
46    S P R I N G 20 17  VO L . 42 , N O. 1 	 www.usenix.org

SYSADMIN

Don’t Get Caught in the Cold, Warm Up Your JVM
Understand and Eliminate JVM Warm-up Overhead in Data-Parallel
Systems

D A V I D L I O N , A D R I A N C H I U , H A I L O N G S U N , X I N Z H U A N G , N I K O L A G R C E V S K I , A N D D I N G Y U A N

Many widely used, latency sensitive, data-parallel distributed
systems, such as HDFS, Hive, and Spark choose to use the Java
Virtual Machine (JVM) despite debate on the overhead of doing

so. By thoroughly studying the JVM performance overhead in the above-
mentioned systems, we found that the warm-up overhead, i.e., class loading
and interpretation of bytecode, is frequently the bottleneck. For example,
even an I/O intensive, 1 GB read on HDFS spends 33% of its execution time in
JVM warm-up, and Spark queries spend an average of 21 seconds in warm-
up. The findings on JVM warm-up overhead reveal a contradiction between
the principle of parallelization, i.e., speeding up long-running jobs by par-
allelizing them into short tasks, and amortizing JVM warm-up overhead
through long tasks. We therefore developed HotTub, a new JVM that reuses
a pool of already warm JVMs across multiple applications. The speed-up
is significant: for example, using HotTub results in up to 1.8x speed-ups for
Spark queries, despite not adhering to the JVM specification in edge cases.

The performance of data-parallel distributed systems has been heavily studied in the past
decade, and numerous improvements have been made to the performance of these systems.
A recent trend is to further process latency sensitive, interactive queries with these systems.
However, there is a lack of understanding of the JVM’s performance implications in these
workloads. Consequently, almost every discussion on the implications of the JVM’s perfor-
mance results in heated debate. For example, the developers of Hypertable, an in-memory
key-value store, use C++ because they believe that the JVM is inherently slow. They also
think that Java is acceptable for Hadoop because “the bulk of the work performed is I/O” [4].
In addition, many believe that as long as the system “scales,” i.e., parallelizes long jobs into
short ones, the overhead of the JVM is not concerning [7].

Our research asks a simple question: what is the performance overhead introduced by the
JVM in latency sensitive data-parallel systems? We answer this by presenting a thorough
analysis of the JVM’s performance behavior when running systems including HDFS, Hive
on Tez, and Spark. We had to carefully instrument the JVM and these applications to under-
stand their performance.

Surprisingly, after multiple iterations of instrumentation, we found that JVM warm-up time,
i.e., time spent in class loading and interpreting bytecode, is a recurring overhead. Specifi-
cally, we made the following three major findings. First, JVM warm-up overhead is signifi-
cant even in I/O intensive workloads. For example, reading a 1 GB file on HDFS from a hard
drive requires JVM to spend 33% of its time in warm-up. In addition, the warm-up time does
not scale but, instead, remains nearly constant. For example, the warm-up time in Spark
queries remains at 21 seconds regardless of the workload scale factor, thus affecting short-
running jobs more. The broader implication is the following:

David Lion is a graduate student
in the Electrical and Computer
Engineering Department of
the University of Toronto. His
research interest is in software

systems and their performance.
david.lion@mail.utoronto.ca

Adrian Chiu is an undergraduate
student in Electrical Engineering
at the University of Toronto.
His research interests are in
operating systems, distributed

systems, and compilers.
adrian.chiu@mail.utoronto.ca

Hailong Sun is an Associate
Professor in the School
of Computer Science and
Engineering at Beihang
University. His research

interests include distributed systems, software
engineering, and crowdsourcing.
sunhl@ece.utoronto.ca

Xin Zhuang is a graduate
student at the University of
Toronto, studying computer
engineering. His research
interest is in software systems.

xin.zhuang@mail.utoronto.ca

www.usenix.org	   S P R I N G 20 17  VO L . 42 , N O. 1  47

SYSADMIN
Don’t Get Caught in the Cold, Warm Up Your JVM:

Understand and Eliminate JVM Warm-up Overhead in Data-Parallel Systems

There is a contradiction between the principle of parallelization, i.e., speeding up long-running
jobs by parallelizing them into short tasks, and amortizing JVM warm-up overhead through
long tasks.

Finally, the use of complex software stacks aggravates warm-up overhead. A Spark client
loads 19,066 classes executing a query, which is three times more than Hive despite Spark’s
overall latency being shorter. These classes come from a variety of software components
needed by Spark. In practice, applications using more classes also use more unique methods,
which are initially interpreted. This results in increased interpretation time.

To solve the problem, our key observation is that the homogeneity of parallel data-processing
jobs enables a significant reuse rate of warm data, i.e., loaded classes and compiled code,
when shared across different jobs. Accordingly, we designed HotTub, a new drop-in replace-
ment JVM that transparently eliminates warm-up overhead by reusing JVMs from prior
runs. The source code of HotTub and our JVM instrumentations are available at https://
github.com/dsrg-uoft/hottub.

Analysis of JVM Warm-up Overhead
What follows is an in-depth analysis of the JVM warm-up overhead in three data-parallel
systems, namely HDFS, Hive running on Tez and YARN, and Spark SQL running with
Spark. We will show that on each system the JVM warm-up time stays relatively constant.
The HDFS experiment further shows how warm-up can dwarf I/O, while the Spark and
Hive experiments explain the implications of warm-up overhead for parallel computing. All
experiments are performed on an in-house cluster with 10 servers connected via 10 Gbps
interconnect. Each of them has at least 128 GB DDR4 RAM and two 7,200 RPM hard drives.
The server components are long running and fully warmed-up for weeks and have serviced
thousands of trial runs before measurement runs. Details on our study methodology and the
JVM instrumentation can be found in our OSDI paper [5].

HDFS
We implement three different HDFS clients: sequential read; parallel read, with 16 threads,
that runs on a server with 16 cores; and sequential write. We flush the OS buffer cache on all
nodes before each measurement to ensure the workload is I/O bound. Note that interpreter
time does not include I/O time, because I/O is always performed by native libraries.

Figure 1 shows the class loading and interpreter time under different workloads. The aver-
age class loading times are 1.05, 1.55, and 2.21 seconds for sequential read, parallel read, and
sequential write, respectively, while their average interpreter times are 0.74, 0.71, and 0.92
seconds. The warm-up time does not change significantly with different data sizes. The

reason that HDFS write takes the JVM longer to warm up is
that it exercises a more complicated control path and requires
more classes. Parallel read spends less time in the interpreter
than sequential read because its parallelism allows the JVM to
identify the “hot spot” faster.

Figure 2 further shows the significance of warm-up overhead
within the entire job. Short-running jobs are affected the most.
When the data size is under 1 GB, warm-up overhead accounts
for more than 33%, 48%, and 30%, respectively, of the client’s
total execution time in sequential read, parallel read, and
sequential write. According to a study [8] published by Clou-
dera, a vast majority of the real-world Hadoop workloads read
and write less than 1 GB per-job as they parallelize a big job into

Nikola is the VP of Engineering
at Vena Solutions Inc. Prior
to this he worked at the IBM
Compiler Group for 12 years,
most notably as a Technical

Lead for the x86 JIT Optimizer and Code
Generator. He holds a master’s degree in
computer engineering from the University of
St. Cyril and Methodius in Skopje, Macedonia.
grcevski@gmail.com

Ding Yuan is an Assistant
Professor in the Electrical
and Computer Engineering
Department of the University of
Toronto. He works in computer

systems, with a focus on their reliability and
performance. yuan@ece.toronto.edu

 0

 1

 2

 3

 0 2 4 6 8 10

Se
co

nd
s

Size (GB)

cl seq. read
int seq. read
cl par. read

int par. read
cl write

int write

Figure 1: JVM warm-up time in various HDFS workloads. “cl” and “int”
represent class loading and interpretation time, respectively. The x-axis
shows the input file size.

48    S P R I N G 20 17  VO L . 42 , N O. 1 	 www.usenix.org

SYSADMIN
Don’t Get Caught in the Cold, Warm Up Your JVM:
Understand and Eliminate JVM Warm-up Overhead in Data-Parallel Systems

smaller ones. The study further shows that for some customers,
over 60% of their jobs read less than 1 MB from HDFS, whereas
a 1 MB HDFS sequential read spends over 60% of its time in
warm-up.

Next we break down class loading and interpreter time using the
1 GB sequential read as an example. Figure 3 shows the warm-up
time in the entire client read. A majority of the class loading and
interpreter execution occurs before a client contacts a datanode
to start reading.

Further drilling down, Figure 4 shows how warm-up time
dwarfs the datanode’s file I/O time. When the datanode first
receives the read request, it sends a 13-byte ACK to the client,
and immediately proceeds to send data packets of 64 KB using
the sendfile system call. The first sendfile takes noticeably
longer than subsequent ones since the data is read from the hard
drive. However, the client takes even longer (15 ms) to process
the ACK because it is bottlenecked by warm-up time. By the
time the client finishes parsing the ACK, the datanode has
already sent 11 data packets, and thus the I/O time is not even
on the critical path. The client takes another 26 ms to read the
first packet, where it again spends a majority of the time loading
classes and interpreting the computation of the CRC checksum.
By the time the client finishes processing the first three packets,
the datanode has already sent 109 packets. In fact, the datanode
is so fast that the Linux kernel buffer becomes full after the 38th
packet and has to block for 14 ms so that the kernel can adap-
tively increase its buffer size. The client, on the other hand, is
trying to catch up the entire time.

Figure 4 also shows the performance discrepancy between
interpreter and compiled code. Interpreter takes 15 ms to com-
pute the CRC checksum of the first packet, whereas compiled
code only takes 65 μs per-packet.

Break Down Class Loading
The HDFS sequential read takes a total of 1,028 ms to load 2,001
classes. Table 1 shows the breakdown of class loading time.
Reading the class files from the hard drive only takes 170 ms.
Because Java loads classes on demand, loading 2,001 classes is
broken into many small reads: e.g., 276 ms are spent searching
for classes on the classpath, which is a list of file-system loca-
tions. The JVM specification requires the JVM to load the first
class that appears in the classpath in the case of multiple classes
with identical names. Therefore it has to search the classpath
linearly when loading a class. Another 411 ms are spent in define
class, where the JVM parses a class from file into an in-memory
data structure.

Read Search Define Other Total

Time (ms) 170 276 411 171 1,028

Table 1: Breakdown of class loading time

Spark versus Hive
Figure 5 shows the JVM overhead on Spark and Hive. Surpris-
ingly, each query spends an average of 21.0 and 12.6 seconds in
warm-up time on Spark and Hive, respectively. Similar to HDFS,
the warm-up time in both systems does not vary significantly
when data size changes, indicating that its overhead becomes
more significant in well parallelized short-running jobs. For
example, 32% of the Spark query time on 100 GB data size is on
warm-up. In practice, many analytics workloads are short run-
ning. For example, 90% of Facebook’s analytics jobs have under
100 GB input size [1, 2], and a majority of the real-world Hadoop
workloads read and write less than 1 GB per-task [8].

 0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

1 0 2 4 6 8 10

W
ar

m
-u

p
(%

 R
un

tim
e)

Size (GB)

seq. read
seq. write
par. read

Figure 2: The JVM warm-up overhead in HDFS workloads measured as
the percentage of overall job completion time

Client init
File open

Read

 0 1 2 3 4Time (s)

Class loading
Interpreter
Compile/native

Figure 3: Breakdown of sequential HDFS read of 1 GB file

ack
sendfile 1

sendfile 2-38
wait

sendfile 39-109

parse DN ack
read pckt. 1
read pckt. 2
read pckt. 3

 0 10 20 30 40 50Time (ms)

Class loading
Interpreter
Compiled/native

Datanode

Client

Figure 4: Breakdown of the processing of data packets by client and
datanode

www.usenix.org	   S P R I N G 20 17  VO L . 42 , N O. 1  49

SYSADMIN
Don’t Get Caught in the Cold, Warm Up Your JVM:

Understand and Eliminate JVM Warm-up Overhead in Data-Parallel Systems

Software Layers Aggravate Warm-up Overhead
The difference in the warm-up times between Spark and Hive
is explained by the difference in number of loaded classes. The
Spark client loads an average of 19,066 classes, compared with
Hive client’s 5,855. Consequently, the Spark client takes 6.3
seconds in class loading whereas the Hive client spends 3.7
seconds. A majority of the classes loaded by Spark client come
from 10 third-party libraries, including Hadoop (3,088 classes),
Scala (2,328 classes), and Derby (1,110 classes). Only 3,329 of the
loaded classes are from Spark packaged classes.

A large number of loaded classes also results in a large inter-
preter time. The more classes being loaded, the greater the num-
ber of different methods that are invoked, where each method
has to be interpreted at the beginning. On average, a Spark client
invokes 242,291 unique methods, where 91% of them were never
compiled by JIT-compiler. In comparison, a Hive client only
invokes 113,944 unique methods, while 96% of them were never
JIT-compiled.

Breaking Down Spark’s Warm-up Time
We further drill down into one query (query 13 of BigBench
with scale factor 100) to understand the long warm-up time of
Spark. While different queries exhibit different overall behaviors
and different runtimes, the pattern of JVM warm-up overhead
is similar, as evidenced by the stable warm-up time. Figure 6
shows the breakdown of this query. The query completion time
is 68 seconds: 24.6 seconds are spent on warm-up overhead of
which 12.4 seconds are spent on the client while the other 12.2
seconds come from the executors. Note that a majority of execu-
tors’ class-loading time is not on the critical path: executors are
started immediately after the query is submitted, which allows
executors’ class loading time to be overlapped with the client’s
warm-up time. However, at the beginning of each stage the
executor still suffers from significant warm-up overhead that
comes primarily from interpreter time.

Hive
Hive parallelizes a query using different JVM processes, known
as containers, whereas each container uses only one compu-
tation thread. Therefore within each container the warm-up
overhead has a similar pattern to the HDFS client shown earlier.
Hive and Tez also reuse containers to process tasks of the same
query, and therefore the JVM warm-up overhead can be amor-
tized across the lifetime of a query.

HotTub
The design goal for HotTub is to allow applications to share
the “warm” data, i.e., loaded classes and compiled code, thus
eliminating the warm-up overhead from their executions. Hot-
Tub is implemented by modifying OpenJDK’s HotSpot JVM
and is made to be a drop-in replacement. Users simply replace
java with HotTub and run their Java application with normal
commands.

Figure 7 shows the architecture of HotTub. When java is first
called there are no existing JVMs to reuse, so a new JVM must
be created for the application to run on as it normally would.
Once the application finishes, the JVM must first be reset before
it can be added to a pool of JVMs for later reuse. When there are
JVMs in the pool, a call to java will attempt to find a valid JVM
for reuse. If a JVM is found it will be reinitialized, and then the
application will run on the already warm JVM with nearly zero
warm-up overhead.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

100 300 500 700 1000 2000 3000
Scale Factor (GB)

Ti
m

e
(s

)

Spark

Compiled/native
GC

Interpreter
Class loading

100 300 500 700 1000
Scale Factor (GB) Hive

100 300 500 700 1000
Scale Factor (GB) Hive

Figure 5: JVM overhead on BigBench. Overhead breakdown of queries
from BigBench [3] across different scale factors. Only the 10 shortest
queries from BigBench are analyzed because of our focus on latency-sen-
sitive queries. The scale factor corresponds to the size of input data in GB.
The queries are first grouped by scale factor and then ordered by runtime.
Note that Hive has a larger query time compared to Spark.

Client

Executor

0 6.3 12.4
46.9

59.2
61.5

68

Time (s)

Class loading
Interpreter

Compiled/native

Figure 6: Breakdown of Spark’s execution of query 13. It only shows one
executor (there are a total of 10 executors, one per host). Each horizontal
row represents a thread. The executor uses multiple threads to process this
query. Each thread is used to process three tasks from three different stages.

java

Figure 7: Architecture of HotTub

50    S P R I N G 20 17  VO L . 42 , N O. 1 	 www.usenix.org

SYSADMIN
Don’t Get Caught in the Cold, Warm Up Your JVM:
Understand and Eliminate JVM Warm-up Overhead in Data-Parallel Systems

The main challenge of this process is to ensure that the applica-
tion’s execution on HotTub is consistent with the execution on
an unmodified JVM. Next we discuss some techniques HotTub
uses to ensure consistency. More detailed discussions can be
found in our OSDI paper [5].

Class Consistency
When choosing a JVM to reuse we must make sure any class
that will be reused is the same as the class that would have been
dynamically loaded in a normal execution. To do this HotTub
ensures for a JVM the classpath and classes on the classpath
are the same for both the new application and the previously run
applications. This also ensures there is a large amount of poten-
tial overlap between the new application and the already loaded
classes and compiled code. It is possible to be more strict and
only reuse a JVM if the application is more similar to what was
previously run, but being less strict would not be able to guaran-
tee consistency.

Data Consistency
At the reset phase all stale data is cleaned up off of the criti-
cal path before the JVM is put back in the pool. All application
threads are cleaned up, so there are no more stacks left, and all
file descriptors opened by the application are closed. HotTub
also zeroes out all static data from classes. HotTub now runs
garbage collection to remove all the stale data, but since there
are no root references from the stack at this point, and roots
from static data are all zero, practically all heap data is dead and
collected quickly.

Once a JVM has been chosen to be reused it will perform the
reinitialization phase, which sets the new file descriptors and
runs the class initialization code of all loaded classes to cor-
rectly initialize the static data since it had been previously set to
zero. The order this is done in is important because dependencies
between classes can exist. HotTub maintains the correct order
by recording the order of class initializations when they are first
initialized and replaying the initializations in the same order
before each reuse. There are some limitations to reinitializing
static data, since known bad practices such as class dependence
cycles and real time static initialization dependencies will cause
HotTub to be inconsistent. However, these cases are extremely
uncommon in practice.

Handling Signals and Explicit Exit
HotTub has to handle signals such as SIGTERM and SIGINT
and explicit exit by the application, otherwise it will lose the tar-
get server process from our pool. If the application registers its
own signal handler, HotTub forwards the signal. If SIGKILL is
used or the application exists through a native library, the JVM
will die and cannot be reused.

Privacy Limitation
The use of HotTub raises privacy concerns. HotTub limits reuse
to the same Linux user, as cross-user reuse allows a different
user to execute code with the privileges of the first user. How-
ever, our design still violates the principle “base the protection
mechanisms on permission rather than exclusion” [6]. Although
we carefully clear and reset data from the prior run, an attacker
could still reconstruct the partial execution path of the prior run
via timing channel since previously loaded classes and JIT-com-
piled methods can be seen.

Completion Time (s)
Workload Unmod. HotTub Speed-up

HDFS read 1 MB 2.29 0.08 30.08x

HDFS read 10 MB 2.65 0.14 18.04x

HDFS read 100 MB 2.33 0.41 5.71x

HDFS read 1 GB 7.08 4.26 1.66x

Spark 100 GB best 65.2 36.2 1.80x

Spark 100 GB median 57.8 35.2 1.64x

Spark 100 GB worst 74.8 54.4 1.36x

Spark 3 TB best 66.4 41.4 1.60x

Spark 3 TB median 98.4 73.6 1.34x

Spark 3 TB worst 381.2 330.0 1.16x

Hive 100 GB best 29.0 16.2 1.79x

Hive 100 GB median 38.4 25.0 1.54x

Hive 100 GB worst 206.6 188.4 1.10x

Table 2: Performance improvements by comparing the job completion
time of an unmodified JVM and HotTub. For Spark and Hive we report the
average times of the queries with the, best, median, and worst speed-up
for each data size. Speed-up values were calculated using full-precision
values, not the rounded values shown as completion times in this table.

Performance of HotTub
We conduct a variety of experiments on HotTub in the same
manner as our JVM warm-up performance analysis to evaluate
its performance. Table 2 shows HotTub’s speed-up compared
with an unmodified HotSpot JVM. We ran the same workload
five times on an unmodified JVM and six times on HotTub. We
compared the average runtime of the five unmodified runs with
the average runtime of the five reuse HotTub runs, excluding
the initial warm-up run. For Spark and Hive, we ran the same 10
queries that we used in our study.

The results show that HotTub significantly speeds up the total
execution time. For example, HotTub reduces the average job
completion time of the Spark query with the highest speed-up

www.usenix.org	   S P R I N G 20 17  VO L . 42 , N O. 1  51

SYSADMIN
Don’t Get Caught in the Cold, Warm Up Your JVM:

Understand and Eliminate JVM Warm-up Overhead in Data-Parallel Systems

by 29 seconds on 100 GB data, and can speed up HDFS 1 MB
read by a factor of 30.08. Among nearly 200 pairs of trials, a job
running in a reused HotTub JVM always completed faster than
an unmodified JVM. Enabling our performance counters, we
observe that indeed HotTub eliminates the warm-up overhead.
In all the experiments, the server JVM spends less than 1% of
the execution time in class loading and interpreter.

In addition to evaluating the speed-up of HotTub in our paper,
we evaluated many other aspects. We also found that the major-
ity of speed-up comes in the first reuse run. When inspecting
hardware performance counters we saw a large reduction in
memory accesses due to avoidance of class loading and inter-
pretation. We found that when reusing JVMs that were warmed
up with a different query than the one being run, HotTub still
achieved similar speed-ups since different jobs still tend to use
similar framework code in these systems. Also, the manage-
ment overhead of HotTub turned out to be low, only adding a few
hundred milliseconds to the critical path.

Conclusion
We started this project curious to understand the JVM’s over-
head on data-parallel systems, driven by the observation that
systems software is increasingly built on top of it. Enabled by
non-trivial JVM instrumentations, we observed the warm-up
overhead and were surprised by the extent of the problem. We
then pivoted our focus on to the warm-up overhead by first pre-
senting an in-depth analysis on three real-world systems. Our

results show the warm-up overhead is significant, bottlenecks
even I/O intensive jobs, increases as jobs become more parallel-
ized and short running, and is aggravated by multi-layered sys-
tems. We further designed HotTub, a drop-in replacement of the
JVM that can eliminate warm-up overhead by amortizing it over
the lifetime of a host. Evaluation shows it can speed up systems
like HDFS, Hive, and Spark, with a best case speed-up of 30.08x.

Acknowledgments
We greatly appreciate the insightful feedback from our anony-
mous OSDI reviewers, our OSDI shepherd Andrea Arpaci-
Dusseau, and Rik Farrow. We thank Yu Luo, Serhei Makarov,
Michael Stumm, Jenny Ren, Kirk Rodrigues, Guangji Xu, Yongle
Zhang, and Xu Zhao for the useful and thought-stimulating
discussions. We thank Yu Luo for setting up and maintaining the
server cluster environment used in our experiments. His help
was invaluable. This research is supported by NSERC Discovery
grant, NetApp Faculty Fellowship, and an NSERC USRA award.
Hailong Sun is supported by National Key Research and Devel-
opment Program of China (2016YFB1000804) and National
Natural Science Foundation of China (61370057).

References
[1] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur,
S. Kandula, S. Shenker, and I. Stoica, “PACMan: Coordinated
Memory Caching for Parallel Jobs,” in Proceedings of the 9th
USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI ’12), 2012: https://www.usenix.org/system
/files/conference/nsdi12/pacman.pdf.

[2] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson,
and A. Rowstron, “Scale-up vs. Scale-out for Hadoop: Time to
Rethink?” in Proceedings of the 4th Annual Symposium on Cloud
Computing (SOCC ’13), 2013.

[3] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte,
and H.-A. Jacobsen, “Bigbench: Towards an Industry Standard
Benchmark for Big Data Analytics,” in Proceedings of the 2013
ACM SIGMOD International Conference on Management of
Data (SIGMOD ’13), 2013.

[4] Hypertable: “Why We Chose CPP over Java”: https://code
.google.com/p/hypertable/wiki/WhyWeChoseCppOverJava.

[5] D. Lion, A. Chiu, H. Sun, X. Zhuang, N. Grcevski, and D.
Yuan, “Don’t Get Caught in the Cold, Warm Up Your JVM:
Understand and Eliminate JVM Warm-up Overhead in Data-
Parallel Systems,” in Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (OSDI ’16),
2016: https://www.usenix.org/system/files/conference/osdi16
/osdi16-lion.pdf.

[6] J. H. Saltzer, “Protection and the Control of Information
Sharing in Multics,” Communications of the ACM, vol. 17, no. 7
(1974), pp. 388–402.

[7] “StackOverflow: Is Java Really Slow?”: http://stackoverflow
.com/questions/2163411/is-java-really-slow.

[8] Yanpei Chen, Cloudera, “What Do Real-Life Apache Hadoop
Workloads Look Like?”: http://blog.cloudera.com/blog/2012/09
/what-do-real-life-hadoop-workloads-look-like/.

