
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 7, JULY 2006 763

Extraction Error Modeling and Automated Model
Debugging in High-Performance Custom Designs

Yu-Shen Yang, Student Member, IEEE, Andreas Veneris, Senior Member, IEEE, Paul Thadikaran, Member, IEEE,
and Srikanth Venkataraman, Member, IEEE

Abstract—In the design cycle of high-performance integrated
circuits, it is common that certain components are designed di-
rectly at the transistor level. This level of design representation
may not be appropriate for test generation tools that usually
require a model expressed at the gate level. Logic extraction is a
key step in test model generation to produce a gate-level netlist
from the transistor-level representation. This is a semi-automated
process which is error-prone. Once a test model is found to be
erroneous, manual debugging is required, which is a resource-
intensive and time-consuming process. This paper presents an
in-depth analysis of typical sets of extraction errors found in the
test model representations of the pipelines in high-performance
designs today. It also develops an automated debugging solution
for single extraction errors for pipelines with no state equivalence
information. A suite of experiments on circuits with similar ar-
chitecture to that found in the industry confirms the fitness and
practicality of the solution.

Index Terms—Debugging, errors, extraction, test model, VLSI.

I. INTRODUCTION

LARGE AND complex VLSI designs such as micropro-
cessors, systems-on-chip (SoCs), and application specific

integrated circuits (ASICs) often require high-performance
low-power custom logic blocks designed at the transistor level
[2], [3], [5], [12], [17], [21], [22]. Since a transistor-level repre-
sentation cannot be used directly to generate production tests, a
gate (logic)-level representation of these blocks, also known as
a test model, is extracted from the transistor schematic and used
instead. Logic extraction is a semi-automated process which is
error-prone [16], [21], [22]. Since the amount of verification on
the test model before test generation can be limited, extraction er-
rors may carry forward in test generation and discovered during
test validation. At that point, manual debugging is performed,
which is a time-consuming and resource-intensive process.

Traditionally, generation of scan tests for high-volume
manufacturing of complex VLSI circuits with custom-made
components requires a design flow similar to the one shown in
Fig. 1 [12], [17], [21], [22]. The test model is a logic-level rep-
resentation that conforms to the functionality of the extracted

Manuscript received August 5, 2005; revised December 19, 2005.
Y.-S. Yang is with the Department of Electrical and Computer Engineering,

University of Toronto, Toronto, ON M5S 3G4, Canada (e-mail: yangy@eecg.
toronto.edu).

A. Veneris is with the Department of Electrical and Computer Engineering
and the Department of Computer Science, University of Toronto, Toronto, ON
M5S 3G4, Canada (e-mail: veneris@eecg.toronto.edu).

P. Thadikaran and S. Venkataraman are with Intel Corporation, Hillsboro,
OR 97124 USA (e-mail: paul.thadikarana@intel.com; srikanth.venkataraman@
intel.com).

Digital Object Identifier 10.1109/TVLSI.2006.878346

Fig. 1. Test generation flow.

gate-level netlist, additional synthesized logic, and external test
vector constraints.

To obtain a gate-level netlist for the transistor-level compo-
nent, logic extraction is performed for library cells in the synthe-
sized logic and the custom design. Logic extraction is usually an
automated process for combinational logic and most sequential
circuits [4]–[6], [10], [13], except certain complex cells such
as clock generators and scan sequentials that are handled by
manual generation of gate-level models. The level of abstraction
in the libraries used during extraction, bugs in computer-aided
design (CAD) tools, and the human factor may introduce errors
in the extracted gate-level model [16], [21], [22].

For this reason, the logical netlist is usually verified using
formal techniques and simulation prior to test generation
(see Fig. 1). Both verification approaches may not be com-
plete and/or exact due to several reasons. For example,
formal methods prove equivalence in the domain of logic
values , but they may not prove equivalence in the

space where the design is exercised during test
generation when high impedance values may also be included.
Additionally, formal equivalence- and simulation-based ap-
proaches can require excessive runtimes due to a large number
of validation tests. This limits the amount of validation/veri-
fication allowed at this stage. Consequently, some extraction
errors may be carried forward to test generation.

1063-8210/$20.00 © 2006 IEEE

764 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 7, JULY 2006

Following test generation, the generated tests are again veri-
fied against the golden model to ensure test correctness, which
is a process known as test (vector) validation. Tests may fail in
this step due to errors introduced in model generation but not
identified during model verification. When the test model fails,
whether this is during verification or afterwards during test val-
idation, manual analysis of the failures is the current industrial
practice, also shown in Fig. 1. This is a daunting task for the test
engineer that may delay test delivery to the factories and/or may
reduce their quality.

In this study, we describe a set of extraction errors that
are typical in test model generation for the pipeline compo-
nent(s) of high-performance designs that have high frequencies

GHz , consume little power, and meet strict reliability and
performance constraints [2], [3], [7], [8], [11]. Such errors may
occur because of erroneous module mapping during extraction
and because of library specification inaccuracies when complex
hardware such as memory elements, multiple clock domains,
and tri-state devices are integrated together. The manual inter-
ference of the designer/test engineer with the design may also
introduce errors.

We also develop an automated simulation-based debugging
solution that handles single extraction errors in the pipeline of
test models. The proposed solution does not assume that there
is any correspondence of primitives between the transistor-level
schematic and the test model. It also works on extracted gate-
level descriptions with no (and/or partial) state equivalence in-
formation to the transistor-level representation. Lack of state/
primitive equivalence information between the test model and
the transistor-level schematic increases the problem complexity
and the debugging effort by the designer. It should be noted that
the nature and the effects of extraction errors are radically dif-
ferent from the well-examined topic of design errors presented
in [1]. For example, unlike the error types described here, the
error model proposed by Abadir et al. [1] does not include prim-
itives such as flip-flops and tri-state devices, and it does not
apply to functional errors that arise from erroneous timing of the
circuit. Therefore, design-error debugging techniques [18], [19]
may not be applicable/efficient when applied to this problem.

An extensive suite of experiments on designs with similar ar-
chitecture to that found in industry demonstrates the practicality
of the approach. Methods such as the one presented here ben-
efit the testing of microprocessors, ASICs, and SoCs. They help
in identifying model inaccuracies at early stages of the design
cycle, reducing test delivery turnaround time and improving test
model generation.

The remaining paper is structured as follows. Section II
presents the circuit architecture and gives more details about the
intricacies of the particular problem. Section III contains a study
of different types of extraction errors that are typical in a modern
industrial environment for high-performance integrated circuits.
Section IV describes the debugging methodology, and Section V
presents the experiments. Section VI concludes this work.

II. PRELIMINARIES

Extraction builds a logic representation, known as the test
model, from a custom transistor-level block [4]–[6], [10], [13].
This representation is later used for test generation. This work

Fig. 2. Benchmark architecture.

assumes that the extracted netlist contains , , ,
and - buffer and flip-flop primitives. For simplicity,
we assume that the reset event for all flip-flop memory ele-
ments with a reset line is positive-edge-triggered [15]. Flip-
flops with level-sensitive reset are not implemented, but the pro-
posed debugging algorithm is not affected, as explained later
in the paper. Circuits are simulated under a five-logic value set

, where logic represents the unknown
value and denotes a different type of unknown value uti-
lized in debugging. A logic represents a high-impedance state

- devices generation. However, for simulation pur-
poses, a logic is replaced with an unknown . For example,
if a - buffer feeds a gate, the output of that gate
will be an unknown .

In implementation, a zero delay simulator is used for all
combinational circuitry. The proposed debugging algorithm
will work for most other delay models under a simple assump-
tion as discussed in Section IV. For the primitives involved
in the extracted netlist, we define the controlling value of
an to be a logic . We say that a line is
sensitized to an error by input vector if its logic value is
changed in the presence of the error for the input vector. A
path from a line to a primary output or a register composed
only by sensitized lines is called a sensitized path [9].

A. Circuit Architecture

The debugging methodologies developed in Section IV op-
erate on strictly pipelined sequential circuitry that it is found in
most cores of custom high-performance core modern designs.
This architecture is shown in Fig. 2 for a two-stage pipeline,
where combinational logic A, B, and C are completely separated
by layers of registers I and II that contain memory elements. We
refer to these parts of the design as the core circuitry. Since we
assume that there is no feedback in the circuit, all test vectors
used in experiments are -clock-cycle-long input test patterns
where is the number of registers in the particular circuit. As
we explain later in the paper, the method may or may not work
in the presence of the feedback.

The clocking circuitry of the design is also shown in that
figure. The difficulty in implementing designs operating at high
frequencies is that not only do high frequencies cause high clock
skew and jitter, but they also increase the power consumption.
To maintain performance, minimize power, reduce noise, and
lower clock skew and jitter, contemporary clock systems dis-
tribute global clocks at lower frequencies, generate faster local
clocks, and enable multilevel clock gating [2], [3], [7], [8], [11].
Therefore, different types of clock manipulator components are

YANG et al.: EXTRACTION ERROR MODELING AND AUTOMATED MODEL DEBUGGING IN HIGH-PERFORMANCE CUSTOM DESIGNS 765

used to generate local clocks with required frequencies, and
manual extraction of such complex components is a process
which is particularly prone to errors.

B. Problem Characteristics

Extraction errors occur frequently in test model genera-
tion of high-performance designs in contemporary nanometer

nm technologies where many libraries that contain
various instantiations of an element with different character-
istics are utilized. Real-life information about the frequency
of extraction errors in a typical industrial design cycle shows
that, for every library that contains a few hundred modules, the
extraction process is very likely to introduce an error in the
test model for the 180-, 90-, and 65-nm technologies. Once the
model is verified to be erroneous, the impact of these errors in
the design cycle varies from a few labor days to more than one
labor week of manual debugging by the test engineer. Clearly,
this is a resource-intensive process that increases the costs, and
it may jeopardize prompt test delivery to the factories.

There are several sources of extraction errors during test
model generation [21], [22]. Logic extraction may introduce
errors in the final flattened netlist due to erroneous module map-
pings by the designer or because of bugs in the automated CAD
tools. Additional sources of errors are functional mismatches in
the definition of module operation constraints between different
libraries [e.g., simulation library, synthesis library, physical
design library, and automatic test pattern generation (ATPG)
library]. In this case, the mapping is correct, but corner-case
specifications about the operation of the module(s) are inter-
preted differently by various libraries. In both cases, these
errors may change the functionality of the extracted test model.

Notice that, due to the nature of the extraction process, a
single error contained in a module definition may produce mul-
tiple erroneous instantiations in the final netlist. Modern design
methodologies are traditionally based on a hierarchical compo-
sition to simplify the design efforts [15]. Every circuit is a col-
lection of blocks, and each block contains a varying number of
more basic components which are replicated instances of sim-
pler modules. In this manner, a single module is usually instan-
tiated into many copies in the final netlist.

This hierarchical information is useful during extraction.
Instead of working on individual instances of a module piece by
piece, the process extracts the gate-level model of a module and
then it applies the extracted model to all instances of that module
according to an instantiation module mapping information using
pattern matching, ruled-based or symbolic approaches [4]–[6],
[10], [13]. This also implies that an error during the extraction on
a single module may result into multiple errors in the final flat-
tened netlist. This situation is depicted in Fig. 3, where a single
error in the mapping for Module 1 “translates” to two errors in
the final netlist. Due to the presence of multiple error effects,
diagnosis may become a challenging task because the solution
space grows exponentially [18]. However, the instantiation
module mapping information is usually known to the engineer.
In other words, recognizing one line that is a source of error is
sufficient to identify the remaining lines and rectify the design
by replacing all erroneous modules in the netlist.

Fig. 3. Multiple error instantiation.

An additional challenge when debugging extraction errors is
the fact that state equivalence information between the tran-
sistor level and the test model may not be fully available to the
engineer. Extraction tools often locally convert the transistor
components into logic components without recording infor-
mation about this mapping process. Hence, when designers
receive the extracted netlist, they may not have a one-to-one
structural correspondence between registers of the test model
and the transistor-level schematic. Full state equivalence be-
tween the schematic and the test model is usually observed
in blocks designed with standard logic synthesis tools. Partial
state equivalence (i.e., equivalence only at design block inter-
faces) and/or no state equivalence is a common characteristic
of custom/manual designed register files and datapaths. On
the average, our experience indicates that 40%–60% of the
equivalence information remains available.

Due to the lack of this information, the complexity of the
diagnosis is increased both in space and in time [19]. For ex-
ample, registers cannot serve as pseudoinputs/outputs, and only
responses at primary outputs can be used to verify the correct-
ness of the implementation. Furthermore, without access to the
registers, it may take several clock cycles to activate the error
and propagate the effects to the outputs. Consequently, diag-
nosis involves analysis on the states of the circuit in several dif-
ferent time frames that adds to the complexity of debugging.

III. EXTRACTION ERROR TYPES

Here, we study sets of extraction error types that are common
in high-performance cores, for example, for microprocessors,
SoCs, and ASICs, in the industry today [2], [3], [7], [8], [11],
[12], [17]. With respect to the terminology and circuit architec-
ture from Section II, we divide these error types into two cate-
gories, core error types and clocking circuitry error types, and
we present them accordingly.

A. Core Error Types

1) Reset Synchronicity Error: A large portion of the silicon
area in contemporary designs is dedicated to storage [15].
Memory elements such as flip-flops commonly have either a
synchronous or an asynchronous reset, shown in Fig. 4. As
illustrated in Fig. 4(b), a D-flip-flop with asynchronous
reset is evaluated as soon as an event arrives at its reset port,
whereas a flip-flop with synchronous reset cannot change its
value until a clock-edge occurs. During test model extraction,
a library element that contains a flip-flop with an asynchronous

766 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 7, JULY 2006

Fig. 4. (a) D-flip-flop. (b) Reset synchronicity. (c) Reset-clock contest.

Fig. 5. MUX implementations.

reset may be mapped to an element that contains a flip-flop
with a synchronous one and vice versa, resulting in a functional
error, that is, both directions of the error in Fig. 4(b) may occur.
Clearly, the waveforms from Fig. 4(b) indicate that, when such
a mismapping occurs, it may result in a functional error in the
test model.

2) Reset-Clock Race Error: Reset-clock race happens due
to module specification mismatch in the design libraries used
during test model generation. Different libraries may make dif-
ferent assumptions about the winner of the contest, which may
result in an erroneous implementation, shown in Fig. 4(c). The
right-hand side of that figure depicts the situation where Q is
initially 0 and the clock prevails, whereas in the left part of the
figure the reset line wins the contest. This type of error can arise
from the contest of other lines (e.g., set or hold) as well, and it
may occur in both directions as in reset synchronicity.

3) Multiplexer Implementation Error: A multiplexer circuit
allows more than one signal to be placed on the same line via
time-division multiplexing. A typical two-input multiplexer is
implemented with two tri-state buffers and a logic gate, as
shown in Fig. 5(a). The inverter between the two select ports

of the tri-state buffers ensures that line is driven by
only one input signal at any time.

Two erroneous mappings may occur during extraction, as
shown in Fig. 5(b) and (c). In the first one, the inverter is re-
placed by a buffer. In that case, when goes high, both tri-
state buffers are enabled, causing a merger at the output .
Table I summarizes the truth table for merger in Fig. 5(b). En-
tries which are not bold underlined may cause a discrepancy
in the output logic. Furthermore, when one of and is

TABLE I
MERGER TRUTH TABLE

TABLE II
MUX ERROR WHEN SEL = X

Fig. 6. MUX-latch implementations.

driven by logic 1 and the other by 0, a hazardous path is created
between power and ground.

In the other case [see Fig. 5(c)], instead of tri-state buffers, the
multiplexer is erroneously mapped to an implementation with
logic and gates. While the logic function of the two
implementations agree for most input combinations, they differ
when is assigned to . As shown by the first row in Table II,
the implementation with and gates drives 0 on ,
while the tri-state buffer implementation drives . This differ-
ence in the simulation result may lead ATPG to generate wrong
test vectors. Clearly, any mismapping between these three im-
plementations will result in an erroneous test model.

4) Multiplexer-Latch Implementation Error: Multiplexer-
latch (MUX-latch) design allows the sampling of signals from
two nonoverlapping clock domains. As shown in Fig. 6(a), data
from clock domains and are multiplexed into
the D-flip-flop, which is clocked by , the frequency of
which is the sum of the frequencies of and .
The multiplexer in a MUX-latch design can be implemented
with tri-state devices or gates, as illustrated in Fig. 6(b).
These two implementations have different logic functions when

and overlap, a situation which may happen
during scan test. In the implementation, the flip-flop
latches . In contrast, can be latched in the tri-
state buffer implementation.

B. Clocking Circuitry Error Types

1) Gated Clock Error: Modern devices impose strict power
consumption and reliability requirements. Since not all design
components may always need to operate simultaneously, the
gated clock scheme of Fig. 7(a) is commonly used to disable

YANG et al.: EXTRACTION ERROR MODELING AND AUTOMATED MODEL DEBUGGING IN HIGH-PERFORMANCE CUSTOM DESIGNS 767

Fig. 7. Gated clock implementations.

Fig. 8. Frequency-divider implementations.

clocking of temporarily inactive components and save power
[2], [7], [8], [11]. The hardware in that figure is built in such
a way so that operates in the frequency of

as long as is at logic 1.
Different implementations of the gated clock are shown in

Fig. 7(b) and (c). As can be seen, these implementations differ
on the position (if any) of a gate. An extraction process may
erroneously replace one implementation with another during
module mapping. The waveforms for all implementations are
found in Fig. 7(d). We observe that, for the same input, they all
produce different results.

2) Local Clock Frequency-Divider Error: Frequency di-
viders are used in approximating domain global clocks to
generate integral local clock frequencies that drive various
design blocks at different speeds [3], [7], [11]. Fig. 8(a) and (b)
contains common hardware to implement such dividers.
If the extraction process maps erroneously between these
two frequency-divider module implementations, the new

generated will be enabled at a complementary
phase [see Fig. 8(c)]. This may result in a circuit malfunction
because the memory elements of the core will lock/propagate
different logic values.

3) Local Clock Pulsed Buffers Error: To achieve high per-
formance, reduce power, and improve reliability, critical design
blocks [e.g., arithmetic logic unit (ALU)] may be required to op-
erate at higher (nonintegral) frequencies than this of the global
clock, while noncritical blocks may operate at slower frequen-
cies. Local clock buffers are used to generate clocks of a desired
frequency for various design blocks [3], [7], [11]. These buffers

Fig. 9. Clock pulsed buffer implementations.

are driven from global clocks through delay-matched taps, and
they are available as pulsed and nonpulsed buffers. Nonpulsed
drivers simply buffer the input global clock, and they usually
present no problem to the extraction process.

Fig. 9(a) shows a medium pulsed clock driver. At the rise
of the global clock, the pull-down path is asserted to generate
the rising edge of the local clock. At the same time, the self-
reset pull-up path is asserted to generate the falling edge of the
clock. The delay buffer is adjustable to permit different types
of duty cycle for the output local clock. Variations of the hard-
ware in Fig. 9(a) allow for pulsed buffers that generate slow-
and fast-frequency local clocks from global clocks. We omit
these hardware descriptions that can be found in [3], [7], and
[11]. Additionally, Fig. 9(b) shows the schematic for another
medium pulsed clock driver with a phase complementary to that
of Fig. 9(a).

During extraction, erroneous mapping or mismatches in li-
brary specifications may utilize a different pulsed buffer in place
of the other. For example, a medium frequency buffer may be ac-
cidentally replaced with a slow-frequency one or with one with
inverted phase due to human error. From real life experience,
it is unlikely that a fast-frequency buffer will be replaced by a
slower one, although the debugging method, presented next, can
handle this case. When a pulsed buffer replacement error occurs,
the difference in the operating waveforms [see Fig. 9(c)] may
change the functionality of the test model, and the input/output
vectors collected in test generation may give faulty output re-
sponses during vector validation.

IV. DEBUGGING EXTRACTION ERRORS

When an extracted netlist fails verification or the scan test (see
Fig. 1), current practice requires a manual analysis of the failure,
which is an expensive process in terms of both time and re-
sources. This section describes an automated simulation-based

768 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 7, JULY 2006

model-free [14] debugging procedure in the effect–cause direc-
tion [9] that rectifies single extraction errors in designs with full,
partial, or no state equivalence. Model-free diagnosis utilizes the
unknown logic value to guide the search for candidate error
lines, which is a desired characteristic in view of the complex
error behavior seen in Section III.

Automated debugging involves two steps, namely, diagnosis
and correction. Diagnosis proceeds in two phases, path-trace
and -simulation, to identify lines in the circuit where error
effects may originate. Once done, correction proposes a module
modification (replacement) on these lines from the set of errors
presented earlier to rectify the design. Since module mapping
information is known to the engineer, it suffices for diagnosis to
identify a single line driven by an error module. All other lines
with erroneous modules can be discovered using the mapping
information.

A. Generalized Path-Trace

A basic ingredient of diagnosis is a generalized path-trace
procedure. Path-trace is a line-marking algorithm originally pro-
posed by Venkataraman and Fuchs [20] and later redefined by
Liu and Veneris [14] to aid fault diagnosis. Path-trace simu-
lates input test vectors with faulty responses, and it marks lines
starting from a failing primary output. Here, we use an extension
to the procedure in [14] that handles three-value logic
in the view of multiple instances of a single error. It has the fol-
lowing rules.

1) If the output of a gate is marked and all of its inputs have
noncontrolling values, path-trace marks all inputs of the
gate.

2) If the output of a gate is marked and its inputs have one
or more controlling values, path-trace randomly marks one
such input.

3) If a branch is marked, then the stem of the branch is
marked.

4) If the output of a gate is marked and its inputs have logic
unknown and/or noncontrolling values, path-trace marks
all inputs that have a logic .

5) If the gate is a memory element, its input, reset, and clock
lines are always marked.

Rules 1)–3) are taken directly from [14] and [20], and they
guarantee to mark at least one line which is a source of error.
Rule 5) is novel to this study, and it extends the ability of path-
trace to mark lines in a circuit with memory elements. Finally,
rule 4) is a new rule added to handle the case of single errors
instantiated multiple times, as explained in the example below.

Example 1: Consider the situation depicted in Fig. 10(a),
where the output of the gate is marked with an “ ” by path-trace.
There are three separate cases path-trace may continue marking
as it moves towards the primary inputs. In the first case depicted
in Fig. 10(b), both unknown values at the gate inputs are a re-
sult of the same error site. Randomly marking one of them will
eventually lead to the same error site later. In the second case
[see Fig. 10(c)], the inputs are driven by two error sites which
are instances of the same extraction error. In this case, randomly
selecting one of the inputs will mark at least one of the error
sites which is sufficient to diagnosis. In the last case shown in
Fig. 10(d), randomly marking an input, as required by [14] and

Fig. 10. Path-trace with unknowns.

Fig. 11. Example clock waveform.

[20], does not work. In this case, there is only one error site.
When path-trace inspects this gate, it will not be able to know
which input with a logic is caused by the error and which is
not. Hence, it may miss the error site, but rule 4) helps avoid this
situation.

Due to the pessimistic nature ofpath-trace [20], it can be shown
that it always marks at least one line driven by an error module.
We omit the proof of this claim which is similar to the one found
in [14] that contains another three-valued variation of path-trace.
However, when state equivalence information is not fully avail-
able, additional care needs to be taken once path-trace marks the
outputof somememoryelements (registers).Although theproce-
dure correctly marks (among other lines) the input of a flip-flop,
the logic values in the circuitry of the fan-in cone of this flip-flop
may be obsolete. This is because of the different clock domains
that trigger independently and may change the values of the lines
in the fan-in cone of the marked flip-flop.

To elaborate further, consider the architecture in Fig. 2. For
the sake of simplicity, in the remaining section, we explain the
solution in terms of a two-stage pipeline since deeper pipelines
can be handled similarly. Assume that the memory elements in
register layers I and II are triggered by two independent clock
domains, as shown in Fig. 11. Furthermore, assume that some
flip-flop in layer II driven by is marked by path-trace
for an error observed at the primary outputs at time frame . In
other words, path-trace started from an erroneous output marking
lines in combinational circuitry C and reaches the output of .

The reader may verify that any error effect that propagates to
did so using logic values in combinational circuitry B that cor-

responds to time-frame (or before), that is, prior to the trigger
of . This is because local clocks (including) may
be shared with register layer I and overwrite the values in cir-
cuitry past time frame when triggers to store values
in . Since these values are now lost, we need restore them so
that path-trace continues marking lines at the input of cor-
rectly. Equivalently, if logic values in circuitry are updated
correctly and a memory element in register layer I is marked,
we need to restore all values of the gates in combinational logic
A at time frame .

The above discussion indicates that, for a two-stage pipeline,
one needs to store the logic values of each logic primitive of the

YANG et al.: EXTRACTION ERROR MODELING AND AUTOMATED MODEL DEBUGGING IN HIGH-PERFORMANCE CUSTOM DESIGNS 769

Fig. 12. Circuit and storage tables for example 2: (a) first vector, (b) second vector, (c) storage tables at t , and (d) storage tables at t .

core for all pipeline stages for one or two clock cycles before
the time frame the error is observed to aid path-trace. In the pro-
posed implementation, we store the appropriate logic values in
the registry and the primary input of the circuit using problem-
specific storage tables updated appropriately throughout simu-
lation of the circuit. Once an erroneous primary output is ob-
served, the storage table values are simulated in the combina-
tional block on which they fan out to restore the logic values on
the primitives at correct time-frames so that path-trace can con-
tinue marking. We illustrate the handling and use of these tables
with the following example.

Example 2: Consider the circuit in Fig. 12(a) with register
layers and and com-
binational cores , , and that contain a single error with

a single instantiation. This is the multiplexer implementation,
shown within the dotted box, that needs to be replaced with the
one shown in Fig. 5(a) that contains an inverter. Assume that
the two clocks of the design have the timing characteristics from
Fig. 11.

In the same figure, the storage tables are shown. Observe that
a pair of tables is dedicated to the primary input (PI) and a
single table to register layer . In detail, the column marked

in holds the value of the primary in-
puts before the last trigger of . Equivalently,
the column marked in holds the value
of flip-flops in before triggers. On the
other hand, the column marked in holds
the value of the primary input before two consecutive

770 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 7, JULY 2006

triggers. Intuitively, this is necessary because, if error effects
propagate to primary outputs after the trigger of at time

(Fig. 11), for example, path-trace will require the value of
the primary inputs at time frame to simulate and restore logic
values correctly in combinational core A.

All entries of are initialized to a logic unknown
. Assume that at time the first input vector is applied

at the input. This vector excites the error, and error values propa-
gate to . At time , both clocks trigger and all of the tables
are updated as shown in Fig. 12(b) to reflect logic values of the
memory elements and the PI prior to that clock trigger.

is updated first with the original values
of the flip-flops in . In this case, all memory ele-
ments are initialized to . Since both clocks trigger, all
columns of the are overwritten by two copies of

. As explained earlier, the first (last) two columns
of hold the value of the primary input prior to
the last trigger. Finally, both columns of

are updated with the input vector. After the tables
are updated, the values are latched in and simulated in
the circuit for time frame . In that figure, the faulty values at
the fan-out cone of the error site are shown in circles.

At time , assume that a second input vector is ap-
plied, as shown in Fig. 12(c). At time , only trig-
gers, and portions of all of the tables are updated as shown in
Fig. 12(d). Since only triggers, only respective columns
of the three tables are updated as explained earlier and they are
shown in bold. Observe that column of memo-
rizes the logic values stored at the flip-flops at time frame

[circuitry in Fig. 12(a)]. It can be seen that, after the tables
are updated and the values are latched/simulated, error effects
are observed at the primary output of the circuit.

Once the errors are observed, path-trace is performed on
combinational core C, and it marks . Since this flip-flop is
controlled by , the primitives in register layer are
updated with the values in the column of the in
Fig. 12(d). Next, combinational logic B is simulated to restore
values and path-trace continues in B to stop at . Since is
controlled by , PI values are restored from the
column of . Once these input values are simulated in
block A, path-trace continues and marks the error location.

Algorithm 1 Table Update and Enhanced Path-Trace

1: PI Table I

2: PI Table II

3: RL I Table

4: Clocks triggered at time

5: the set of registers in Register Layer I

6: the set of primary inputs

7: procedure UPDATE_TABLE(, , , , ,
)

8: for all do

9: for all do

10: the state of

11: end for

12:

13: end for

14: for all do

15: for all do

16: the value of

17: end for

18: end for

19: end procedure

20: procedure ENHANCED_PATH_TRACE(, , ,
, ,)

21: path-trace on comb. circuitry

22: marked registers in

23: for all do

24: clock of

25: read and place values in on registers in

26: simulate and path-trace comb. circuitry

27: marked registers in

28: for all do

29: clock of

30: read and place values in on

31: simulate and path-trace on comb. circuitry

32: end for

33: end for

34: end procedure

Example 3: The diagnosis effort for the circuit in Fig. 12 is
significantly simplified if full state equivalence information is
provided. In that case, after simulating the first test vector at time

, the error value propagates and it is observed at flip-flop .
Since this flip-flop serves as a pseudo primary output, path-trace
can start at , which marks the erroneous module, and there is
no need for the second test vector.

Algorithm 1 contains pseudo code for the procedure
UPDATE_TABLE that updates the storage tables at every clock
trigger during simulation for a two-stage pipelined test model.
Longer pipelines require additional tables and they are han-
dled similarly. The same figure contains the pseudo code for
ENHANCED_PATH_TRACE that uses these values to assist the
five rules of path-trace in diagnosis as defined earlier.

UPDATE_TABLE works as follows. For every clock
triggered at time , the is updated first with the
current values of the flip-flops in register layer I (line 10). Next,

YANG et al.: EXTRACTION ERROR MODELING AND AUTOMATED MODEL DEBUGGING IN HIGH-PERFORMANCE CUSTOM DESIGNS 771

the is updated by copying to the
column which is main-indexed with (line 12). Intuitively, the
columns of under the same main index contain
the values of the PIs prior to the last indexed clock triggered. Fi-
nally, the is updated with the input vector (line 16).
In our implementation, we use a parallel bitwise implementation
for both the storage tables and for the simulation retrieving as
many test vectors as the length of the computer word [9].

The values stored in the tables are used appropriately by
ENHANCED_PATH_TRACE to restore logic values in the core cir-
cuitry and assist path-trace during diagnosis. When path-trace
marks the registers in register layer II, it reads the proper entry
in and retrieves the correct values in combina-
tional circuitry B by simulating the circuitry with the values
read from the table. Then, path-trace proceeds by marking in
the combinational circuitry B (lines 24–26). When it reaches
the registers in register layer I, it again reads the entry in

according to clocks controlling the registers on
the path and restores the states of the lines in combinational
circuitry A. Path-trace continues marking in core circuitry A
and terminates when it reaches a primary input of the circuit,
as explained earlier. These actions are taken in lines 29–31.

The above procedures are utilized when no state equivalence
information is available. In the cases of partial and full state
equivalence, path-trace can start marking from erroneous pri-
mary outputs as well as memory elements that propagate er-
roneous logic values and their state equivalence information is
available. We omit this code which is a straightforward exten-
sion of the one presented earlier.

In the final paragraphs of this section, we analyze memory
requirements for the various tables. In this analysis, we partition
the circuit to allow the primary input to be at stage 0, the register
layer I at stage 1, and so on. We also assume that, for stage

, there are memory elements (primary inputs) and local
clocks.

Using the above notation, it can be shown that the size
(i.e., number of table entries) of the largest table at stage

is , where is the maximum number of
pipeline stages. Recall that each stage maintains addi-
tional smaller tables for all subsequent stages. Therefore, the
size of the total number of tables at stage is found to be

. Using this result, the total number of

tables for the complete design is .
To further analyze the memory requirements as the number of

pipeline stages increases, for the sake of simplicity, we assume
that the number of registers and the number of local clocks for
each register layer in every pipeline stage is upper bounded by

and , respectively. In other words, and ,
. Using this upper bound, the total number of table entries

is
. It can be seen that, for every increase

in the number of pipeline stages , the number of table entries
increases roughly by factor of . For example,

, and so on,
or, in general, .

It is seen that the size of the table entries relates to the number
of clocks per pipeline stage and the total number of pipeline

stages in an exponential manner, a fact that may require pro-
hibitive amounts of memory for large industrial designs with
very deep pipelines. This is expected since the algorithm han-
dles a sequential model with no state equivalence information
to the transistor level. However, in practice, deep pipelines are
usually designed in blocks of smaller (pipelined) stages to ease
test generation, verification etc [15]. Additionally, the number of
local clocks and the number of pipeline stages is a small frac-
tion to the total number of circuit lines. Finally, the trend today
in high-performance designs is multithreading on small-sized
pipelines due to power and reliability concerns. Therefore, in
most practical cases, the debugging algorithm is expected to be
memory efficient.

B. -Simulation

In most model-dependent diagnosis algorithms, the effects
of the faults/errors are explicitly specified [9], [14]. During
diagnosis, a model-dependent algorithm usually performs one
logic simulation step for every error model manifestation on
each suspect line. Therefore, this type of diagnosis is more
suitable for simple faults/errors where their effects are easy to
enumerate [14]. For example, the effects of a stuck-at fault are
modeled with only two values 0 and 1 and, for each suspect line
, the algorithm can perform two simulations, stuck-at-0 and
stuck-at-1. to see the effects of the candidate fault. However,

for complicated faults/errors, such as the extraction errors
presented here, the cardinality of the error models may be large,
and it may be computationally expensive to simulate each
such effect during diagnosis. In this case, model-free diagnosis
seems to serve better in tackling the problem [14].

Model-free diagnosis simulates a logic unknown value
on candidate error lines to capture all possible paths for error
propagation [14]. In the proposed debugging algorithm, after
path-trace returns a set of candidate error locations, the algo-
rithm performs this -simulation step using failing input test
vectors. Because of multiple error sites in the netlist, the true
candidate error locations must be marked by path-trace at least

times, where is the cardinality of failing input test
vectors and is the number of erroneous module instantiations.
This claim is proved in terms of a simple theorem in [14] using
the pigeon-hole principle, and we refer the reader to that paper
for details. Furthermore, recall that these multiple error sites are
instances of one single module. In other words, we can prune the
size of the candidate list further using the following rule. The
sum of path-trace marks for all instantiations of a candidate
error module must be greater or equal to . -simulation is
performed on modules that qualify this rule.

Since some error types involve the logic unknown , we in-
troduce a second unknown value and simulate this value on
the candidate error locations. Under this scenario, if a gate prim-
itive has an input with controlling value, then this input prevails,
otherwise value prevails over any other input. For example,
a two-input gate with fan-in values of 0 and evaluates
to 0 while one with values and or 1 and evaluates to

. A module qualifies for correction if this simulation of the
value propagates to all erroneous primary outputs [14].

772 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 7, JULY 2006

Fig. 13. (a) Edge-sensitive reset. (b) Level-sensitive reset.

C. Correction

After diagnosis returns a set of candidate error lines, debug-
ging enters correction. Since we assume that the module map-
ping information is available, correction tries to rectify all in-
stantiations of each candidate error line. In detail, for each set
of module instantiations, all potential error modifications from
Section III are exhaustively enumerated on these sites, and the
circuit is resimulated for all input test vectors. Corrections that
return correct primary output results for the test vectors qualify
debugging. For example, once diagnosis returns the error site in
dotted lines in Fig. 12(a) from Example 2, correction will enu-
merate candidate correction models from Fig. 5(a) and (c) to
find that both modules qualify.

D. Level-Sensitive Reset

As mentioned in Section II, the reset signals of flip-flops
can be either edge-sensitive or level-sensitive. Even though the
edge-sensitive reset model is chosen to model the reset event in
this study, the proposed debugging algorithm is not affected if
level-sensitive reset is used. Nevertheless, the reset-clock race
error behaves differently.

Fig. 13 shows the waveform of the flip-flop when an asyn-
chronous reset event and a clock event trigger concurrently
and the clock event prevails. For the edge-sensitive reset [see
Fig. 13(a)], the effective duration of the reset event exists only
at the moment of the edge transition. The flip-flop will not reset
until the reset line has another positive-edge trigger. Comparing
it with the level-sensitive reset, the reset event stays active until
the value of reset goes low (assuming that reset is active high).
As shown in Fig. 13(b), once passing the clock edge, the
flip-flop will reset if reset is still active. Consequently, a glitch
will be created. In this case, the winner of the contest does not
affect the value of the flip-flop, so this error type cannot happen.

E. Other Delay Models

During simulation, we assume that all gate primitives have a
zero-delay, that is, the output of a gate is evaluated as soon as
the new values arrive at the inputs of the gate. There are sev-
eral other delay models used for simulation, such as unit-delay,
multiple-unit-delay, and minmax-delay [9], [15]. The proposed
debugging procedure will function correctly for these models as
long as the following condition holds: the minimum clock period
is no shorter than the longest delay path in any combinational
circuitry block.

This condition ensures that no new values arrive at the inputs
of the combinational circuitry before all gates have been evalu-
ated. If this condition fails, we cannot assure that the storage ta-

TABLE III
BENCHMARK CHARACTERISTICS

bles will maintain the correct values for a particular time frame.
In a real-life design context, it is realistic to assume that this
condition is valid or the behavior of the design will be hard to
predict accurately [9], [15].

F. Handling Feedback

In this paper, we assume that there is no feedback in the
design. Depending on the state equivalence information avail-
ability, the feedback may introduce different degree of diffi-
culty. For example, in the full state equivalence case, the pro-
posed algorithm is not affected and an error(s) can be identified
right away at the register layers and the primary outputs so that
path-trace still marks the erroneous module(s).

For the cases of no and partial state equivalence, the debug-
ging problem becomes more complex because an erroneous
logic value may oscillate through the feedback several times
before getting observed. For path-trace to operate correctly, the
different logic values of the state elements at the beginning of
each oscillation need to be recorded. In the current implemen-
tation, these values may not be available because the storage
tables record state element values for as many clock cycles
as the length of the pipeline. Moreover, path-trace needs to
be redefined to trace along the feedback lines. Therefore, the
proposed approach may not work in the presence of a feedback
in a design with no or partial state equivalence information.

V. EXPERIMENTS

Tests are carried on two-, three-, and four-stage pipelined se-
quential designs with the architecture from Fig. 2 that resem-
bles the one found in some high-performance circuits today.
Recall that the number of stages indicates the number of reg-
ister layers that separate the combinational circuitry of the core.
These benchmarks do not contain feedback, and they are built by
modifying, reusing, and padding circuitry from the ISCAS’85
and ITC’99 family of benchmarks. Their clocking circuitry con-
sists of a scheme of four global clocks that drive 14–18 local
clocks. The frequency of the global clock domains is an inte-
gral multiple of each other. The circuit name, primitive gate
count, flip-flop count, and other characteristics of the designs
are shown in Table III. Experiments are conducted on a Pen-
tium 2.8-GHz processor with 2 GB of memory. All run times in
this section are reported in seconds.

There are 11 different types of extraction errors presented in
Section III. To emulate a real physical synthesis environment,

YANG et al.: EXTRACTION ERROR MODELING AND AUTOMATED MODEL DEBUGGING IN HIGH-PERFORMANCE CUSTOM DESIGNS 773

TABLE IV
FULL STATE EQUIVALENCE

TABLE V
PARTIAL STATE (50%) EQUIVALENCE

we realize two to three different module libraries for each error
type for a maximum of 32 module types (see Table III). In prac-
tice, this indicates a set of modules with the same functionality
but different physical characteristics. For each circuit, we per-
form three types of experiments using the debugging algorithm
from the previous section where all information, some (partial)
information, and no information of state equivalence is known
to the algorithm. In the case of partial state equivalence, we ran-
domly utilize 50% of the state equivalence information during
debugging.

Each experiment contains averages of 10 runs. In each
run, a module is selected at random and all of its instances
are replaced by an another module type to change the test
model functionality. Debugging results shown here are based
on simulation of 700–2000 erroneous vectors with high fault
coverage [9]. Test generation for extraction errors is
not a topic of this study. To exhibit the effectiveness of the pro-
posed debugging approach, we compare its performance with a
brute-force method where the engineer debugs the test model
by enumerating exhaustively all module libraries. The brute-
force approach is the common manual debugging practice in
the industry today when the test model fails.

Tables IV–VI contain results for the full, partial, and no state
equivalence cases, respectively, presented in a similar manner
as follows. The first column has the circuit name. The next two
columns contain the average number of modules that qualify the
two steps of diagnosis. The resolution of diagnosis is better ap-
preciated when contrasted with the last column of Table III that
contains the total number of modules. Intuitively, the values in
that column in Table III are an indication of the effort of the
brute-force approach that it exhaustively enumerates all possible

TABLE VI
NO STATE EQUIVALENCE

module instantiations to fix the design. We observe that the pro-
posed diagnosis has better resolution than the brute-force one as
it eliminates more than 70% (on the average) of useless module
enumerations. For example, in circuit A with full equivalence
information available, the proposed debugging algorithm simu-
lates only 2.5 modules while the brute-force method may simu-
late up to 32 modules.

Column four of the tables contains the number of modules
that qualify correction. Since we assume that the instantiation
module mapping information is available to the engineer, it can
be used to find (and replace) all other erroneous modules. We
observe that the solution returned may not be unique. This is
true due to fault equivalence where more than one correction
type may be available to synthesize a function and correct the
design [18], [19].

The next five columns contain CPU times for the brute-force
method and the proposed debugging algorithm. Columns five
and six contain the time for diagnosis, column seven shows the
time to do correction, and the next two columns present total
times for the brute-force and the proposed method to debug
and rectify a design for the set of test vectors used. From these
columns, it can be seen that the proposed automated approach
reduces the manual debugging effort by a factor of 9.9 and

10.9 when full and partial state equivalence is available, re-
spectively, and by a factor of 3.1 when no state equivalence
exists. The degrade in the speed up when no equivalence infor-
mation is available versus the brute-force approach is caused by
the pessimistic nature of path-trace. Specifically, as shown from
columns two and five of Table VI, the procedure marks more
modules and it takes more time as it moves deeper in the pipeline
towards the primary inputs. However, with the exception of cir-
cuit (see Table VI), where the information provided by this
processing overhead does not pay off with a performance im-
provement, for all other circuits, the proposed approach shows
a significant speed-up. On the other hand, in the case of partial
state equivalence, the proposed methodology offers the max-
imum speed up against the brute-force one. This is because,
in that case, the brute-force approach exhibits its worst perfor-
mance as it enumerates all possible error scenarios and often
simulates their effects through many pipeline stages.

Fig. 14 plots debugging run times for different cases of state
equivalence information from Tables IV–VI for four circuits. In
all cases, the CPU saving due to the state equivalence informa-
tion is reflected in the final debugging effort. This is expected
because state equivalence eases the task of path-trace. It reduces

774 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 7, JULY 2006

Fig. 14. Run time versus state information.

Fig. 15. Debugging effort versus state equivalence.

the number of combinational circuitry it needs to traverse and less
lines are usually marked. This is because path-trace can observe
responses from memory elements with state equivalence since
theyactaspseudoprimaryoutputs.Therefore, itcanstartmarking
directly from the ones that have an erroneous simulation value.

Next, in Fig. 15, we profile the different stages of the debug-
ging algorithms in terms of the number of modules returned
against the state equivalence information available. The graph
confirms the trend described above, that is, the performance of
path-trace diminishes as less state equivalence information be-
comes available. For example, in the full state equivalence case,
path-trace can eliminate more than 80% of module candidates
while this number drops to less than 40% when no state equiv-
alence is available. Clearly, the pessimistic line marking ability
of path-trace when less state equivalence information is avail-
able is complemented by -simulation, as shown in Fig. 15,
which is a more precise procedure at the expense of additional
computational (simulation) effort.

The graph in Fig. 16 provides us with an intuition about the
behavior of the method when 25%, 50%, and 75% of state equiv-

Fig. 16. Performance for partial state equivalence.

Fig. 17. Memory utilization.

alence information is available to the debugger for three bench-
mark circuits. The graph indicates that state equivalence infor-
mation reduces the debugging effort. This reduction is some-
times drastic (such as in circuit G) and other times less important
(circuits I and E). Again, experience says that the overall per-
formance of debugging depends on the resolution of path-trace.
Nevertheless, as already explained for Figs. 14 and 15, more
state equivalence information eases the task of debugging, and
this is also justified by the plot in Fig. 16.

Finally, Fig. 17 plots the memory utilization due to the storage
tables for circuits with increasing pipeline stages. Each register
file of those designs contains 34 registers and nine local clocks
(i.e., and). The core circuitry between each two
register layers contains approximately 500 primitive elements.
We observe that memory requirements increase by factors of
8.5, 9.3, and 9.0, respectively, as the value of increases, which
is an observation that matches the asymptotic theoretical anal-
ysis in Section IV-A. In all cases, the core circuitry contributes
for less than 5% of the total memory requirements.

YANG et al.: EXTRACTION ERROR MODELING AND AUTOMATED MODEL DEBUGGING IN HIGH-PERFORMANCE CUSTOM DESIGNS 775

In the future, we plan to investigate additional types of extrac-
tion mismatches including errors that occur at the digital/analog
tapping circuitry of custom designs. We will also extend the de-
bugging methodology to handle multiple errors with multiple in-
stantiations, and we will attempt to refine processes such as path-
trace, because their resolution seems to have a strong effect on the
overall debugging effort. Since the work in this paper deals with
strictly pipelined circuit architectures, it is our intention to ex-
tend the debugging methodologies to operate on different non-
pipelined circuitry as well as pipelines that include feedback.
Finally, we plan to modify diagnosis and develop approxima-
tion heuristics that allow the approach to handle deeper pipelines
with no state equivalence yet remain memory-/time-efficient.

VI. CONCLUSION

Logic extraction is a mandatory reverse engineering process
to generate tests in custom high-performance designs. This
paper investigates discrepancies during extraction and presents
methodologies to improve test model generation. Different
classes of extraction errors in the core and clocking circuitry of
modern designs are presented, and their effects are analyzed in
detail. A robust diagnosis algorithm for single extraction errors
with multiple instantiations in gate-level implementations with
full, partial, and no state equivalence with the transistor-level
schematic is also proposed. A comprehensive suite of exper-
iments on circuits with architecture similar to the one found
in industry demonstrates its efficiency as it helps reduce the
manual debugging effort by orders of magnitude. Investigating
the nature of extraction errors and debugging techniques for
these errors help improve test model generation and shorten
test delivery time for high-performance low-power ICs.

ACKNOWLEDGMENT

The authors would like to acknowledge the technical contri-
bution of J. Liu at early stages of this work. They would also
like to thank the anonymous reviewers of this paper and the re-
viewers in earlier conference versions who helped improve its
presentation and impact with their comments.

REFERENCES

[1] M. S. Abadir, J. Ferguson, and T. E. Kirkland, “Logic verification
via test generation,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 7, no. 1, pp. 138–148, Jan. 1988.

[2] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyamal, T. Asakawa, K. Morita,
T. Muta, T. Motokurumada, S. Okada, H. Yamashita, Y. Satsukawa,
A. Konmoto, R. Yamashita, and H. Sugiyama, “A 1.3-GHz fifth-gen-
eration sparc64 microprocessor,” IEEE J. Solid-State Circuits, vol. 38,
no. 11, pp. 1896–1905, Nov. 2003.

[3] D. Bearden, D. Caffo, P. Anderson, P. Rossbach, N. Iyengar, T. Petrsen,
and J.-T. Yen, “A 780 MHz powerpc microprocessor with integrated l2
cache,” in Proc. IEEE ISSCC, 2000, pp. 90–91.

[4] D. T. Blaauw, D. G. Saab, P. Banerjee, and J. A. Abraham, “Functional
abstraction of logic gates for switch-level simulation,” in Proc. IEEE
Eur. Conf. Design Autom., 1991, pp. 329–333.

[5] M. Boehner, “LOGEX—An automatic logic extractor from transistor
to gate level for CMOS technology,” in Proc. Design Autom. Conf.,
1988, pp. 517–521.

[6] R. E. Bryant, “Extraction of gate level models from transistor circuits
by four-valued symbolic analysis,” in Proc. IEEE Int. Conf. Comput.-
Aided Design, 1991, pp. 350–353.

[7] D. Draper, M. Crowley, J. Holst, G. Favor, A. Schoy, J. trull, A. Ben-
Meir, R. Khanna, D. Wendell, R. Krishna, J. Nolan, D. Mallick, H.
Partovi, M. Roberts, M. Johnson, and T. Lee, “Circuit techniques in a
266-MHz MMX-enabled processor,” IEEE J. Solid-State Circuits, vol.
32, no. 11, pp. 1650–1664, Nov. 1997.

[8] M. Gowan, L. Biro, and D. Jackson, “Power considerations in the de-
sign of the alpha 21264 microprocessor,” in Proc. IEEE/ACM Design
Autom. Conf., 1998, pp. 726–731.

[9] N. Jha and S. Gupta, Testing of Digital Systems. Cambridge, U.K.:
Cambridge Univ. Press, 2003.

[10] T. Kostelijk and B. D. Loore, “Automatic verification of library-based
IC designs,” IEEE J. Solid-State Circuits, vol. 26, no. 3, pp. 394–403,
Mar. 1991.

[11] N. Kurd, J. Barkatullah, R. Dizon, and T. Fletcher, “A multigigahertz
clocking scheme for the Pentium microprocessor,” IEEE J. Solid-State
Circuits, vol. 36, no. 11, pp. 1647–1653, Nov. 2001.

[12] M. Kusko, B. Robbins, T. Snethen, P. Song, T. Foote, and W. Huott,
“Microprocessor test and test tool methodology for the 500 MHz IBM
S/390 G5 chip,” in Proc. IEEE Int. Test Conf., 1998, pp. 717–726.

[13] S. Kundu, “Gatemaker: A transistor to gate level model extraction for
simulation, automatic test pattern generation and verification,” in Proc.
IEEE Int. Test Conf., 1998, pp. 372–381.

[14] J. B. Liu and A. Veneris, “Incremental diagnosis,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 2, pp.
240–251, Feb. 2005.

[15] J. M. Rabaey, Digital Integrated Circuits: A Design Perspective.
Upper Saddle River, NJ: Prentice-Hall, 1996.

[16] Needs Document in Test and Testability (Area 6) Semiconductor Re-
search Corporation, 2003 [Online]. Available: http://www.src.org/fr/
test_call_03.asp

[17] T. McDougall, A. Parashkevov, S. Jolly, J. Zhu, J. Zeng, C. Pyron, and
M. S. Abadir, “An automated method for test model generation from
switch level circuit,” in Proc. IEEE Asian-South Pacific Design Autom.
Conf., 2003, pp. 769–774.

[18] A. Veneris and I. N. Hajj, “Design error diagnosis and correction via
test vector simulation,” IEEE Trans. Comput.-Aided Design Integr. Cir-
cuits Syst., vol. 18, no. 12, pp. 1803–1816, Dec. 1999.

[19] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and
logic debugging using Boolean satisfiability,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 24, no. 10, pp. 1606–1621,
Oct. 2005.

[20] S. Venkataraman and W. K. Fuchs, “A deductive technique for diag-
nosis of bridging faults,” in Proc. IEEE Int. Conf. Comput.-Aided De-
sign, 1997, pp. 562–567.

[21] Y. Yang, J. Liu, P. Thadikaran, and A. Veneris, “Extraction error diag-
nosis and correction in high-performance designs,” in Proc. IEEE Int.
Test Conf., 2003, pp. 423–430.

[22] Y. Yang, A. Veneris, P. Thadikaran, nd, and S. Venkataraman, “Extrac-
tion error modeling and automated model debugging in high-perfor-
mance low power custom designs,” in Proc. IEEE Design Test Europe,
2005, pp. 996–1001.

Yu-Shen Yang (S’02) received the B.A.Sc. degree
(with honors) and the M.A.Sc. degree from the Uni-
versity of Toronto, Toronto, ON, Canada, in 2002 and
2004, respectively, both in computer engineering. He
is currently working toward the Ph.D. degree in com-
puter engineering at the University of Toronto.

His research interests include VLSI circuit diag-
nosis and correction, design resynthesis, and design
rewiring.

Andreas Veneris (S’96–M’99–SM’05) was born
in Athens, Greece. He received the Diploma in
computer engineering and informatics from the
University of Patras, Patras, Greece, in 1991, the
M.S. degree in computer science from the University
of Southern California, Los Angeles, in 1992, and
the Ph.D. degree in computer science from the
University of Illinois at Urbana-Champaign (UIUC),
Urbana, 1998.

He was a Vsiting Faculty Member with UIUC from
1998 to 1999. In 1999, he joined the University of

Toronto, Toronto, ON, Canada, where he is currently an Associate Professor,
cross-appointed with the Department of Electrical and Computer Engineering
and the Department of Computer Science. His research interests include CAD
for synthesis, diagnosis, and verification of digital circuits and systems, data
structures, and combinatorics. He is the coauthor of one book.

Dr. Veneris is a member of the the Association for Computing Machinery,
AAAS, the Technical Chamber of Greece, and the Planetary Society. He was
corecipient of a Best Paper Award at ASP-DAC’01.

776 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 7, JULY 2006

Paul Thadikaran (M’00) received the Ph.D. degree
in computer science from the State University of New
York (SUNY), Buffalo.

He is currently a Principal Engineer with the Enter-
prise Microprocessor Development Group, Intel Cor-
poration, Hillsboro, OR. He is also an Adjunct Pro-
fessor with the Oregon Health Sciences and Engi-
neering University and SUNY Stonybrook. He has
been involved with various aspects of design and test
of previous three generations of Intel’s IA-32 CPU.
He has managed CAD tool development and standard

cell library development targeted for CPU designs for the past six years. His
areas of interest include CAD tools and algorithms for test generation, power es-
timation, functional verification, and diagnosis. He has published several papers
in IEEE/Intel conferences and journals. He has also coauthored the book, Intro-
duction to I Testing (Springer, 1997). He has served as a reviewer for sev-
eral IEEE and ACM journals, such as the IEEE TRANSACTIONS ON COMPUTER-
AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS and ACM Transactions
on Design Automation in Electronic Systems.

Srikanth Venkataraman (S’93–M’97) received the
Ph.D. degree in electrical engineering from the Uni-
versity of Illinois at Urbana-Champaign, Urbana.

He is a Manager and Principal Engineer with
Intel Corporation, Hillsboro, OR. He is involved
in the areas of DFT, test tools and methodologies,
diagnosis, and debug technologies in the Design and
Technology Solutions Group. His research interests
include VLSI test, CAD and software engineering.
He has authored or coauthored over 50 publications,
holds one patent, and has three patents pending, and

he has presented tutorials at several conferences.
Dr. Venkataraman was the recipient of the Best Paper Award at IEEE Vehic-

ular Technology Symposium (VTS) 2000, a Top 10 Papers at ITC 2000, and Best
Panel at IEEE VTS 1999. Intel awards include the Intel Achievement Award
(2005), the Divisional Recognition Awards (2000, 2002, and 2004), the Tech-
nical Recognition Award (2002), the Excellence Award (2001), and Best Paper
Awards at the Design and Test Conference (2002 and 2003).

