote the new function of ηerr. As discussed earlier, the aSPFD of ηerr

should contain the pairs of primary input minterms that f ′ηerr
needs to distinguish.

To identify those pairs, the correct values of ηerr under the test vectors V are first

identified. Those values are what f ′ηerr
should evaluate for V after restructuring is

implemented. Such a set of values is referred to as expected trace, denoted as ET .

Finally, on(n)(off (n)) denotes the set of minterms that n is equal to 1(0).
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Fig. 1.2 The circuit for Examples 1.1 and 1.5
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Fig. 1.3 SPFD and aSPFDs of zmod in Figure 1.2

After the expected trace of ηerr is calculated, the procedure uses the trace to

construct aSPFDs of ηerr. In practice, V includes vectors that detect errors (Ve), as

well as ones that do not (Vc). Both types of vectors can provide useful information

about the required transformation.

The procedure to generate the aSPFD of the transformation node inCe w.r.t. V =
{Ve∪Vc} is as follows. First, Ce is simulated with the input vector V . Let Vc(ηerr)
and Ve(ηerr) denote the value of ηerr when Ce is simulated with Vc and Ve. To

rectify the design, f ′ηerr
has to evaluate to the complemented values ofVe(ηerr). That

is, the expected trace of ηerr, denoted by E
ηerr

T , is {Ve(ηerr),Vc(ηerr)} for vectors
{Ve, Vc}. Finally, The aSPFD of ηerr states that minterms in on(Eηerr

T ) have to be

distinguished from minterms in off (Eηerr

T ).

Example 1.1. Figure 1.2(a) depicts a circuit; its truth table is shown in Figure 1.2(b).

Let the wire e→ z (the dotted line) be the target to be removed. After the removal

of e→ z, an erroneous circuit is created where the new z, labelled zmod , becomes

NAND(d, f ). The value of zmod is shown in the eighth column of the truth table.

Suppose the design is simulated with test vectors V = {001, 100, 101, 110, 111}.
The discrepancy is observed when the vector 110 is applied. Therefore, Ve = {110}
and Vc = {001,100,101,111}. Let zmod be the transformation node.Ve(zmod) = {1}
and Vc(zmod) = {0,1,0,0}. Hence, the expected trace of zmod consists of the com-

plemented values of Ve(zmod) and Vc(zmod), as shown in the final column of Fig-

ure 1.2(b). Finally, the aSPFD of zmod w.r.t. V is generated according to ET and

contains four edges, as shown in Figure 1.3(a). The dotted vertices indicate that the

labelled minterm is a don’t care w.r.t.V . For comparison, the SPFD of zmod is shown

in Figure 1.3(b). One can see that information included in aSPFD of zmod is much
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less than what the SPFD representation includes. The minterms that are not encoun-

tered during the simulation are considered don’t cares in aSPFDs. For instance, the

minterm pair, (110, 000), does not need to be distinguished in the aSPFD of zmod
because the vector 000 is not simulated.

1.4.2 Computing aSPFDs for Sequential Circuits

The procedure of building aSPFDs of nodes in sequential circuits is more compli-

cated than the procedure for combinational circuits due to the state elements. Each

node in the circuit not only depends on the present value of the primary inputs,

but also on values applied to them in previous timeframes. This time-dependency

characteristic of sequential designs prohibits the application of the procedure of gen-

erating aSPFDs presented in Section 1.4.1 directly to sequential designs. First of all,

the expected trace of the transformation node, ηerr, is not simply the complemented

values of the node under the erroneous vector sequences. Because it is not known in

which timeframe the error condition is excited, complementing values in all time-

frames risks the introduction of more errors. Moreover, when modeling sequential

designs in the ILA representation, the value of nets in the circuit at Ti for some input

vector sequences is a function of the initial state input and the sequence of the pri-

mary input vectors up to and including cycle Ti. Hence, the input space of aSPFD

of a node is different in each timeframe.

To simplify the complexity of the problem, the proposed procedure constructs

one aSPFD over the input space {S ∪X } that integrates information stored in

the aSPFD in each timeframe. It first determines the values of the state elements

in each timeframe for the given set of input vectors that should take place after the

transformation. Then, a partially specified truth table of the new function at ηerr,

in terms of the primary input and the current states, can be generated. The aSPFD

of ηerr over the input space {S ∪X } is constructed based on the truth table. The

complete procedure is summarized below:

Step 1. Extract the expected trace ET of ηerr for an input vector sequence v. Given

the expected output response (Y ) under v, a satisfiability instance, Φ =

∏k
i=0Φ i

Ce
(vi,Y i,η i

err), is constructed. Each Φ i
Ce

represents a copy of Ce at

timeframe i, where η i
err is disconnected from its fanins and treated as a

primary input. The original primary inputs and the primary outputs of Ci
e

are constrained with vi and Y i, respectively. The SAT solver assigns values

to {η0
err, · · · ,η

k
err} to make Ce comply with the expected responses. These

values are the desired value of ηerr for v.

Step 2. Simulate Ce with v at the primary inputs and ET at ηerr to determine state

values in each timeframe. Those state values are what should be expected

after the transformation is applied. Subsequently, a partial specified truth

table (in terms of {X ∪S }) of f ′ηerr
inCe can be constructed.
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(b) Unrolled circuit with p’s as primary inputs

Fig. 1.4 The circuit for Example 1.2

Step 3. The aSPFD of ηerr contains an edge for each minterm pair in {on(η)×
off (η)} according to the partially specified truth table.

Example 1.2. Figure 1.4(a) depicts a sequential circuit unrolled for three cycles un-

der the simulation of a single input vector sequence. Assume the correct response at

o1 should be 0 and net p is the transformation node. To determine the expected trace

of p, p’s are made into primary inputs, as shown in Figure 1.4(b). A SAT instance is

constructed from the modified circuit with the input and output constraints. Given

the instance to a SAT solver, 110 is returned as a valid expected trace for p. Next,

simulating Ce with the input vector and the expected value of p, s2 = 1 and s3 = 1

are obtained. Then, the partially specified truth table of p states that p evaluates to 1

under minterms (in terms of {a,b,s}) {100,011} and to 0 under {101}. Therefore,
the aSPFD of p contains two edges: (100,101) and (011,101).

A special case needs to be considered in Step 1. For any two timeframes, Ti and

Tj, of the same test vector, if the values of the primary inputs and the states at these

two timeframes are the same, the value of η i
err must equal the value of η

j
err. Hence,

additional clauses are added to Φ to ensure that the values of ηerr are consistent

when such conditions occur.

Example 1.3. With respect to Example 1.2, another possible assignment to (p1, p2, p3)
is 100. However, in this case, the values of {a,b,s} at T1 and T3 are both 100, while
p1 and p3 have opposite values. Consequently, this is not a valid expected trace. To

prevent this assignment returned by the SAT solver, the clauses

(s1 + s3+ r) · (s1 + s3 + r) · (r+ p1+ p3) · (r+ p1+ p3)

are added to the SAT instance. The new variable, r, equals 1, if s1 equals s3. When

that happens, the last two clauses ensure that p1 and p3 have the same value.

1.4.3 Optimizing aSPFDs with Don’t Cares

The procedure of aSPFDs generation described above does not take into account

all external don’t cares in the design. Identifying don’t cares for ηerr can further
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reduce the size of aSPFDs, since all SPFD edges connected to a don’t care can be

removed from the aSPFDs. Consequently, the constraints of qualified solutions for

restructuring is relaxed.

There are two types of combinational don’t cares: Satisfiability Don’t Cares

(SDCs) and Observability Don’t Cares (ODCs). Since aSPFDs of nodes in designs

are built over the minterms explored by test vectors, only ODCs need to be con-

sidered. ODCs are minterm conditions where the value of the node has no effect

on the behavior of the design. Hence, ODCs of ηerr can only be found under Vc.

Minterms encountered under the simulation of Ve cannot be ODCs, because, other-

wise, no erroneous behavior can be observed at the primary outputs. ODCs can be

easily identified by simulating the circuit with Vc and complement of the original

simulation value at ηerr. If no discrepancy is observed at the primary outputs, the

respected minterm is an ODC.

Similarly, combinational ODCs of node η in a sequential design are assignments

to the primary inputs and current states such that a value change at η is not ob-

served at the primary outputs or at the next states. However, combinational ODCs

of sequential designs may be found in erroneous vector sequences. This is because

the sequential design behaves correctly until the error is excited. Having this in

mind, the following procedures can be added after Step 2 in Section 1.4.2 to obtain

combinational ODCs.

Step 2a. Let ET1 denote the expected trace obtained in Step 2 in Section 1.4.2 and

Ŝ denote the values of states in each timeframe. Another expected trace

ET2 can be obtained by solving the SAT instance Φ again with additional

constraints that (a) force Ŝ on all state variables, and (b) block ET1 from

being selected as a solution again. Consequently, the new expected trace

consists of different values at the transformation node such that the same

state transition is maintained.

Step 2b. Let ET2 be the second expected trace, and Ti be the timeframe where ET1

and ET2 have different values. It can be concluded that the minterm at Ti is

a combinational don’t care, since, at Ti, the values of the primary outputs

and the next states remain the same, regardless of the value of η .
Step 2c. Repeat this procedure until no new expected trace can be found.

Example 1.4. In Example 1.2, an expected trace, ET = 110, has been obtained, and

the state value, {s1,s2,s3}, is {0,1,1}. To obtain another expected trace at p, addi-

tional clauses, (s1)(s2)(s3), are added to ensure states {s1,s2,s3} to have the value

{0,1,1}. Another clause, (p1 + p2 + p3), is added to prevent the SAT solver to as-

sign {1,1,0} to {p1, p2, p3} again. In this example, another expected trace of p,

ET2 = 010, can be obtained. The values of ET and ET2 are different at T1, which

implies that the minterm 100 in terms of {a,b,s} is a don’t care. Hence, the aSPFD
of p can be reduced to contain only one edge, (011, 101).
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Fig. 1.5 State transition

1.4.3.1 Conflicts in Multiple Expected Traces

In the case of sequential circuits, there can exist multiple expected traces for the

given input sequences and the expected output responses. The procedure described

earlier for obtaining ODCs in sequential circuits identifies expected traces with the

same state transitions. To further explore equivalent states, one can obtain a trace

with different state transitions. This can be done by adding additional constraints to

block Ŝ assigned to state variables and solving the SAT instance again. However,

these additional traces may assign conflict logic values to the transformation node

for the same minterms.

Let ET1 and ET2 represent two expected traces of the same node for the same

test vector sequence. Assume a conflict occurs for minterm m (in terms of the pri-

mary input and the current state) between the assignment to ET1 at cycle Ti and the

assignment to ET2 at cycle Tj. In this instance, one of the two cases below is true:

• Case 1: The output responses and the next states at cycle Ti for ET1 and Tj for

ET2 are the same. This implies that the value of the transformation node under m

does not affect the behavior of the design. Hence, m is a combinational ODC.

• Case 2: The next states are different. This can happen when the circuit has mul-

tiple state transition paths with the same initial transitions. Figure 1.5 shows an

example of this scenario. Let η be the transformation node. The graph depicts a

state transition diagram for a single-output design. The state transition depends

on the value of η ; the value of the output is indicated inside the state. Assume

a test vector makes the design start at S0. It takes at least three cycles to dif-

ferentiate the transition Patha and Pathb, since the value of the primary output

is not changed until the design is in S4. Since the proposed analysis is bounded

by the length of the input vector sequences, it may not process enough cycles

to differentiate these different paths. Hence, multiple assignments at the trans-

formation node can be valid within the bounded cycle range and, consequently,

cause conflicts. In the example, if the circuit is only unrolled for two cycles, both

paths (S0→ S1 and S0→ S2) would seem to be the same from the observation of

the primary outputs. It implies that η can have either logic 0 and logic 1 in S0.

Since the algorithm does not have enough information to distinguish the correct
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Algorithm 1 Transformation using aSPFDs

1: Ce := Erroneous circuit

2: V := A set of input vectors

3: ηerr := Transformation node

4: TRANSFORMATION WITH ASPFD(Ce, V . ηerr) {
5: Compute aSPFDs of ηerr

6: E← (mi,m j) ∈ R
appx
ηerr
|(mi,m j) cannot be distinguished by any fanin of ηerr

7: Let N := {ηk | ηk ∈Ce and ηk 6∈ {TFO(ηerr)∪ηerr}
8: Cover←SELECTCOVER(N )

9: Re-implementing ηerr with the original fanins and the nodes inCover

10: }

assignment, minterm m in this case is considered to be a don’t care as well. This

issue can be resolved if vector sequences that are long enough are used instead.

1.5 Logic Transformations with aSPFDs

In this section, the procedure to systematically perform logic restructuring with

aSPFDs is presented. The proposed restructuring procedure uses aSPFDs to seek

transformations at the transformation node, ηerr. The transformations are con-

structed with one or more additional fanins.

The procedure is summarized in Algorithm 1. The basic idea is to find a set of

nets such that every minterm pair of the aSPFD of the new transformation imple-

mented at ηerr is distinguished by at least one of the nets, as stated in Property 1.1.

Hence, the procedure starts by constructing the aSPFD of ηerr, R
appx
ηerr

. To minimize

the distortion that may be caused by the rectification, the original fanins are kept for

restructuring. In other words, it is sufficient that aSPFDs of additional fanins only

need to distinguish edges in R
appx
ηerr

that cannot be distinguished by any original fanins

(line 6). Those undistinguished edges are referred to as uncovered edges. A func-

tion is said to cover an SPFD edge if it can distinguish the respected minterm pair.

Let TFO(ηerr) denote the transitive fanout of nerr. The function SELECTCOVER is

used to select a set of nodes (Cover) from nodes not in TFO(ηerr) such that each

uncovered edge is distinguished by at least one node inCover (line 8). The function

SELECTCOVER is further discussed in the next subsections. Finally, a new two-level

AND-OR network is constructed at ηerr using the nodes inCover as additional fanins

as discussed in Section 1.3.2.

Example 1.5. Returning to Example 1.1, the aSPFD of zmod is shown in Fig-

ure 1.6(a) and the partial truth table of remaining nodes are shown in Figure 1.6(b).

Figure 1.6(a) shows that the edge (110, 100) (the dotted line) is the only SPFD edge

that is not distinguished by the fanin of zmod , { f ,d}. Hence, the additional fanins

required for restructuring at zmod must distinguish this edge. According to the truth

table, this edge can be distinguished by b. As a result, b is used as the additional

fanin for restructuring zmod . Since the minterm 100 is the only minterm in the onset
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Fig. 1.6 aSPFD of zmod and the partially specified truth table of nodes in Figure 1.2 and modified

circuit

of new zmod w.r.t. V . It implies b = 0, d = 0 and f = 1. Therefore, the new function

of zmod is NAND(b,d, f ), as shown in Figure 1.6(c).

Two approaches to find the set,Cover, are presented in the following subsections:

a SAT-based approach that finds the minimal number of fanin wires and a greedy

approach that exchanges optimality for performance.

1.5.1 SAT-based Searching Algorithm

The search problem in Algorithm 1 (line 8) is formulated as an instance of Boolean

satisfiability. Recall that the algorithm looks for a set of nodes outside TFO(ηerr)
such that those nodes can distinguish SPFD edges of R

appx
ηerr

that cannot be distin-

guished by any fanins of ηerr.

Construction of the SAT instance is fairly straightforward. Each uncovered SPFD

edge in the aSPFD of ηerr has a list of nodes that can distinguish the edge. The SAT

solver selects a node from each list such that at least one node in the list of each

uncovered SPFD edge is selected. The set, Cover, consists of these selected nodes.

The formulation of the SAT instance Φ is as follows. Each node ηk is associated

with a variable wk. Node ηk is added to the set Cover if wk is assigned a logic

value 1. The instance contains two components: ΦC(W ) and ΦB(W ,P), where
W = {w1,w2, · · · } is the set of variables that are associated with nodes in the circuit
and P is a set of new variables introduced.

• Covering clauses (ΦC(W )): A covering clause lists the candidate nodes for an

uncovered edge. A satisfied covering clause indicates that the associated edge

is covered. One covering clause, c j, is constructed for each uncovered edge e j
in the aSPFD of ηerr. Let D j be the candidate nodes which can cover edge e j.

Clause c j contains wk if ηk in D j covers e j; that is, c j =
∨

ηk∈D j
wk. Hence, this

clause is satisfied if one of the included candidate nodes is selected.

• Blocking clauses (ΦB(W ,P)): Blocking clauses define the condition where a

candidate node ηk should not be considered as a solution. They help to prune

the solution space and prevent spending time on unnecessary searches. For each

node ηk 6∈ {TFO(ηerr)∪ηerr}, according to Property 1.1, ηk does not distinguish
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more edges if all of its fanins are selected already. Hence, for each candidate node

ηk, a new variable, pk, is introduced; pk is assigned a logic value 1 if all of the

fanins of ηk are selected, and 0 otherwise. Consequently, wk is assigned a logic

value 0 (i.e., ηk is not considered for the solution) when pk has a logic value 1.

The blocking clause for node ηk = f (η1,η2, · · · ,ηm), where ηi, 1 ≤ i ≤ m, is a
fanin of ηk, is as follows: (

∨m
i=1wi + pk) ·

∧m
i=1(wi + pk) · (pk +wk).

Given a satisfying assignment forΦ , a node ηk is added to the setCover ifwk = 1.

The covering clauses ensure thatCover can cover all the edges in the aSPFD of ηerr.

Blocking clauses reduce the possibility of the same set of edges being covered by

multiple nodes in Cover. If the function derived by the satisfying assignment from

the setCover = {w1,w2, · · · ,wn} fails formal verification, then (w1+w2+ · · ·+wn)
is added as an additional blocking clause to Φ and the SAT solver is invoked again

to find another solution.

Note that in the above formulation because there are no constraints on the num-

ber of nodes that should be selected to cover the edges, the solution returned by

the solver may not be optimal. In order to obtain the optimal solution, in experi-

ments, SAT instances are solved with a pseudo-Boolean constraint SAT solver [8]

that returns a solution with the smallest number of nodes. The use of a pseudo-

Boolean solver is not mandatory and any DPLL-based SAT solvers [15, 17] can be

used instead. One way to achieve this is to encode the counter circuitry from [23] to

count the number of selected nodes. Then, by enumerating values N = 1,2, . . ., the
constraint enforces that no more than N variables can be set to a logic value 1 simul-

taneously or Φ becomes unsatisfiable. Constraining the number N in this manner,

any DPLL-based SAT solver can find the minimum size ofCover.

1.5.2 Greedy Searching Algorithm

Although the SAT-based formulation can return the minimum set of fanins to re-

synthesize ηerr, experiments show that, at times, it may require excessive runtime.

To improve the runtime performance, a greedy approach to search solutions is pro-

posed:

Step 1. Let E be the set of SPFD edges in the aSPFD of ηerr that needs to be

covered. For each edge e ∈ E , let Ne be the set of nodes η 6∈ {TFO(ηerr)∪
ηerr} which can distinguish the edge. Sort e ∈ E in descending order by the

cardinality of Ne.

Step 2. Select the edge, emin, with the smallest cardinality ofNemin . This step ensures

that the edge that can be covered with the least number of candidates is

targeted first.

Step 3. Select ηk from Nemin such that ηk covers the largest set of edges in E and

add ηk toCover

Step 4. Remove edges that can be covered by ηk from E . If E is not empty, go back

to Step 1 to select more nodes.
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Table 1.1 Characteristics of benchmarks

Combinational Sequential

Circ. # PI # FF # Gates Circ. # PI # FF # Gates

c1355 41 0 621 s510 19 6 256

c1908 33 0 940 s713 35 19 482

c2670 157 0 1416 s953 16 29 476

c3540 50 0 174 s1196 14 18 588

c5315 178 0 2610 s1238 14 18 567

c7552 207 0 3829 s1488 8 6 697

The solutions identified by the greedy approach may contain more wires than the

minimum set. However, experiments indicate that the greedy approach can achieve

results of a similar quality to the SAT-based approach in a more computationally

efficient manner.

1.6 Experimental Results

The proposed logic restructuring methodology using aSPFDs is evaluated in this

section. ISCAS’85 and ISCAS’89 benchmarks are used. The diagnosis algorithm

from [23] is used to identify the restructuring locations and Minisat [9] is the under-

lying SAT solver. The restructuring potential of the aSPFD-based algorithms is com-

pared with that of a logic correction tool from [25] which uses the dictionary-model

of [1]. Both methodologies are compared against the results of a formal method,

called error equation [6]. This method answers with certainty whether there exists

a modification that corrects design at a location. Experiments are conducted on a

Core 2 Duo 2.4GHz processor with 4GB of memory while the runtime is reported

in seconds.

Table 1.1 summarizes the characteristics of benchmarks used in this experiment.

Combinational benchmarks are listed in the first four columns, while sequential

benchmarks are shown in the last four columns. The table includes the number of

primary inputs, the number of flip-flops and the total number of gates in each col-

umn, respectively.

In this work, performance of the proposed methodology is evaluated with the

ability to correct errors in logic netlists. Three different complexities of modifica-

tions are injected in the original benchmark. The locations and the types of modifi-

cations are randomly selected. Simple complexity modifications (suffix “s”) involve

the addition or deletion of a single wire, replacement of a fanin with another node

and a gate-type replacement. Moderate modifications (suffix “m”) on a gate include

multiple aforementioned changes on a single gate. The final type of modification

complexity, complex (suffix “c”), injects multiple simple complexity modifications

on a gate and those in the fanout-free fanin cone of the gate.
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Table 1.2 Combinational logic transformation results for various complexities of modifications

Circ.
Error Error Dict.

aSPFD
Avg time Avg # wires Min # wires Avg # % verified

loc. equat. model (sec) (greedy) (SAT) corr/loc. First All

c1355 s 5.3 100% 19% 81% 3.5 1.7 1.7 8.3 100% 46%

c1908 s 18.0 84% 13% 84% 18.9 1.4 1.4 8.1 90% 62%

c2670 s 9.2 98% 11% 82% 21.9 2.4 2.2 6.2 100% 75%

c3540 s 7.2 100% 28% 86% 9.3 1.1 1.1 4.5 100% 66%

c5315 s 6.4 100% 25% 100% 7.6 1.9 – 5.4 89% 77%

c7552 s 11.8 88% 19% 50% 25.7 1.7 – 3.1 88% 54%

c1355 m 2.7 100% 13% 100% 32.0 2.1 2.0 7.0 100% 52%

c1908 m 5.8 100% 3% 83% 11.0 2.5 2.5 5.6 100% 68%

c2670 m 5.2 96% 4% 60% 95.4 3.4 2.9 9.4 100% 60%

c3540 m 3.2 100% 25% 100% 54.2 1.6 1.6 6.1 84% 78%

c5315 m 9.6 94% 2% 100% 46.7 2.9 – 5.7 100% 77%

c7552 m 8.8 100% 9% 91% 39.2 1.9 – 6.9 100% 79%

c1355 c 3.7 96% 0% 73% 38.4 2.9 2.9 3.3 100% 40%

c1908 c 15.8 47% 41% 70% 19.0 1.4 1.3 7.2 100% 88%

c2670 c 12.4 98% 31% 62% 33.2 1.7 1.7 4.7 100% 76%

c3540 c 3.0 100% 7% 67% 122.4 3.6 3.4 3.8 100% 33%

c5315 c 6.4 97% 16% 100% 20.0 2.7 – 9.1 100% 79%

c7552 c 20.6 64% 20% 50% 23.7 1.9 – 3.5 91% 43%

Average 8.6 93% 16% 80% 29.2 2.0 – 6.4 96% 67%

For each of the above types, five testcases are generated from each benchmark.

The proposed algorithm is set to find, at most, 10 transformations for each location

identified first by the diagnosis algorithm. Functional verification is carried out at

the end to check whether the 10 transformations are valid solutions.

1.6.1 Logic Restructuring of Combinational Designs

The first set of experiments evaluates the proposedmethodology for a single location

in combinational circuits. Experimental results are summarized in Table 1.2. In this

experiment, circuits are simulated with a set of 1000 input vectors that consists of a

set of vectors with high stuck-at fault coverage and random-generated vectors.

The first column lists the benchmarks and the types of modifications inserted as

described earlier. The second column has the average number of locations returned

by the diagnosis program for the five experiments. The percentage of those locations

where the error equation approach proves the existence of a solution is shown in the

third column. The next two columns show the percentage of locations (out of those

in the second column) for which the dictionary-approach and the proposed aSPFD

approach can successfully find a valid solution. A valid solution is one in which

the restructured circuit passes verification. The sixth column contains the average

runtime, including the runtime of verification, to find all 10 transformations using

greedy heuristics.



16 1 Automated Logic Restructuring with aSPFDs

Taking c1908 s as an example, there are, on average, 18 locations returned by

the diagnosis program. The error equation check returns that 15 (84% of 18) out of

those locations can be fixed by re-synthesizing the function of the location. The dic-

tionary approach successfully identifies two locations (13% of 15) while the aSPFD

approach can restructure 13 locations (84% of 15). This shows that the proposed ap-

proach is seven times more effective than the dictionary approach. Overall, the pro-

posed methodology outperforms the dictionary approach in all cases and achieves

greater improvement when the modification is complicated.

The quality of the transformations, in terms of the wires involved as well as some

algorithm performancemetrics, are summarized in column 7 – 11 of Table 1.2. Here,

only cases where a valid solution is identified by the proposed algorithm are con-

sidered. The seventh and the eighth columns list the average number of additional

wires returned by the greedy algorithm and by the SAT-based searching algorithm,

respectively. As shown in the table, the greedy heuristic performs well compared

to the SAT-based approach. Because the SAT-based approach may run into runtime

problems as the number of new wires increases, it times out (“-”) after 300 seconds

if it does not return with a solution.

As mentioned earlier, the algorithm is set to find, at most, 10 transformations

for each location. The ninth column shows the average number of transformations

identified for each location. It shows that, for all cases, more than one transformation

can be identified. This is a desirable characteristic, since engineers can have more

options to select the best fit for the application. The final two columns show the

percentage of transformations that pass verification. The first column of these two

columns only considers the first identified transformation, while the second column

has the percentage of all 10 transformations that pass verification. One can observe

that the vast majority of first-returned transformations pass verification.

Next, the performance of restructuring with various numbers of test vectors is

investigated. Four sizes are used: 250, 500, 1000 and 2000 test vectors. The results

are depicted in Figure 1.7. Figure 1.7(a) shows the percentage of the locations where

the proposed algorithm can identify a valid transformation. As shown, the success

rate increases as the size of input vectors increases for each error complexity group.

This is expected, since more vectors provide more information for aSPFDs. The

chance that the algorithm incorrectly characterizes a minterm as a don’t care is also

reduced.

Although using a larger vector set can improve the success rate of the restruc-

turing, it comes with the penalty that more computational resources are required to

tackle the problem. The average runtime is plotted in Figure 1.7(b) and normalized

by comparing it to the runtime of the case with 250 vectors. Each line represents

one error complexity type. Taking Complex as an example, the runtime is 12 times

longer when the vector size is increased from 250 to 2000. Note that there is a sig-

nificant increase when the size of the vector set increases from 1000 to 2000. Since

the success rate of cases when 1000 vectors are used is close to the success rate

of those with 2000 vectors (Figure 1.7(a)), this suggests that, for those testcases,

1000 input vectors can be a good size to have a balance between the resolution of

solutions and the runtime performance.
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Fig. 1.7 Performance of restructuring with variable vector sizes for combinational designs

Table 1.3 Sequential logic transformation results for various complexities of modifications

Circ.
Error Error

aSPFD
Avg. time Avg # Avg # % verified

% unique
loc. equat. (sec) wires corr/loc. First All

s510 s 2.4 100% 75% 384 0.3 1.8 100% 92% 100%

s713 s 5.0 72% 0% 325 – – – – –

s953 s 1.8 100% 33% 223 1.0 3.3 100% 37% 70%

s1196 s 1.8 100% 56% 237 2.0 5.0 83% 92% 64%

s1238 s 1.6 100% 38% 781 1.1 5.0 100% 100% 55%

s1488 s 2.8 86% 43% 258 1.7 5.0 83% 46% 68%

s510 m 2.0 100% 90% 68 0.3 4.2 100% 38% 99%

s713 m 2.8 43% 36% 689 0.6 1.4 100% 41% 60%

s953 m 1.6 63% 40% 105 1.2 1.2 100% 100% 100%

s1196 m 1.2 83% 66% 27 1.8 2.6 100% 72% 83%

s1238 m 2.6 85% 72% 218 2.2 4.3 100% 76% 47%

s1488 m 3.4 100% 0% 83 – – – – –

s510 c 1.6 100% 38% 166 0.5 1.5 100% 92% 100%

s713 c 3.4 71% 47% 1124 1.0 1.0 100% 100% 75%

s953 c 2.2 73% 0% 122 – – – – –

s1196 c 2.0 50% 20% 588 0.5 2.3 50% 32% 100%

s1238 c 1.2 100% 14% 328 0 – 100% – 100%

s1488 c 1.8 71% 30% 98 1.7 1.5 33% 27% 100%

Average 2.1 90% 39% 236 1.0 3.1 92% 68% 82%

1.6.2 Logic Restructuring of Sequential Designs

The second set of the experiments evaluates the performance of logic restructuring

with aSPFDs in sequential designs. The vector set for sequential circuits contains

500 random input vector sequences with a length of 10 cycles. To verify the cor-

rectness of transformations, a bounded sequential equivalent checker [19] is used.

This tool verifies the resulting design against the reference within a finite number of

cycles, which is set to 20 cycles in our experiment.

The performance of the proposed methodology is recorded in Table 1.3. The

benchmarks and the type of the modification inserted are listed in the first column.

The second column presents the average number of locations for transformations
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Fig. 1.8 Performance of restructuring with variable vector sizes for sequential designs

reported by the diagnosis program while the percentage of these locations that are

proven to be correctable by error equation are recorded in the third column. The

percentage of locations in which the proposed methodology finds a valid transfor-

mation is reported in the fourth column, followed by runtime.

Note that the error equation approach in [6] is developed for combinational cir-

cuits. Hence, here the sequential circuits are converted into combinational ones by

treating the states as pseudo primary inputs/outputs. In this way, the number of lo-

cations reported by the error equation approach is the lower bound of the locations

that are correctable, since it constrains that the design after restructuring has to be

combinationally functional equivalent to the reference design. This constraint dis-

cards any solutions that utilize equivalent states. Overall, the proposed approach can

restructure 39% of the locations. The reason why the algorithm fails to correct some

of the locations is because the input vector sequences do not provide enough infor-

mation to generate a good aSPFD. This occurs when the algorithm characterizes

a minterm as a don’t care when this minterm is not exercised by the input vector

sequences, or when conflict values are required for this minterm, as discussed in

Section 1.4.3. Consequently, the resulting transformation does not distinguish all

the necessary minterm pairs that are required to correct the design.

The sixth and the seventh columns report the average number of additional wires

used in the transformations and the average number of transformations per location,

respectively. Note, because the transformation at some locations only needs to be

re-synthesized with the existing fanin nets without any additional wires, cases such

as s510 s use less than one additional wire on average. The next two columns

show the percentage of cases where the first transformation passes verification, and

the percentage of 10 transformations that pass verification. Similar to the combi-

national circuits, there is a high percentage of the first transformations that passes

verification if the proposed methodology returns a valid transformation. This indi-

cates that aSPFD is a good metric to prune out invalid solutions.

As the result shown in the last column, the valid solutions are further checked for

whether or not they are unique to the sequential aSPFD-based algorithm. That is,

the modified design is not combinationally functional equivalent to the reference de-

sign; otherwise, such restructuring can be identified by the combinational approach.
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If two designs are not combinationally equivalent, it means that the transformation

changes the state assignments as well. Consequently, these transformations will be

pruned out by the combinational approach. Overall, 82% of the valid transforma-

tions are uniquely identified by the sequential approach. restructuring method.

Finally, the impact of test vector sizes on the performance of the presented

methodology is studied. Here, the number of test vector sequences is set to 100,

200, 500 and 700. These test sequences have a length of 10 cycles and are randomly

generated. The success rate and the normalized runtime are shown in Figure 1.8(a)

and Figure 1.8(b), respectively. One can see that the behavior observed earlier for

the combinational cases is also observed here. The success rate of the restructuring

decreases as the number of the test sequences decreases. Among the different error

complexities, the benchmarkswith complex errors are affected most. This is because

a complex error can be excited in various ways and requires more test sequences to

fully characterize the erroneous behavior. As a result, the algorithm needs more

vector sequences to construct an accurate transformation. Moreover, Figure 1.8(b)

shows a significant reduction of the runtime with the decrease of the number of

vector sequences.

1.7 Summary

In this chapter, a simulation-based procedure to approximate SPFDs, namely aSPFDs,

is first presented. An aSPFD is an approximation of the original SPFD, as it only

contains information that is explored by the simulation vectors. Next, an aSPFD-

based logic restructuring algorithm for both combinational and sequential designs

is presented. This technique can be used for a wide range of applications, such as

logic optimization, debugging and applying engineer changes. Experiments demon-

strate that aSPFDs provide a powerful approach to restructuring a logic design to a

new set of specifications. This approach is able to construct required logic transfor-

mations algorithmically and restructure designs at a location where other methods

fail.
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