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Don’t Get Caught in the Cold, Warm Up Your JVM
Understand and Eliminate JVM Warm-up Overhead in Data-Parallel 
Systems

D A V I D  L I O N ,  A D R I A N  C H I U ,  H A I L O N G  S U N ,  X I N  Z H U A N G ,  N I K O L A  G R C E V S K I ,  A N D  D I N G  Y U A N

Many widely used, latency sensitive, data-parallel distributed 
systems, such as HDFS, Hive, and Spark choose to use the Java 
Virtual Machine (JVM) despite debate on the overhead of doing 

so. By thoroughly studying the JVM performance overhead in the above-
mentioned systems, we found that the warm-up overhead, i.e., class loading 
and interpretation of bytecode, is frequently the bottleneck. For example, 
even an I/O intensive, 1 GB read on HDFS spends 33% of its execution time in 
JVM warm-up, and Spark queries spend an average of 21 seconds in warm-
up. The findings on JVM warm-up overhead reveal a contradiction between 
the principle of parallelization, i.e., speeding up long-running jobs by par-
allelizing them into short tasks, and amortizing JVM warm-up overhead 
through long tasks. We therefore developed HotTub, a new JVM that reuses 
a pool of already warm JVMs across multiple applications. The speed-up 
is significant: for example, using HotTub results in up to 1.8x speed-ups for 
Spark queries, despite not adhering to the JVM specification in edge cases.

The performance of data-parallel distributed systems has been heavily studied in the past 
decade, and numerous improvements have been made to the performance of these systems. 
A recent trend is to further process latency sensitive, interactive queries with these systems. 
However, there is a lack of understanding of the JVM’s performance implications in these 
workloads. Consequently, almost every discussion on the implications of the JVM’s perfor-
mance results in heated debate. For example, the developers of Hypertable, an in-memory 
key-value store, use C++ because they believe that the JVM is inherently slow. They also 
think that Java is acceptable for Hadoop because “the bulk of the work performed is I/O” [4]. 
In addition, many believe that as long as the system “scales,” i.e., parallelizes long jobs into 
short ones, the overhead of the JVM is not concerning [7].

Our research asks a simple question: what is the performance overhead introduced by the 
JVM in latency sensitive data-parallel systems? We answer this by presenting a thorough 
analysis of the JVM’s performance behavior when running systems including HDFS, Hive 
on Tez, and Spark. We had to carefully instrument the JVM and these applications to under-
stand their performance.

Surprisingly, after multiple iterations of instrumentation, we found that JVM warm-up time, 
i.e., time spent in class loading and interpreting bytecode, is a recurring overhead. Specifi-
cally, we made the following three major findings. First, JVM warm-up overhead is signifi-
cant even in I/O intensive workloads. For example, reading a 1 GB file on HDFS from a hard 
drive requires JVM to spend 33% of its time in warm-up. In addition, the warm-up time does 
not scale but, instead, remains nearly constant. For example, the warm-up time in Spark 
queries remains at 21 seconds regardless of the workload scale factor, thus affecting short-
running jobs more. The broader implication is the following: 
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There is a contradiction between the principle of parallelization, i.e., speeding up long-running 
jobs by parallelizing them into short tasks, and amortizing JVM warm-up overhead through 
long tasks.

Finally, the use of complex software stacks aggravates warm-up overhead. A Spark client 
loads 19,066 classes executing a query, which is three times more than Hive despite Spark’s 
overall latency being shorter. These classes come from a variety of software components 
needed by Spark. In practice, applications using more classes also use more unique methods, 
which are initially interpreted. This results in increased interpretation time.

To solve the problem, our key observation is that the homogeneity of parallel data-processing 
jobs enables a significant reuse rate of warm data, i.e., loaded classes and compiled code, 
when shared across different jobs. Accordingly, we designed HotTub, a new drop-in replace-
ment JVM that transparently eliminates warm-up overhead by reusing JVMs from prior 
runs. The source code of HotTub and our JVM instrumentations are available at https://
github.com/dsrg-uoft/hottub.

Analysis of JVM Warm-up Overhead
What follows is an in-depth analysis of the JVM warm-up overhead in three data-parallel 
systems, namely HDFS, Hive running on Tez and YARN, and Spark SQL running with 
Spark. We will show that on each system the JVM warm-up time stays relatively constant. 
The HDFS experiment further shows how warm-up can dwarf I/O, while the Spark and 
Hive experiments explain the implications of warm-up overhead for parallel computing. All 
experiments are performed on an in-house cluster with 10 servers connected via 10 Gbps 
interconnect. Each of them has at least 128 GB DDR4 RAM and two 7,200 RPM hard drives. 
The server components are long running and fully warmed-up for weeks and have serviced 
thousands of trial runs before measurement runs. Details on our study methodology and the 
JVM instrumentation can be found in our OSDI paper [5]. 

HDFS
We implement three different HDFS clients: sequential read; parallel read, with 16 threads, 
that runs on a server with 16 cores; and sequential write. We flush the OS buffer cache on all 
nodes before each measurement to ensure the workload is I/O bound. Note that interpreter 
time does not include I/O time, because I/O is always performed by native libraries.

Figure 1 shows the class loading and interpreter time under different workloads. The aver-
age class loading times are 1.05, 1.55, and 2.21 seconds for sequential read, parallel read, and 
sequential write, respectively, while their average interpreter times are 0.74, 0.71, and 0.92 
seconds. The warm-up time does not change significantly with different data sizes. The 

reason that HDFS write takes the JVM longer to warm up is 
that it exercises a more complicated control path and requires 
more classes. Parallel read spends less time in the interpreter 
than sequential read because its parallelism allows the JVM to 
identify the “hot spot” faster.

Figure 2 further shows the significance of warm-up overhead 
within the entire job. Short-running jobs are affected the most. 
When the data size is under 1 GB, warm-up overhead accounts 
for more than 33%, 48%, and 30%, respectively, of the client’s 
total execution time in sequential read, parallel read, and 
sequential write. According to a study [8] published by Clou-
dera, a vast majority of the real-world Hadoop workloads read 
and write less than 1 GB per-job as they parallelize a big job into 
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Figure 1: JVM warm-up time in various HDFS workloads. “cl” and “int” 
represent class loading and interpretation time, respectively. The x-axis 
shows the input file size.
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smaller ones. The study further shows that for some customers, 
over 60% of their jobs read less than 1 MB from HDFS, whereas 
a 1 MB HDFS sequential read spends over 60% of its time in 
warm-up.

Next we break down class loading and interpreter time using the 
1 GB sequential read as an example. Figure 3 shows the warm-up 
time in the entire client read. A majority of the class loading and 
interpreter execution occurs before a client contacts a datanode 
to start reading.

Further drilling down, Figure 4 shows how warm-up time 
dwarfs the datanode’s file I/O time. When the datanode first 
receives the read request, it sends a 13-byte ACK to the client, 
and immediately proceeds to send data packets of 64 KB using 
the sendfile system call. The first sendfile takes noticeably 
longer than subsequent ones since the data is read from the hard 
drive. However, the client takes even longer (15 ms) to process 
the ACK because it is bottlenecked by warm-up time. By the 
time the client finishes parsing the ACK, the datanode has 
already sent 11 data packets, and thus the I/O time is not even 
on the critical path. The client takes another 26 ms to read the 
first packet, where it again spends a majority of the time loading 
classes and interpreting the computation of the CRC checksum. 
By the time the client finishes processing the first three packets, 
the datanode has already sent 109 packets. In fact, the datanode 
is so fast that the Linux kernel buffer becomes full after the 38th 
packet and has to block for 14 ms so that the kernel can adap-
tively increase its buffer size. The client, on the other hand, is 
trying to catch up the entire time.

Figure 4 also shows the performance discrepancy between 
interpreter and compiled code. Interpreter takes 15 ms to com-
pute the CRC checksum of the first packet, whereas compiled 
code only takes 65 μs per-packet. 

Break Down Class Loading
The HDFS sequential read takes a total of 1,028 ms to load 2,001 
classes. Table 1 shows the breakdown of class loading time. 
Reading the class files from the hard drive only takes 170 ms. 
Because Java loads classes on demand, loading 2,001 classes is 
broken into many small reads: e.g., 276 ms are spent searching 
for classes on the classpath, which is a list of file-system loca-
tions. The JVM specification requires the JVM to load the first 
class that appears in the classpath in the case of multiple classes 
with identical names. Therefore it has to search the classpath 
linearly when loading a class. Another 411 ms are spent in define 
class, where the JVM parses a class from file into an in-memory 
data structure.

Read Search Define Other Total

Time (ms) 170 276 411 171 1,028

Table 1: Breakdown of class loading time

Spark versus Hive
Figure 5 shows the JVM overhead on Spark and Hive. Surpris-
ingly, each query spends an average of 21.0 and 12.6 seconds in 
warm-up time on Spark and Hive, respectively. Similar to HDFS, 
the warm-up time in both systems does not vary significantly 
when data size changes, indicating that its overhead becomes 
more significant in well parallelized short-running jobs. For 
example, 32% of the Spark query time on 100 GB data size is on 
warm-up. In practice, many analytics workloads are short run-
ning. For example, 90% of Facebook’s analytics jobs have under 
100 GB input size [1, 2], and a majority of the real-world Hadoop 
workloads read and write less than 1 GB per-task [8]. 
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Software Layers Aggravate Warm-up Overhead 
The difference in the warm-up times between Spark and Hive 
is explained by the difference in number of loaded classes. The 
Spark client loads an average of 19,066 classes, compared with 
Hive client’s 5,855. Consequently, the Spark client takes 6.3 
seconds in class loading whereas the Hive client spends 3.7 
seconds. A majority of the classes loaded by Spark client come 
from 10 third-party libraries, including Hadoop (3,088 classes), 
Scala (2,328 classes), and Derby (1,110 classes). Only 3,329 of the 
loaded classes are from Spark packaged classes.

A large number of loaded classes also results in a large inter-
preter time. The more classes being loaded, the greater the num-
ber of different methods that are invoked, where each method 
has to be interpreted at the beginning. On average, a Spark client 
invokes 242,291 unique methods, where 91% of them were never 
compiled by JIT-compiler. In comparison, a Hive client only 
invokes 113,944 unique methods, while 96% of them were never 
JIT-compiled.

Breaking Down Spark’s Warm-up Time 
We further drill down into one query (query 13 of BigBench 
with scale factor 100) to understand the long warm-up time of 
Spark. While different queries exhibit different overall behaviors 
and different runtimes, the pattern of JVM warm-up overhead 
is similar, as evidenced by the stable warm-up time. Figure 6 
shows the breakdown of this query. The query completion time 
is 68 seconds: 24.6 seconds are spent on warm-up overhead of 
which 12.4 seconds are spent on the client while the other 12.2 
seconds come from the executors. Note that a majority of execu-
tors’ class-loading time is not on the critical path: executors are 
started immediately after the query is submitted, which allows 
executors’ class loading time to be overlapped with the client’s 
warm-up time. However, at the beginning of each stage the 
executor still suffers from significant warm-up overhead that 
comes primarily from interpreter time.

Hive
Hive parallelizes a query using different JVM processes, known 
as containers, whereas each container uses only one compu-
tation thread. Therefore within each container the warm-up 
overhead has a similar pattern to the HDFS client shown earlier. 
Hive and Tez also reuse containers to process tasks of the same 
query, and therefore the JVM warm-up overhead can be amor-
tized across the lifetime of a query.

HotTub
The design goal for HotTub is to allow applications to share 
the “warm” data, i.e., loaded classes and compiled code, thus 
eliminating the warm-up overhead from their executions. Hot-
Tub is implemented by modifying OpenJDK’s HotSpot JVM 
and is made to be a drop-in replacement. Users simply replace 
java with HotTub and run their Java application with normal 
commands.

Figure 7 shows the architecture of HotTub. When java is first 
called there are no existing JVMs to reuse, so a new JVM must 
be created for the application to run on as it normally would. 
Once the application finishes, the JVM must first be reset before 
it can be added to a pool of JVMs for later reuse. When there are 
JVMs in the pool, a call to java will attempt to find a valid JVM 
for reuse. If a JVM is found it will be reinitialized, and then the 
application will run on the already warm JVM with nearly zero 
warm-up overhead.
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The main challenge of this process is to ensure that the applica-
tion’s execution on HotTub is consistent with the execution on 
an unmodified JVM. Next we discuss some techniques HotTub 
uses to ensure consistency. More detailed discussions can be 
found in our OSDI paper [5].

Class Consistency
When choosing a JVM to reuse we must make sure any class 
that will be reused is the same as the class that would have been 
dynamically loaded in a normal execution. To do this HotTub 
ensures for a JVM the classpath and classes on the classpath 
are the same for both the new application and the previously run 
applications. This also ensures there is a large amount of poten-
tial overlap between the new application and the already loaded 
classes and compiled code. It is possible to be more strict and 
only reuse a JVM if the application is more similar to what was 
previously run, but being less strict would not be able to guaran-
tee consistency.

Data Consistency
At the reset phase all stale data is cleaned up off of the criti-
cal path before the JVM is put back in the pool. All application 
threads are cleaned up, so there are no more stacks left, and all 
file descriptors opened by the application are closed. HotTub 
also zeroes out all static data from classes. HotTub now runs 
garbage collection to remove all the stale data, but since there 
are no root references from the stack at this point, and roots 
from static data are all zero, practically all heap data is dead and 
collected quickly.

Once a JVM has been chosen to be reused it will perform the 
reinitialization phase, which sets the new file descriptors and 
runs the class initialization code of all loaded classes to cor-
rectly initialize the static data since it had been previously set to 
zero. The order this is done in is important because dependencies 
between classes can exist. HotTub maintains the correct order 
by recording the order of class initializations when they are first 
initialized and replaying the initializations in the same order 
before each reuse. There are some limitations to reinitializing 
static data, since known bad practices such as class dependence 
cycles and real time static initialization dependencies will cause 
HotTub to be inconsistent. However, these cases are extremely 
uncommon in practice.

Handling Signals and Explicit Exit 
HotTub has to handle signals such as SIGTERM and SIGINT 
and explicit exit by the application, otherwise it will lose the tar-
get server process from our pool. If the application registers its 
own signal handler, HotTub forwards the signal. If SIGKILL is 
used or the application exists through a native library, the JVM 
will die and cannot be reused.

Privacy Limitation
The use of HotTub raises privacy concerns. HotTub limits reuse 
to the same Linux user, as cross-user reuse allows a different 
user to execute code with the privileges of the first user. How-
ever, our design still violates the principle “base the protection 
mechanisms on permission rather than exclusion” [6]. Although 
we carefully clear and reset data from the prior run, an attacker 
could still reconstruct the partial execution path of the prior run 
via timing channel since previously loaded classes and JIT-com-
piled methods can be seen.

Completion Time (s)
Workload Unmod. HotTub Speed-up

HDFS read 1 MB 2.29 0.08 30.08x

HDFS read 10 MB 2.65 0.14 18.04x

HDFS read 100 MB 2.33 0.41   5.71x

HDFS read 1 GB 7.08 4.26   1.66x

Spark 100 GB best 65.2 36.2   1.80x

Spark 100 GB median 57.8 35.2   1.64x

Spark 100 GB worst 74.8 54.4   1.36x

Spark 3 TB best 66.4 41.4   1.60x

Spark 3 TB median 98.4 73.6   1.34x

Spark 3 TB worst 381.2 330.0   1.16x

Hive 100 GB best 29.0 16.2   1.79x

Hive 100 GB median 38.4 25.0   1.54x

Hive 100 GB worst 206.6 188.4   1.10x

Table 2: Performance improvements by comparing the job completion 
time of an unmodified JVM and HotTub. For Spark and Hive we report the 
average times of the queries with the, best, median, and worst speed-up 
for each data size. Speed-up values were calculated using full-precision 
values, not the rounded values shown as completion times in this table.

Performance of HotTub
We conduct a variety of experiments on HotTub in the same 
manner as our JVM warm-up performance analysis to evaluate 
its performance. Table 2 shows HotTub’s speed-up compared 
with an unmodified HotSpot JVM. We ran the same workload 
five times on an unmodified JVM and six times on HotTub. We 
compared the average runtime of the five unmodified runs with 
the average runtime of the five reuse HotTub runs, excluding 
the initial warm-up run. For Spark and Hive, we ran the same 10 
queries that we used in our study.

The results show that HotTub significantly speeds up the total 
execution time. For example, HotTub reduces the average job 
completion time of the Spark query with the highest speed-up 
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by 29 seconds on 100 GB data, and can speed up HDFS 1 MB 
read by a factor of 30.08. Among nearly 200 pairs of trials, a job 
running in a reused HotTub JVM always completed faster than 
an unmodified JVM. Enabling our performance counters, we 
observe that indeed HotTub eliminates the warm-up overhead. 
In all the experiments, the server JVM spends less than 1% of 
the execution time in class loading and interpreter.

In addition to evaluating the speed-up of HotTub in our paper, 
we evaluated many other aspects. We also found that the major-
ity of speed-up comes in the first reuse run. When inspecting 
hardware performance counters we saw a large reduction in 
memory accesses due to avoidance of class loading and inter-
pretation. We found that when reusing JVMs that were warmed 
up with a different query than the one being run, HotTub still 
achieved similar speed-ups since different jobs still tend to use 
similar framework code in these systems. Also, the manage-
ment overhead of HotTub turned out to be low, only adding a few 
hundred milliseconds to the critical path. 

Conclusion
We started this project curious to understand the JVM’s over-
head on data-parallel systems, driven by the observation that 
systems software is increasingly built on top of it. Enabled by 
non-trivial JVM instrumentations, we observed the warm-up 
overhead and were surprised by the extent of the problem. We 
then pivoted our focus on to the warm-up overhead by first pre-
senting an in-depth analysis on three real-world systems. Our 

results show the warm-up overhead is significant, bottlenecks 
even I/O intensive jobs, increases as jobs become more parallel-
ized and short running, and is aggravated by multi-layered sys-
tems. We further designed HotTub, a drop-in replacement of the 
JVM that can eliminate warm-up overhead by amortizing it over 
the lifetime of a host. Evaluation shows it can speed up systems 
like HDFS, Hive, and Spark, with a best case speed-up of 30.08x. 
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