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Abstract—With the increase in the complexity of digital VLSI
circuit design, logic design errors can occur during synthesis. In
this paper, we present a test vector simulation-based approach
for multiple design error diagnosis and correction. Diagnosis is
performed through an implicit enumeration of the erroneous lines
in an effort to avoid the exponential explosion of the error space
as the number of errors increases. Resynthesis during correction
is as little as possible so that most of the engineering effort
invested in the design is preserved. Since both steps are based
on test vector simulation, the proposed approach is applicable
to circuits with no global binary decision diagram representa-
tion. Experiments on ISCAS’85 benchmark circuits exhibit the
robustness and error resolution of the proposed methodology.
Experiments also indicate that test vector simulation is indeed
an attractive technique for multiple design error diagnosis and
correction in digital VLSI circuits.

Index Terms—Correction, design error, diagnosis, simulation.

I. INTRODUCTION

DURING the design cycle of a VLSI digital circuit,
functional mismatches between the specification and the

gate-level implementation (design) can occur. These functional
mismatches, also known asdesign errors, usually involve the
functional misbehavior of some gate elements and/or some
wire interconnection errors. A common source of these errors
is the manual interference of the designer with the design
during the synthesis process in order to achieve specific
optimization goals [1]. Errors at a higher level of the design
flow and software bugs in automated design tools can also
translate to design errors in a netlist [33].

Once a verification tool finds that a design does not agree
with its specification,design error diagnosis and correction
(DEDC) is performed. Diagnosis attempts to identify lines
in the design that may have a design error. The quality of
diagnosis is determined by its ability to narrow the space of
potential erroneous lines, that is, its error resolution. Once a
set of potential erroneous lines has been identified, correction
is performed. The goal of correction is to suggest appropriate
modifications to the netlist that make it functionally equivalent
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to the specification. The quality of correction depends on the
nature and number of the proposed modifications. Resynthesis
should be minimal so that most of the engineering effort
invested in the design is preserved.

Usually, design errors are assumed to belong to a small
predetermined set of possible error types, known as thedesign
error or correction model. Abadir et al. [2] presented such a
model, shown in Fig. 2, that consists of ten distinct types of
errors. In the same work [2], it is proven that a complete set
of stuck-at fault vectors for the erroneous design guarantees to
detect the majority of these errors (Types A–G) and has a good
chance to detect the remaining ones (Types H–J). A theorem
is also presented in [2], proving that a complete single-stuck-
line fault test set can always detect the substitution of a gate
for a unate function. An automatic test-pattern generation
(ATPG) simulation-based design error verification method for
the errors in [2] is developed by Asaad and Hayes [4]. The
fault coverages of the test sets derived by them validate the
theoretical results of Abadiret al. [2] and show that sometimes
design errors are “hard to detect.”

The experiments carried by Aaset al. [1] confirm that
the design error model of [2] is indeed a realistic one, as it
covers 97.8% of the errors that usually occur during a manual
resynthesis procedure. These experiments [1] also show that
the average number of design errors is usually less than or
equal to two. For these reasons, and because of its simplicity,
the model of [2] has been used by the majority of the existing
literature for DEDC. In this paper, we define and use a design
error model that is a simple extension of the one presented
in [2].

In our treatment of the DEDC problem, diagnosis and
correction is formulated around the number and nature of the
modifications required to correct the design and not around the
number of the actual design errors. Since there may be more
than one way to synthesize a particular function, there may
be equivalent corrections other than the actual correction that
rectify an erroneous design [10]. Throughout this paper, we
will refer to the actual and any equivalent set of corrections,
as valid corrections. The termsmodification, correction,and
design errorwill also be used interchangeably.

In addition, we assume that the only netlist available as an
input to the problem is the incorrect gate-level implementation.
The specification can only provide the (correct) primary output
responses for a primary input stimulus. For example, the
specification might be available in a register-transfer-level
format, coded in some hardware-description language and no
line naming equivalence with the netlist is available.
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It should be noted that the space of potential erroneous lines
grows exponentially in the number of errors [26]

error line space of circuit lines of errors (1)

It can also be seen that the correction space for a design where
modifications are selected from the model of Abadiret al. [2]
is lower bounded by the error line space.

In this paper, we describe a test vector simulation based
methodology for combinational circuit DEDC. The contri-
bution of this work is twofold. First, we present a test
vector simulation based methodology for multiple DEDC.
The novelty of the proposed work compared to previous
approaches lies in the fact that, in practice, it avoids the
exponential explosion of the error space according to (1)
and remains computationally efficient as the number of errors
increases. In addition, unlike previous methods, correction is
also based on the results of test vector simulation. Therefore,
since both steps of diagnosis and correction are based on
information provided by test vector simulation, the method
is applicable to circuits that have no global Binary Decision
Diagram (BDD) representation [6], [7], [23].

Next, we examine the quality of test vector simulation for
the DEDC problem. Since exhaustive test vector simulation is
prohibitive for most circuits, it is of interest to know the quality
of a DEDC method that bases its results on a small subset of
the complete input test vector space. Our experiments suggest
that test vector simulation is an attractive approach for this
problem, but they also mandate the use of a logic verifier to
guarantee the correct functionality of the final design.

This paper is organized as follows. In the remainder of this
section, we discuss previous work and outline the steps of
our approach. Section II contains relevant definitions and a
description of the design error model that we use. Diagnosis
and correction are presented in Sections III and IV, respec-
tively. Experimental results and a discussion on the quality of
test vector simulation for the DEDC problem can be found in
Section V. Section VI reviews related research problems, and
Section VII concludes this paper.

A. Previous Work

A number of approaches have been developed for the DEDC
problem. These approaches can be divided into two categories
with respect to the underlying technique used for error location
and error correction: those based onBoolean function manip-
ulation (symbolic)techniques [8]–[11], [16]–[18], [24], [27],
[32] and those based ontest vector simulation[13]–[15], [21],
[22], [25], [26], [28], [29], [33], [34].

Techniques based on Boolean function manipulation have
the advantage that they can return valid corrections, if such
corrections exist in the design error model they use. They
also have good error resolution, and they are computationally
efficient for single errors. Nevertheless, their performance
degrades as the number of design errors increases. For this
reason, heuristics are usually employed during diagnosis,
certain subclasses of errors from the model of Abadiret al.
[2] are only considered, or the amount of resynthesis may not
be minimal. More important, symbolic techniques that use a

Fig. 1. Overview of DEDC methodology.

global BDD [6] representation of the circuit are not applicable
to circuits that have no such efficient representation [6], [7],
[23].

On the other hand, test vector simulation-based methods for
DEDC are applicable to all circuits. In addition, existing work
shows that test vector simulation can be a computationally
efficient route to DEDC for designs corrupted with one and
two errors. However, just like the symbolic methods, their
performance decreases as the number of errors increases, and
little work [26], [28], [29] has been performed on design error
correction for the complete error model of Abadiret al. [2].

B. Work Overview

In this section, we outline the steps of our DEDC method-
ology. For diagnosis, the method performs animplicit enu-
merationof error lines in an effort to avoid the exponential
explosion of the error space (1) and remain computationally
efficient. In detail, unlike most previous test vector simulation-
based approaches [13]–[15], [22], [25], [26], [28], [33], [34], it
does not attempt to explicitly compute the complete error space
and eliminate areas that cannot contain an error(s). Instead, it
samples and searches a small area of the error space for error
candidates. At the same time, correction uses an extension of
the design error model of Abadiret al. [2], and the amount of
resynthesis is as little as possible. Although theoretically the
proposed approach may compute the error space according to
(1), our experiments show that this never happens in practice,
and it remains computationally efficient as the number of errors
increases.

Our DEDC method is shown in Fig. 1. Theinput to the
algorithm is the functional specification the erroneous
gate-level description an initial guess for the number of
required modifications a set of stuck-at [19] and random
input test vectors and a set of vectors
such that each of them activates the inconsistencies, i.e., it
produces at least one primary output response inthat is
different from In our experiments, we start the method
with
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Fig. 2. Design error model of Abadiret al. [2].

is compiled during a test vector simulation-based
verification step that precedes our DEDC method. During that
step we simulate and with all vectors from
is also used during correction, while gives information for
diagnosis. In our experiments, is usually less than 15 000
vectors for the ISCAS’85 benchmark circuits, and the average
size of fluctuates between 40 and 300 vectors.

As mentioned earlier, the method performs a search of
the error space to identify potential erroneous signals. This
search is performed in two steps (Fig. 1). First, information
on candidate error lines is collected through the path-trace
procedure [30], [31] to form a graph. A novel graph processing
procedure directs the search for potential error lines without
necessarily computing the complete error space. Second, error
simulation is performed to improve the error resolution and
to output a set of candidate error lines If is
the empty set, then diagnosis is repeated for different internal
parameter values, as explained in Section II-E.

When diagnosis returns with a nonempty the method
proceeds with correction, and a logic verifier [6] is used to
output valid corrections. If this set of corrections is empty,
then the procedure is repeated until it returns with success or
a maximum number of iterations is reached, and the algorithm
is repeated for a larger value of

II. PRELIMINARIES

In this work, we examine incorrect combinational netlists
with simple logic NOT, BUFFER, AND, NAND, OR

and NORgates. Although our algorithm can handleXORand
XNORgates, we do not run experiments on such circuits
because these errors are difficult to detect with stuck-at fault
test vector sets [2]. Our experiments also suggest that random
test vector simulation may not detect all errors onXORand
XNORgates. If such gates are present in the circuit, one may

want to include in a design error-specific test set such as
the one developed by Asaad and Hayes [4].

During the execution of our algorithm, we introduce one
buffer for every fan-out line of a branch. We also assume that
both and are completely simulatable, that is,
contains test vectors with specified logic values zero and one
only. This assumption is relaxed in Section III-F.

A line fan-in to an AND or NAND(OR or NOR) gate,
is said to havecontrolling value for input vector if the
value of is zero (one). If drives a NOT or a BUFFER,
it always has controlling value. A line whose value changes
during simulation under the presence of some fault(s) is called
a sensitized line,and a path of sensitized lines is called a
sensitized path.

A. Design Correctability

The design error model proposed by Abadiret al. [2], shown
in Fig. 2, contains ten different cases of possible design error
types. These errors can be classified aswrong gateerrors
(Types A, B, C, E, F, I, and J) andwrong wireerrors (Types
D, G, and H). In our design error model, which is a simple
extensionof [2], a modificationcan be either a wrong gate, a
wrong wire, or awrong gate/wrong wire, that is, an occurrence
of both types of errors [2] on the gate driving a single line.
For example, a gate-replacement/missing wire error can be an
error where a four fan-inORgate is replaced with aNAND
gate with only three of the four original fan-ins, etc.

Throughout our presentation, we use the following termi-
nology. An -error line tuple
is a set of distinct lines in the netlist If, for every

there exists a correction from somedesign error
model that can rectify the design, then we say thatis a
valid -error line tuple and is -source correctable. If
every such belongs to our design error model, then we say
that is a valid -correction tuplefor
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Fig. 3. A one-source correctable design.

The diagnosis approach, found in Section III, returns results
for -source correctable designs as it tries to identify valid

-error line tuples. Therefore, diagnosis is independent of
any design error model, and it can also be used for macro-
based circuits, where a macro is defined as a logic block with
multiple inputs and one output that implements some boolean
function [22].

III. ERROR DIAGNOSIS

In this section, we describe our diagnosis procedure. Diag-
nosis, as shown in Fig. 1, consists of two steps:implicit error
space enumerationand error simulation.

During implicit error space enumeration, an initial estimate
of the error space in terms of -error lines tuples

is obtained. Implicit enumeration relies on the path-trace
procedure [30], [31], presented next, that marks suspicious
circuit lines. Path-trace alone can diagnose designs with single
errors. For multiple errors, it is used to construct a graph that
contains information about the error space. A graph processing
procedure, presented in Section III-C1, obtains the estimate

that is further screened by error simulation.

A. The Path-Trace Procedure

In this section we review thepath-trace procedure, a line
marking algorithm developed for fault diagnosis by Venkatara-
manet al. [30], [31] that is based on the critical path-tracing
algorithm [3].

Let vector Path trace [30], [31] starts from an
erroneousprimary output for and traces backward toward
the primary inputs marking lines as follows: if the output of a
gate has been marked and has one or more fan-in(s) with
controlling values, then the procedure randomly marks any
one controlling fan-in; if has all fan-ins with noncontrolling
inputs, then all fan-ins are marked; if a branch is marked, then
the algorithm automatically marks the stem of the branch.

For example, consider the circuit of Fig. 3 with primary
outputs and If has been marked by path trace, it can
proceed by marking set of lines
If path trace begins from a set of lines

are marked.
Define to be the set of lines marked by path trace

when tracing from erroneous primary output and vector
[31]. The following theorem, together with Theorem

2 presented later, is crucial for the correctness of our diagnosis
algorithm.

Theorem 1: Let be an -source correctable design and
be any valid -error line tuple. If

is a vector that activates the inconsistencies, and is an
erroneous primary output for then contains at least one
element from

Proof: Let be any minimal subset of lines of so
that when their values get complemented for and this
difference is propagated at the primary outputs, has a
correct response. Clearly, by definition of there is one or
more sensitized paths from each member ofto We
claim that contains some element Proving this
claim completes the proof.

Let be the set of lines marked by path trace
during the th iteration of the algorithm. For example, for the
circuit of Fig. 3, and We use
induction to show that forevery contains some line
on a sensitized path from to This is sufficient
to prove the claim, as the algorithm will eventually markin

for some max circuit level.
For the base case the argument holds as path trace

correctly marks the erroneous primary output Assume
that it holds for steps, that is, contains line on a
sensitized path from to To prove that it holds for the
next iteration, observe that if is a branch, then the
stem, which has to be on a sensitized path, will automatically
be included in by the algorithm. If is a fan-out of
a gate with multiple controlling fan-ins, then all such fan-ins
(also marked by path trace) need to get complemented so that
the value of changes. Thus, every such fan-in will be on
some sensitized path(s) from elements of and induction
holds for

Similar reasoning proves that induction holds for the case
where is a fan-out of a gate with all noncontrolling fan-ins.
This proves the claim and completes the proof.

B. Single Error Case

Theorem 1 directly translates into a diagnosis algorithm for
designs corrupted by a single error because every valid error
line is guaranteed to be marked by every run of the path-
trace procedure for different erroneous primary outputs and
vectors of the set In other words, every such line is
guaranteed to be in the intersection of the lines marked by
distinct path-trace runs.

The following corollary, immediate from Theorem 1, for-
malizes the above observation.

Corollary 1: If is a one-source correctable design, then
for every valid one-error line tuple

(2)

Again, consider the circuit of Fig. 3 and assume that there
is an inverter missing on line In such case, input vector (1,
0, 1) produces erroneous responses at both primary outputs
and As explained earlier, two potential runs of path trace
from and mark sets of lines and respectively.
Corollary 1 asserts that every single valid error line belongs
in their intersection, that is,
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(a) (b)

Fig. 4. Examples of intersection graphs.

Fig. 5. A two-source correctable design.

C. Multiple Error Case

If the design is corrupted by multiple errors, that is,
different sets will contain different lines from valid

error line tuples, according to Theorem 1, and Corollary 1 no
longer holds. In this subsection, we present the concept of
the intersection graph, originally developed by Venkataraman
and Fuchs [31] for bridging fault diagnosis. We introduce the
operation of an -graph reduction that allows the processing
of the graph in order to prune the error space. We also describe
a novel enumerating procedure that computes-error line
tuples from a processed graph.

1) Pruning the Error Space:The intersection graph(IG)
[31] of a is an undirected graph where
each vertex contains a set of lines from Edge

if and only if Throughout our
presentation, we use the symbolto denote either the vertex

or the set of lines vertex contains, depending on the
context in which the symbol is used.

For example, the IG in Fig. 4(a) has six vertices,
and the IG in Fig. 4(b) has three vertices

and two cliques.
Definition 1: Let IG and let

be distinct vertices of
with pairwise disjoint line sets. For every let

denote a maximum set of vertices
that form a clique that contains , and no vertex of this clique

is adjacent to any vertex of We define an -graph
reduction with respect to on to be the operation that
gives a new IG where set
is replaced by a new vertex
and recompute edge adjacencies. If an-graph reduction
exists, then we say that is -reducible.

It will be seen shortly that -graph reductions provide the
means for pruning the error space. An example of a graph
reduction operation is shown in Fig. 4. The IG of Fig. 4(b) is
the resulting graph when a two-graph reduction, with respect to

is carried on Fig. 4(a). The two sets of vertex
adjacencies involved in the reduction are shown in dotted
lines. Observe that because it
is adjacent to Notice that the reduced graph
of Fig. 4(b) is still two-reducible.

The graph processingproceeds as follows. Initially, the
IG has no vertices. We begin adding vertices to the IG
from distinct runs of the path-trace procedure and perform
an -graph reduction(s) whenever possible. This procedure
terminates when path trace is called for all vectors in and
all respective erroneous primary outputs.

Example 1 illustrates the graph processing procedure for a
two-source correctable design.

Example 1: Consider the erroneous circuit in Fig. 5 with a
gate replacement error on (NANDgate) and an extra wire

(dotted line) simulated for input vectors
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(a) (b) (c)

Fig. 6. IG processing.

and Line values during simulation are
shown in parentheses. produces erroneous results at both
primary outputs and activates the inconsistencies at output
driven by

For the first input vector, the path-trace procedure
marks set of lines when it orig-
inates from and it marks a set of lines

when it originates from
The resulting intersection graph is shown in Fig. 6(a). Fig. 6(b)
shows the intersection graph, and its adjacencies when vertex

is added from path trace for starting at This allows
a two-graph reduction with respect to The
resulting graph is shown in Fig. 6(c) where vertices and

have been replaced by with line set
Theorem 2 below guarantees that the graph processing pro-

cedure described above will not jeopardize the error resolution
as long as -graph reductions are applied on the IG of an

-source correctable design. Before we state and prove the
theorem, we prove the following lemma.

Lemma 1: Let be an -source correctable design and
be an IG at some stage of the graph processing

procedure. If every vertex of contains at least one line from
each valid -error line tuple, this property is maintained after
an arbitrary number of vertex additions from path trace. If
has at most pairwise nonadjacent vertices, this property is
maintained after an arbitrary number of vertex additions from
path trace.

Proof: The first claim of the lemma, that is, that every
vertex of contains a line from every valid -error line
tuple after a number of vertex additions from path trace, is
a straightforward application of an inductive argument and
Theorem 1 on the number of vertices of

The second claim of the lemma is proved by contradiction.
Suppose that there is a set of pairwise
nonadjacent vertices after a vertex addition from path trace
on By Theorem 1 and the first claim of this lemma, every
vertex of the resulting graph contains at least one element
from every valid -error line tuple. Therefore, there should
be at least two vertices of that are adjacent, which is a
contradiction.

Theorem 2: Let be an -source correctable design and
be the initial IG for the design, that is, a graph

with no vertices. At every stage of the graph processing,
contains at least one line from every valid-error line

tuple. In addition, can haveat most vertices pairwise
nonadjacent to each other.

Proof: We prove the theorem with induction on the
number of reductions. In our proof, we let
be the processed IGbefore the th reduction.

For that is, the initial graph with some vertices from
path trace and vertex adjacencies computed, the theorem holds
as every vertex in contains at least one element of every
valid -error line tuple (Theorem 1). In addition, cannot
contain a set of pairwise nonadjacent
vertices due to an argument similar to the one presented in
the proof of Lemma 1.

Assuming that the theorem holds for the IG we prove
that it holds for the IG obtained after applying the

th graph reduction with respect to some set Observe that
Lemma 1 guarantees the induction step is true foranyarbitrary
number of path-trace vertex additions on

To prove the first claim of the theorem, observe that due
to the inductive hypothesis and because is -source
correctable, each set contains the same line
from each valid -error line tuple, otherwise there would
be two vertices that are adjacent. Since
every vertex of contains the same line from every
valid -error line tuple, this line should also appear in their
intersection.

To prove the second part of the theorem, cannot
contain a set of pairwise nonadjacent
vertices as it leads to a contradiction with a similar argument
to the one presented in the proof of Lemma 1.

Observe that Theorem 2 also gives alower boundon the
number of modifications needed to rectify an erroneous
If at some stage of graph processing, haspairwise
nonadjacent vertices, then the design is guaranteed not to be

-source correctable for due to Theorem 2. However,
it can be -source correctable for some

As noted earlier, Theorem 2 holds only when-graph
reductions are performed on an-source correctable design.
The following example shows that -graph reductions on an

-source correctable design when can jeopardize error
resolution.

Example 2: The IG of Fig. 7(a) is a processed IG for some
three-source correctable design Assume that
and are the only two valid error line triples for

If we perform a two-graph reduction with respect to
, we obtain the graph of Fig. 7(b), where

vertices and are replaced by and
respectively. It can be seen that this new graph violates
Theorem 2, as there are vertices that do not contain a line
from every valid error line triple.

Corollary 2: If is the processed graph for some-source
correctable design and we perform a-graph reduction for

then Theorem 2 no longer holds.
2) Implicit Error Enumeration: Given a processed IG

the next step of the algorithm is toimplicitly enumerate
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(a) (b)

Fig. 7. A two-graph reduction on a three-source correctable design.

-error line tuples from In this subsection, we describe
such an enumeration procedure.

Let an -sampleof be the union of lines
of randomly chosen vertices that is,

-sample For example, a two-sample for the graph
of Fig. 7(a) may consist of vertices or

During implicit enumeration, given the first step is to
identify the maximum number of pairwise
nonadjacent vertices. However, as explained earlier,can
be -source correctable for any Therefore, an initial
guess of the number of modifications is required. In our
experiments, its value is found by running the algorithm for
increasing values of We start with and increase
its value as long as implicit enumeration fails to return a
nonempty (Fig. 1).

Once the algorithm computes it selects a set
of pairwise nonadjacent vertices

and an -sample for a small value of usually less than five.
Subsequently, it exhaustively compiles-error line tuples

placing them in The
th entry of each tuple is picked from when

and from the -sample when (and if) Last, for
every other distinct set of pairwise nonadjacent vertices

from the algorithm deletes the
-error line tuples from that do not have a subset of

lines, each of them in the line set of some distinct
Example 3: Implicit enumeration for the IG of Fig. 6(c)

yields 14 error pairs as These pairs are

and
It can be seen that the ability of implicit enumeration to

give valid -error line tuples depends on the choice of the-
sample. Error simulation, described next, is a procedure that
improves on error resolution. It also quantifies the quality of
the chosen -sample.

D. Error Simulation

Error Simulationis a diagnostic procedure that extends the
ideas presented in [13] and [27]–[29] and also provides infor-

Fig. 8. Error simulation.

mation useful during correction. It returns themaximumsubset
of that can rectify the design for all vectors of
Therefore, if does not contain valid -error line tuples
because of either a poor-sample choice or an incorrect guess
for at the end of error simulation it usually becomes empty.

During error simulation, shown in Fig. 8, for every -
error line tuple and for every

(line 1), we perform 2 1 simulations. During each
such simulation for vector represented by a uniqueerror
excitation scenario number maintains
the original simulator value in for if the th bit of is
zero, and has the complemented value if theth bit of is one
(lines 3–6). The motivation is that a linewith a complemented
simulation value for indicates a line with a potential design
error that is excited.

If there is a vector such that no error excitation
scenario for yields correct primary output responses, then

gets deleted from the error list as it cannot be a valid-
error line tuple. Otherwise, qualifies and its -error line
tuple entry in is updated with all excitation scenarios
that give correct primary output results for
every

In our implementation, we maintain two bit lists at every line
the Elist andClist. These bit lists are created during

the initial test vector simulation verification step that precedes
our DEDC method. Theth bit of the Elist for contains
the value of when we simulate theth vector in For
example, theElist for the lines of the circuit in Fig. 5 is the
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values in parenthesis. The bits of theClist are defined similarly
for the vectors of These bit lists help perform both
error simulation and correction procedures efficiently.

Example 4: The boxes in Fig. 5 contain the values of the
lines during error simulation for error line pair and
input vector Recall that this vector gives
erroneous responses at both primary outputs. The first entry
contains the line values for error excitation scenario (
excited, not excited), the second entry contains the line
values when ( not excited, excited), and the third
one when ( excited, excited). Observe that this
procedure needs to be carried outonly in the set of six lines
that is the union of the fan-out cones of ( ). All three
simulations can be performed in parallel with the use of the
Elist bit lists. The first error simulation corrects for
but maintains the erroneous response at The other two
error simulations yield erroneous responses atSince none
of the three error simulations yields correct primary output
responses, ( ) is deleted from

On the other hand, error pair ( ) qualifies error
simulation since error excitation scenarios ( excited,

excited) for and ( excited, not
excited) for yield correct primary output results and tuples
( ) and ( ) are recorded.

The reason we need all the excitation scenario numbers
that give correct output responses for every vector is because
we need to record conditions where the potential error(s) on
the line(s) does not influence the primary output responses
during simulation of the test vector. This will prove helpful
during correction so we do not accidentally miss valid-error
corrections. The following example illustrates the basic idea.

Example 5: Consider the circuit in Fig. 5 during simu-
lation of vector Recall that error pair

qualified implicit error enumeration, as shown in
Example 3. It also qualifies error simulation, and for
tuples, ( ) and ( ) are recorded. Error
excitation scenario numbers 1 and 3 together imply that the
logic value of for can also be a “don’t care” (). This
is expected since has no sensitized paths to any primary
output for and any type of correction can be applied on
the line for

E. Overall Diagnosis Approach

In this section, we describe the overall error diagnosis
approach. For multiple error diagnosis, we present the concept
of a checkpoint, an observation on thestructuralproperties of
a combinational circuit that allows us to speed the procedure.

We define acheckpoint to be either a primary
output or a fan-out stem of We define theclan of
checkpoint to be the set of all lines including such
that every path from to some primary output goes through

and is the first such checkpoint. Computing the set of
checkpoints for a circuit takes time linear in the number
of lines of It should be noted that our definition and use
of checkpoints is different from the one presented in [35].

For example, the circuit in Fig. 5 has checkpoints
and We also have

Fig. 9. Multiple error diagnosis algorithm.

The following theorem, which follows immediately from
the work in [10] and [16], is essential for the correctness of
our multiple design error diagnosis algorithm.

Theorem 3: Let line in the clan of checkpoint
that is, If belongs to some valid -error line tuple,
then also belongs to some valid -error line tuple.

Intuitively, the theorem holds because every sensitized path
from to the erroneous primary output(s) must necessarily
pass through checkpoint

Single error diagnosis ( ) is a straightforward exten-
sion of the ideas presented in Sections III-B and III-D. First,
we compile a set of distinct vertices from consecutive
path-trace runs for all vectors of Then, we quickly reduce
the error space by intersecting the lines of the members of,
and we follow with error simulation. If is empty after
error simulation. then we increase the value ofby one and
enter multiple error diagnosis.

Referring to Fig. 9, multiple design error diagnosis ( )
proceeds as follows. The IG graph is built and processed,
according to the algorithm presented in Section III-C, in
lines 1–6. Vertex insertions (line 3) are followed by-
graph reductions (lines 5–6) until is empty and no more
reductions are possible. The error set is created in line
7 with the implicit error enumeration procedure described in
Section III-C2 and a value for the-sample specified by the
user. If becomes empty during error simulation (lines
8–9), then we repeat the process, as shown in lines 10–13. If
the maximum number of iterationsiters has been reached, we
also increase the value of by one.

In our implementation, the procedure of Fig. 9 is first
applied on the set of the checkpoints of the circuit
Due to Theorem 3, the theory developed in this section also
holds for the checkpoints of the circuit. Once the algorithm of
Fig. 9 terminates on the checkpoints of and outputs a set
of -error checkpoint tuples, we exhaustively create

from the clans of the checkpoints contained in
Then we run error simulation to obtain the final set
of -error line tuples. This set is the input to the correction
algorithm, presented in the next section.

F. Handling Unknown Values

In our presentation, the assumption is that the design is com-
pletely simulatable; that is, we are able to perform simulation
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with specified values zero and one, and we exclude unknown
value This assumption can be partially relaxed in two steps,
so that we allow simulation using three-valued logic values.

If the specification is incomplete and the output of the circuit
is not specified for some input combinations, then as long as
none of these combinations is applied, the method works with
no change in the algorithm [2].

However, if it is not possible to drop all such unspecified
input combinations from the test set, observe that in our pre-
sentation of path trace, the procedure starts from an erroneous
primary output where the good circuit has a fully specified
value (zero or one) and the faulty one has the opposite
response. Consequently, this erroneous primary output cannot
have the unknown value Now, observe that a gate whose
output corresponds to the line under consideration either has
one or more controlling inputs or has all noncontrolling values
at its inputs. Therefore, unknown values present no problem
for implicit error enumeration, as long as there are input test
vectors that create sensitized path(s) from every error location
to some primary output(s).

The same argument holds for error simulation, as we only
simulate specified values.

IV. ERROR CORRECTION

Correction follows after diagnosis terminates with a
nonempty During correction, every set of lines

is considered separately for
every vector The following theorem guarantees
that the correction procedure, described later in this section,
will include all valid -correction tuples from our correction
model.

Theorem 4: Let be an -source correctable design, and
let with excitation numbers

for Define set

and and and

If is a valid -correction tuple for the
lines of and is the logic value of under simulation of
(i.e., if is the th vector in , then the th bit of Elist is ),
then the value of for when implements
function should be:

1) if contains all zeroes;
2) if contains all ones;
3) it can be any value (zero or one), if contains both

zeroes and ones.

Proof: We only prove the first case, as the other two
cases can be proven in a similar manner.

If contains only zeroes, then it means that error simu-
lation gives correct primary output responses for simulations
where the potential error on is not excited. In other words,
a valid correction maintains on line the logic value
for vector

During correction, for every -error line tuple
and for every

we exhaustivelycompile a list of corrections from
our design error model. From these corrections, we keep the

(a)

(b)

Fig. 10. Wrong gate correction for error pair. (a) Erroneous circuit and (b)
pair of corrections that qualify.

ones that when applied to the lines of produce for each
a new logic value for that satisfies the requirements of

Theorem 4. For wire-related corrections, we consider adding
wires that do not create loops in the combinational circuitry.

The following examples illustrate the above correction
strategy.

Example 6: Recall from Example 4 that error pair
qualified error simulation and tuples

and were recorded. For vector
, we have and According to Theorem 4, a

pair of valid corrections complements the existing logic values
on lines for Indeed, when is replaced by
an NANDgate and extra wire is removed, the new logic
values on and are one and zero, respectively. Similar
reasoning shows that this pair of corrections satisfies Theorem
4 for tuple and qualifies the correction
procedure.

Example 7: Consider the circuitry in Fig. 10(a) and assume
that it is a pair of suspicious lines in some erroneous macro-
based circuit simulated for vectors TheElist
bit list for the vectors is shown in boxes above each line.

Correction is applied on error pair with the
following entries obtained from error simulation,

and
As explained earlier, excitation configuration 1 for

locations and vector states that produces correct
primary output results for error simulation if the potential
error on is excited and the error on is not. Equivalently,
excitation configuration 3 implies that both potential errors on
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TABLE I
CIRCUIT CHARACTERISTICS

and need to be excited. Observe that tuplesand
are similar to the situation presented in Example 5.

Assume that the correction pair under consideration is
a missing gate for and a gate replacement
error for Also, assume that when we apply
these corrections, as shown in Fig. 10(b), and perform one
local simulation step with the use of theElist bit lists on

we get the new values for and shown
in the shaded boxes. It can be seen that these new values
respect Theorem 4 for because has a complemented
bit entry zero ( and ) and maintains its one
Elist value (2 and ). The same holds for , and
this correction pair qualifies. Note that if -error line tuple

was not in the output of error simulation, then the above
two-correction tuple would not qualify.

Once we exhaustively compile a list of corrections as
described above, a last test vector simulation-based verification
step is performed for the vectors of theClist bit list at the fan-
out cones of the lines with corrections. Corrections that give
correct primary output responses are theoutputof our DEDC
algorithm and input to the logic verifier.

V. EXPERIMENTS

We implemented the DEDC algorithm in C language and
ran it on a Sparc 10 workstation for the ISCAS’85 circuits
corrupted with one, two, and three design errors from our
design error model. The types and locations of the errors
injected were selected randomly. We ran 20 experiments
for each of the three different scenarios for a total of 60
experiments per circuit. For the three-error case of circuit

6288, we ran only five experiments due to the increased
complexity of the design [7], [13]. The average values of the
results of our experiments are reported in the next pages. All
run times are in seconds.

The nonoptimized ISCAS’85 benchmark circuit characteris-
tics can be found in Table I. The initial size of the error space,
that is, the total number of -error line tuples for each of these
designs, can be found in the last three columns of that table.
These numbers are computed according to (1). The run-time
savings for diagnosis due to the observations in Section II-E
can be computed if we estimate theaverage clan size,shown
in column 5. This number also gives a lower bound for the
average speed up of the algorithm on one-source correctable

designs versus the naive approach that considers all circuit
lines. For two-source correctable designs, this lower bound is
the number in column 5 raised to the power of two, etc.

A. Results on Diagnosis and Correction

Table II contains results on the performance and the output
of our DEDC methodology. The three rows for each circuit
correspond to the one-, two-, and three-source correctability
cases, respectively.

The second column of Table II contains the size of
that is, the total number of stuck-at [19] and random vectors
we use during the initial simulation based verification step. The
next column contains the hit ratio of these vectors to activate
the inconsistencies of the erroneous design. We use a subset
of these vectors to compile The average size of is
shown in column 4. Unless the design error(s) is redundant
[9], is never empty throughout our experiments.

The next three columns contain results on implicit error
enumeration. Column 5 shows the most frequent IG type
obtained. The clique case is the most computationally expen-
sive case to handle, while an-disconnected component IG
provides faster and more accurate error resolution. We can see
that implicit error enumeration is a quite efficient procedure
considering the size of the initial error space shown in the
last three columns of Table I. As explained in Section II-E,
the algorithm begins with and repeatsiters times if

becomes empty at the end of error simulation. In our
implementation, we set the value ofiters to three. This number
of iterations proves to be sufficient to obtain a good error
sample. The average number of iterations is less than 1.8 for
both the two- and three-source correctability cases, and the
average size of the-sample is 3.3 vertices for the two-source
correctable experiments and 7.2 vertices for the three-source
correctable experiments. If the algorithm reaches the maximum
value ofiters, it automatically increases the value ofby one.

Results for error simulation on both checkpoints and their
clans can be found in columns 8 and 9. Usually, the majority
of the error tuples entering from implicit error enumeration
are deleted during the first iterations of error simulation
for the vectors of There are also cases that particular
input vectors reduce the size of dramatically. These
experimental observations suggest that if contains a
design error-specific test set [4], then we can possibly improve
on run-time performance.
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TABLE II
DEDC RESULTS

Column 10 contains the number of the-correction tuples
returned by the correction algorithm, and the next column
contains the run times for returningall possible -correction
tuples. The run times of column 11 also contain the time
needed for correction verification with the use of theClist
bit lists. The algorithm can be modified to exit when one
correction is found for a fraction of the run times shown of
column 11. Column 12 of Table II contains the overall time for
DEDC and exhibits the robustness and good error/correction
resolution of the proposed methodology.

We also performed experiments that allow two-graph re-
ductions on IG’s where the maximum number of pairwise
nonadjacent vertices is two but the design is three-source
correctable. These experiments validate the results in Corol-
lary 2, and error resolution deteriorates in most (50%–85%)
cases. However, whenever we are able to obtain valid three-
error line tuples, the size of is orders of magnitude
smaller than the one shown in column 6, thus improving
performance.

In addition, we ran our diagnosis algorithm on-source
correctable designs where In these cases, the clique
was the most frequent IG structure, but the algorithm avoided
the explosion of the error space according to (1). One can
possibly further improve performance by rectifying small sets
of erroneous primary outputs, one at a time, as described in
Lin et al. [17]. Considering the complexity of the problem
for an approach can also possibly allow-graph

reductions, on the design, whenever possible, and
repeat the procedure if becomes empty.

Last, we tested our approach on the combinational versions
of the ISCAS’89 sequential circuits. The run times we obtained
for some of the largest circuits of this family of benchmarks is
comparable to the ones for midsized ISCAS’85 circuits. This
is because the combinational logic depth of the transformed
ISCAS’89 circuits decreases significantly when the inputs and
outputs of the state elements become pseudoprimary outputs
and inputs, respectively. Moreover, the large number of inputs
and outputs versus the amount of combinational logic for the
modified circuits causes distinct runs of path trace to mark
nonoverlapping sets of circuit lines and the intersection graph
to return with pairwise nonadjacent components most of the
times. This, as we discussed, improves on error resolution and
reduces the overall run time. It should be noted that exper-
imental data on the performance of the implicit enumeration
procedure alone for one- and two-source correctable ISCAS’89
designs can be found in [30] and [31], respectively.

B. On the Quality of Test Vector Simulation for DEDC

From our discussion in Section I, it is clear that thequality
of any test vector simulation algorithm for multiple DEDC
depends on the input test vector size on which the
algorithm bases its diagnosis and correction decisions. The set
of input test vectors is crucial for diagnosis because it has to
activate all inconsistencies in According to the theoretical
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TABLE III
CORRECTION HIT RATIO FOR SMALLER jVtestj

and experimental results of [2] and [4], deriving a complete
(i.e., 100% error coverage) design error test set for the model
of Abadir et al. [2] through ATPG techniques, requires an
expensive and practically unrealistic procedure.

The set of input test vectors is also important for correction.
Since exhaustive test vector simulation is prohibitive for most
designs, a correction method that bases its results on a subset

of the complete input test vector space can produce
corrections that correct for the vectors of only.
Therefore, it is of interest to know the quality of these
corrections for the complete input test vector space.

We use the termcorrection hit ratioto denote the percentage
of valid -correction tuples in the set of corrections returned
by our algorithm, or, equivalently, the number of corrections
that exit the logic verifier [6] over the ones that enter it in
Fig. 1. In our experiments, the correction hit ratio is 100%
for all the ISCAS’85 circuits and the test vector set
sizes shown in Table II. In other words, no global looping
of the DEDC algorithm occurred following the logic verifier.
Table III contains the correction hit ratios for a smaller number
of input test vectors. These numbers complement the results
in [2] and [4], as they indicate that there are design errors not
only “hard to detect” but “hard to correct” as well.

Overall, our experimental results suggest that test vector
simulation is indeed an attractive route to DEDC. It is com-
putationally efficient for diagnosis, as it can narrow down the
error space rapidly and it scales well with increasing number
of errors. It is also effective for correction, since the amount of
resynthesis performed is indeed minimal and the vast majority
of the corrections returned are valid corrections, although a
logic verifier is a requirement at the back end of such a method.
Last, it is applicable to circuits that have no global BDD
representation.

C. Design Error Masking

The circuit in Fig. 11(a) is corrupted by two errors since
should be anORgate and an ANDgate. Nevertheless,

the error on is not observable since there is no sensitized
path from to a primary output for any input test vector.
Note that the error on is observable when the error on
is corrected, as shown in Fig. 11(b). This situation is referred
in the literature aserror masking[21].

Unfortunately, design error masking can mislead existing
DEDC techniques, including the work presented here. For

(a)

(b)

Fig. 11. Error masking. (a) Error masked and (b) not masked

example, the circuit of Fig. 11(a) is two-source correctable
but existing DEDC techniques will attempt to correct it with a
single correction. However, a single correction is not sufficient
because the circuit of Fig. 11(b) is still erroneous.

If a design fails to be -source correctable, it may be caused
by error masking. In our experiments, error masking did not
occur for We ran experiments for higher values of

and counted sensitized paths from the error
locations to the primary outputs. Error masking was rare, as
it occurred two times in a total of 60 experiments on circuits

432, 880, 499, and 1908. It may be concluded that
design error masking is rare, but when it happens, it is a
difficult problem to solve.

VI. DISCUSSION

A. Sequential Circuit DEDC

Our DEDC method is applicable to combinational circuits
and sequential designs where a one-to-one correspondence of
the state elements between the specification and the design is
available because one can extract the combinational circuitry
and apply the proposed algorithm [14].

If such correspondence is not available, combinational
DEDC techniques, although applicable, may no longer be
efficient for sequential circuit DEDC. For sequential circuit
DEDC, the iterative array representationof the circuit
for consecutive time frames seems to be necessary [14].
However, this representation increases the problem complexity
even for designs corrupted with a single error because the
combinational part of the circuit increases dramatically with
every time frame, as does the error space (1). This is also
experimentally reported by Huanget al. [14]. In addition,
the generation of input test vector sequences that activate
the inconsistencies is also a significant research challenge for
sequential circuit DEDC [14].

Due to the inherent difficulty of the problem, little work has
been performed [8], [14], [20], [33]. Considering the run-time
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efficiency of the implicit error enumeration procedure, it
will be interesting to know its application and performance
on sequential DEDC. In addition, the quality of test vector
simulation for sequential design error verification, diagnosis,
and correction will need to be examined.

B. Engineering Change

In a typical VLSI synthesis process, specifications may
change even at a late stage of the design cycle when the
designer has already invested a significant amount of effort
on the design. Since automated tools for synthesis and opti-
mization tend to find a minimal representation of the requested
function, engineering changes to the original specification may
require large changes in the existing gate-level implementation
if a conventional resynthesis procedure is applied. This is
undesirable, as it can jeopardize some of the engineering effort
already invested in the design. In the problem ofengineering
change, one is interested in the least amount of resynthesis
on the existing design to obtain one that satisfies the new
specification [5], [11], [12], [17].

Depending upon the information available, two versions
for engineering change can arise. For each version, a fun-
damentally different solution is developed. In the first version,
a naming equivalence (i.e., functional equivalence) between
signals of the new and old specification and the existing design
is available from the synthesis process. Existing work [5],
[11], [12] uses this information to resynthesize the signals that
are not functionally equivalent. In the second version [17],
such a naming correspondence is not available as the old and
new specification can only provide primary output responses
in terms of the primary input stimuli. It is reported by Lin
et al. [17] that DEDC can be also viewed as an instance
of the second version of engineering change. Nevertheless,
engineering change is inherently more difficult, as we cannot
necessarily expect that a few modifications will always provide
a solution.

In terms of the DEDC problem, the second version of
engineering change can be expressed as a problem where the
minimumsequence of the following two operations:

• add/delete any existing wire in the design as fan-in to
any gate or as a branch line;

• add/delete any simple gate;

is required on the existing design to obtain one that implements
the new specification. It is clear that this set of operations,
which is a subset of the design error model of Abadiret
al. [2], is sufficient to transform the design to the new one.
It is our conjecture that this problem is NP-Complete, and
an efficient algorithm will need to make use of heuristics.
We believe that existing DEDC methodologies can lead to
efficient solutions where engineering changes are performed
while reusing a significant amount of the existing design.

VII. CONCLUSIONS

We described a test vector simulation-based approach for
multiple design error diagnosis and correction. Diagnosis is
independent of any design error model, and correction uses an
extension of the model presented by Abadiret al. [2].

Diagnosis uses the results of the path-trace procedure to
construct an intersection graph. A novel implicit enumeration
procedure derives potential error lines from this graph and
avoids the exponential growth of the error space with increas-
ing numbers of errors. An error simulation procedure improves
on error resolution. It also records information that is used
during correction. Last, correction returns a set that contains

-correction tuples, and this set is the input to a logic verifier.
Experiments confirm theoretical results, as they exhibit the

efficiency and accuracy of our approach. They also indi-
cate that test vector simulation is an attractive alternative
to symbolic techniques for multiple design error diagnosis
and correction, since it is applicable to all circuits and its
performance scales well as the number of errors increases.
Nevertheless, a logic verifier is required at the back end of such
a method to guarantee the quality of the proposed corrections
since some design errors may not only be hard to diagnose
but also can be hard to correct.
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