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ABSTRACT
Complex and unforeseen failures in distributed systems must
be diagnosed and replicated in a development environment
so that developers can understand the underlying problem
and verify the resolution. System logs often form the only
source of diagnostic information, and developers reconstruct
a failure using manual guesswork. This is an unpredictable
and time-consuming process which can lead to costly service
outages while a failure is repaired.
This paper describes Pensieve, a tool capable of recon-

structing near-minimal failure reproduction steps from log
files and system bytecode, without human involvement. Un-
like existing solutions that use symbolic execution to search
for the entire path leading to the failure, Pensieve is based
on the Partial Trace Observation, which states that program-
mers do not simulate the entire execution to understand the
failure, but follow a combination of control and data depen-
dencies to reconstruct a simplified trace that only contains
events that are likely to be relevant to the failure. Pensieve
follows a set of carefully designed rules to infer a chain of
causally dependent events leading to the failure symptom
while aggressively skipping unrelated code paths to avoid
the path-explosion overheads of symbolic execution models.

CCS CONCEPTS
• Computer systems organization→Reliability; • Soft-
ware and its engineering → Software testing and de-
bugging;
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1 INTRODUCTION
Production distributed systems inevitably experience fail-
ures – whether due to software bugs, human errors (e.g.,
misconfiguration), or hardware faults. When a failure occurs,
it is the vendor’s top priority to diagnose it so the system
can recover. A 2013 study has shown that half of software
development time is spent on debugging [4].
Reproducing the failure is often the most critical step in

postmortem debugging, and a prerequisite to thoroughly un-
derstanding the failure. Many of the most commonly used de-
bugging techniques, including interactive debuggers, “printf
debugging”, and delta debugging [29] assume that the fail-
ure has already been reproduced. In addition, verifying the
resolution (e.g., a patch or configuration workaround) also
requires the failure to be reproduced. Large software projects
often require developers to provide a test case that repro-
duces the failure for regression testing. Therefore failure
reproduction is typically the first and the last step in post-
mortem debugging. Indeed, a prior study surveying 466 de-
velopers found that developers consider steps to reproduce a
failure to be the most useful information in a bug report [3].
Despite its importance, failure reproduction remains the

most time-consuming step in postmortem debugging. We
thoroughly analyzed the life cycle of 30 randomly sampled
bug reports from the production distributed systems HDFS,
HBase, and ZooKeeper, and found that developers spend a
vast majority of the resolution time (69%) on reproducing
the failure. Failures in distributed systems often have a long
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and complex manifestation involving multiple causally re-
lated user input events [26]. The underlying executions span
across multi-threaded components with complex (typically
asynchronous) communication mechanisms. Moreover, due
to performance and privacy concerns, production distributed
systems only record limited information for postmortem
analysis, typically in the form of log files.
Unfortunately, existing solutions for speeding up failure

reproduction are limited. Intrusive approaches to automatic
failure reproduction, such as deterministic replay [1, 2, 7,
9, 10, 15, 17–20, 22], can faithfully replay the failure execu-
tion. However, they find limited deployment in production
systems as vendors are concerned with the performance
overheads and changes introduced to the production envi-
ronment. ESD [28] and SherLog [27] attempt to reproduce
a failure using only coredumps and log files, respectively,
as their source of evidence, combined with static analysis
on the program’s code. Both use a variant of symbolic exe-
cution [5] to search for an execution path that leads to the
target symptom. ESD guides the search towards intermediate
goals inferred through static analysis, while SherLog limits
its analysis to a subset of the program. In general, the paths
inferred by symbolic execution are precise, and include ev-
ery instruction along the path. However, this approach does
not scale to complete executions of large, complex systems
because it requires forking the analysis at all branch instruc-
tions regardless of their relevance to the failure execution.
This paper presents Pensieve, a tool for automatically

reproducing failures from production distributed systems.
Given log files output by the failure execution, the system’s
bytecode, a list of supported user commands, and a descrip-
tion of the symptoms associated with the failure (typically a
user-selected subset of error messages in the log files), Pen-
sieve outputs a sequence of user commands, packaged as a
unit test, that can reliably reproduce the failure.

Pensieve’s design is based on the Partial Trace Observation:
Programmers almost never debug a failure by reconstruct-
ing its complete execution path; instead, they skip a vast
majority of the code paths by focusing on instructions that
are likely to be causally relevant to the failure.

More specifically, programmers typically apply the following
inference rules during postmortem debugging:
• A failure event can be explained by searching the codebase
for plausible causes. For example, to explain why a variable
has a particular value, programmers typically consider
where it is defined, which could be in another thread or
even component. The programmer ‘jumps’ directly from
the failure event to the cause without reconstructing the
intermediate control-flow path.
• Log printing statements provide a useful clue when there
aremultiple possible explanations of an event. For example,

when a variable value can be defined at multiple program
locations, programmers often check if a log was printed
close to one of these locations.
• For many loops, only a subset of their iterations have ef-
fects that are necessary for the failure to occur. Simulating
the entire loop (as done by symbolic execution) is typically
not relevant to debugging.
Based on these observations, Pensieve implements event

chaining, a static analysis strategy that substantially differs
from prior methods. Pensieve produces a partial trace de-
scribing a set of events that occurred in the failure execution.
It does so by iteratively analyzing the control and data de-
pendencies that are most likely to be relevant to the failure,
until the analysis reaches external API calls (user commands),
while discarding likely-irrelevant dependencies and aggres-
sively skipping the rest of the code path. The resulting set of
API calls is used to generate a unit test. Pensieve searches
the codebase globally for causes, mimicking the ‘jumping’
strategy used by programmers trying to understand a failure
(as discussed in § 3.2). For example, Pensieve finds where
a variable of interest is modified, but does not verify the
existence of a control flow path connecting the modification
and use points. This often allows Pensieve to bypass complex
network transfer code and find a root cause that occurs in
another thread or component, because coding practices for
distributed systems favor using uniform object types at the
two ends of network communications.
Inferring a dependency trace that captures dynamic exe-

cution information requires Pensieve to distinguish different
invocations of the same method and different iterations of a
loop. Pensieve solves this by assigning symbolic invocation
and iteration IDs to the inferred events. When multiple al-
ternative dependencies exist, Pensieve heavily relies on log
printing statements as clues to pick which one is more likely
to have occurred. Finally, it classifies the dependencies of
each loop on the causal path. For the majority of loops, it
only needs to analyze a single iteration.

Pensieve’s aggressive skipping of code paths unavoidably
sacrifices accuracy, and can lead to some infeasible or inaccu-
rate dependencies. We correct inaccuracies with a dynamic
verification phase that provides feedback to refine Pensieve’s
analysis. The unit test generated by Pensieve is executed in
a controlled JVM that observes whether the inferred depen-
dencies and their partial orders are respected. If not, Pensieve
identifies the point of divergence, determines the condition
to avoid the divergence, and restarts the static analysis phase
with this condition as an additional requirement.

Pensieve has the following attributes:
• Scalable to real distributed systems. The scalability of Pen-
sieve is not limited by the code size or the number of
execution paths, but by the number of causally dependent
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events (which is orders of magnitude smaller), allowing it
to scale on complex distributed system codebases.
• Reproduces non-deterministic failures. Pensieve’s analysis
captures data dependencies among multiple threads or
processes, and the dynamic verification phase enforces the
timing constraints to reliably reproduce the failure.
• Simplifies reproduction steps. Pensieve’s design to selec-
tively infer the most important causal dependencies leads
to a near-minimal sequence of reproduction steps as it
only seeks to satisfy those most important conditions.
We evaluate Pensieve on 18 randomly sampled real fail-

ures reported to HDFS, HBase, Cassandra, and ZooKeeper.
Pensieve can automatically reproduce 13 (72%) of them and
provides a useful partial diagnosis for two more, giving a
helpful result for 83% of the failures overall. The event chain
from the failure symptom to the user commands consists
of an average of 105 events, which is orders of magnitude
smaller compared to the path constraint size for an imple-
mentation of SherLog’s algorithm (tens of millions of AST
nodes that the SMT-solver uses to represent the path con-
ditions) and the complexity of the actual failure execution
path (tens of millions of branch instructions).
This paper makes the following contributions. First, we

propose an algorithm, event chaining, that uses the Partial
Trace Observation to reconstruct a simplified partial trace of a
failure execution. Second, using this algorithm, we build the
first tool, Pensieve, that is capable of non-intrusively repro-
ducing failures from complex production distributed systems.
Finally, we propose a simple dynamic refinement mechanism
that verifies and refines the generated reproduction steps.

Pensieve also has the following limitations. First, its anal-
ysis is unsound and incomplete; the dynamic refinement
phase is designed to correct this inaccuracy. In addition, it
must be possible to exercise the system’s functionality using
simple API calls, and to characterize the failure using a sub-
set of the error log messages or stack traces output by the
system. These limitations are discussed in detail in § 6.

The rest of the paper is organized as follows. § 2 studies the
importance of failure reproduction in postmortem debugging.
§ 3 describes the design and implementation of Pensieve. § 4
describes our dynamic refinement mechanism. We present
our experimental evaluation in § 5. § 7 surveys related work
and § 8 gives concluding remarks.

2 THE ROLE OF REPRODUCTION
To understand the role of reproduction in postmortem diag-
nosis, we study the following questions: (1) Are most failures
reproduced before they are resolved? (2) How much time
do developers spend on failure reproduction? (3) Does re-
production improve the understanding of a failure? Table 1
shows the results of our study.

System Reproduced Time (%) Time (absolute)
HDFS 80% 78% 92 days
HBase 55% 71% 93 days
ZooKeeper 85% 57% 53 days
Total 73% 69% 79 days

Table 1: The role of failure reproduction. It shows the per-
centage of failures that are reproduced, the reproduction
time as % of debugging time, and in absolute time.

By studying 60 randomly sampled failures, we found that
developers reproduced a majority (73%) of the failures dur-
ing postmortem debugging so that they can understand the
failure and verify resolution. The 60 failures (20 from each
system) were sampled from the JIRA issue tracking databases
after filtering out bugs with a priority value lower than “Ma-
jor” and those with the reporter being the same as assignee
(which likely indicates failures experienced in testing rather
than production systems). Failures were classified in a con-
servative manner: unless there is clear indication that de-
velopers have reproduced the failure, we consider it as not
reproduced. Among the 16 failures that we classified as not
reproduced, only for 2 did the developers clearly indicate
that it was never reproduced.
Deadlocks and resource leaks were two of the common

root causes in failures where developers were able to fix the
bug without ever reproducing the failures. Nevertheless, we
observed the following comments indicating that a repro-
duction would have been useful even in such cases: “I do
think I can fix the bug but I really really want to find a way to
reproduce it consistently as a unit test...”; “The timeout solution
is trivial but it’s important to try to figure out root cause.”
Table 1 further shows that 69% of the failure resolution

time was spent in failure reproduction. Failure resolution
time is measured from the time a bug is reported to the time
where the first correct resolution is provided, whereas the
failure reproduction time is measured from the bug report-
ing time to the first clear indication that a developer has
reproduced the failure. Studying the reproduction time is
challenging because not every failure discussion records a
clear point in time indicating the failure reproduction. There-
fore, for the failure resolution time, we did a separate round
of failure selection to select a total of 30 failures (10 from
each system) where developers clearly indicated the time of
successful failure reproduction. Note that while other factors
(such as failure criticality or importance of the customer)
could affect the reproduction time, the same factors would
also affect the other portions of failure resolution. Thus, their
effects should be canceled out when reporting reproduction
time as a percentage of resolution time over 30 samples.

Figure 1 shows an example (HDFS-6130) highlighting the
importance of failure reproduction. The failure symptoms
involved data loss, therefore the bug received the highest
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U: Exception caused data loss. Provided error logs.
U: Provided (incomplete) reproduction steps.
D: “I believe that this is a duplicate of...” (Wrong.)
D: “Can’t reproduce. Could you try with the latest version?”
U: Proposed a (wrong) patch. Later cancelled.
D: “Apache releases don’t have this issue, close as invalid.”
U: “Apache release also had this issue.”
U: “Add some reproduction steps.”
D: “I just tried but cannot reproduce.”
D: “Would be very helpful if the fsimage is available.”
U: “fsimage uploaded.” Also revised reproduction steps.
D: “Still cannot reproduce.”
D: “Tried with another version, still cannot reproduce”
D: [After over 5 days, 29 discussions] “Reproduced...”
D: [After another 8 minutes] Posted the working patch.

Figure 1: Discussions between user (U) and developers (D).

priority (“Blocker”). It took three developers over five days
to reproduce the failure, resulting in 29 discussions with
users. Even after the user provided the file system image that
triggered the failure, developers still could not immediately
reproduce1. After reproducing the failure, it only took the
developer 8minutes to develop a patch that resolved the issue.
As we will show in § 5, Pensieve is able to automatically infer
the conditions to reproduce this failure.
We found that developers often develop a deeper under-

standing of the failure after reproduction. In 8 of the 30 failure
samples developers adjusted the priority of the failure after
reproduction. For example, only after HBase developers re-
produced the failure described in HBase-4890 did they realize
the gravity of the problem, evidenced by the following com-
ments: “Upgrade to Blocker... Should hold up (release) 0.92.1
till fixed... This is scary.”

3 EVENT CHAINING ALGORITHM
We discuss the design of the event chaining algorithm in this
section. We first define the failure replication problem, its
input and output. We then explain the design of Pensieve.

3.1 Problem Definition
The input data to the failure replication problem consists of
the following: (1) the system’s bytecode; (2) a set of external
APIs; (3) a set of log files output by the failed execution; (4)
a description of the failure symptoms, represented using a
subset of the log messages, a stack trace, or a target program
location. (A recent study has shown that a majority, 76%, of
the production failures in today’s distributed systems output

1 Note that users can be irritated by such back-and-forth discussions after
they already experienced a system failure. For example, in HDFS-7565, the
developer could not reproduce the failure, and he kept asking the user for
more information. Eventually the user stopped replying.

1 void transferBlock(Block b, ..) {

2 if (! isValid(b)) {

3 LOG.info("Can't send invalid block " + b);

4 return;

5 }

6 }

7 boolean isValid(Block b) {

8 ReplicaInfo r = volumeMap.get(b);

9 if (r == null) { throw IOException (..); }

10 return b.generationStamp ==r.generationStamp;

11 }

12 void setGenStamp(long stamp) {

13 generationStamp = stamp;

14 }

15 // updatePipeline () executes on client

16 void updatePipeline (Block b) {

17 long newGS = b.generationStamp + 1;

18 b.setGenerationStamp(newGS);

19 LOG.info("updatePipeline(block=" + b + ")");

20 }

21 // This is a thread entry method

22 void DataStreamer.run() {

23 updatePipeline(b);

24 }

25 // appendFile () is an external HDFS API

26 void appendFile (..) {

27 streamer.start(); // -> DataStreamer.run()

28 }

Figure 2: Simplified HDFS code from a real-world failure.

error log messages that can be used to characterize the fail-
ure [26].) The goal is to produce a sequence of commands, in
the form of external API calls with concrete values assigned
to each parameter, that when executed causes the system
to exhibit the required failure symptoms. External APIs are
functions corresponding to the supported user operations
of the system. Pensieve identifies these APIs by taking ad-
vantage of the fact that today’s systems are designed with
a strong focus on supporting automated testing. Each sys-
tem has classes containing API methods corresponding to
possible user operations (e.g., DFSClient and DFSTestUtils
for HDFS, HBaseAdmin and HBaseTestingUtility for HBase).
These systems also allow configuration parameters to be set
using external API calls.

3.2 Motivating Example
We first use a real-world failure, HDFS-4022, to illustrate how
a human developermakes use of the Partial Trace Observation
in debugging. The failure had the highest priority (Blocker) in
the bug tracker as it can potentially lead to data loss. The user
characterized the failure by providing a log file containing
the following error log message:

“Can’t send invalid block blk_3852_1038”
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Developers could not immediately reproduce the failure and
had to ask the user to provide detailed reproduction steps.

Figure 2 shows simplified code from HDFS. The program-
mer observes that the log was printed at line 3. Because this
log printing statement is guarded by the condition !isValid(b)
at line 2, she concludes that the condition must hold in order
for the failure to occur. We call this condition a dominating
condition for the event at line 3. In general, if an event is nec-
essary for the failure to occur, then any dominating condition
of the event is also necessary. In practice, we ignore some un-
likely dominating conditions, such as exception-not-thrown
conditions. For example, the condition ‘!(r == null)’ at line
9 dominates line 10, but the alternate path is an exception
throw, which we consider unlikely2.
Next, the programmer must consider why the condition

at line 2 held. The return value of isValid() is computed at
line 10, and depends on the variables b.generationStamp and
r.generationStamp. Instead of analyzing the entire control
flow path leading up to isValid(), the programmer would
directly search for program locations which write a field
‘.generationStamp’. This field is written at line 13 in a method
setGenStamp(), which has 24 different callsites in the HDFS
codebase. The control flow path must have visited one of
these callsites in order for the method to be called.

Since considering 24 callsites individually would take too
much time, the programmer searches the log file for clues
and finds the following log printed from updatePipeline():

“updatePipeline(block=blk_3852_1038)”

Because the block identifier matches the one in the original
error log, the programmer focuses her analysis on the call
site in updatePipeline(). In general, distributed system cod-
ing practices encourage placing logs in a way that reduces
ambiguity for programmers debugging a failure [30].

Further exploration will lead the programmer to conclude
that updatePipeline() was called because the user performed
an appendFile() operation. Exploring the definition sites of
r.generationStamp will reveal other commands required to
reproduce the failure (not shown in Figure 2).
This style of debugging ‘jumps’ directly to prior causes

instead of following the entire execution path. When the
programmer jumps from the use of b.generationStamp to its
definition point, she does not check that the block object b
in updatePipeline() indeed flows into the object b in isValid().
This massively reduces the complexity of the analysis: in re-
ality, the path from updatePipeline() and isValid() spans from
the client to the namenode and finally to the datanode, and
the block object is passed multiple times over the network.
We summarize our observation as follows:

2If an exception-not-thrown condition is necessary, this will be detected by
the dynamic verification phase (described in § 4).

<e1, O, "Can't send invalid block...">

<e2,L,3:transferBlock0>

<e8, I, invoke(setGenStamp0)>

<e7, L, 13:setGenStamp0>

<e9, L, 18:updatePipeline0>

<e10, I, invoke(updatePipeline0)>

<e11, L, 23:DataStreamer.run0>

<e12, I, invoke(DataStreamer.run0)>

<e14, I, invoke(appendFile0)*>

<e13, L, 27:appendFile0>

<e3, C, isValid():transferBlock0==false>

<e6, L, 10:isValid0><e5, C, b.gS:isValid0 != r.gS:isValid0>

<e4, I, invoke(transferBlock0)>

Figure 3: The event chain inferred by Pensieve on theHDFS
code snippet shown in Figure 2. Each event is in the format
<event-id, type, event> (we do not show task IDs in this fig-
ure). Event type “O” represents an output event, “C” repre-
sents a condition event, “L” represents a location event, and
“I” represents an invocation event. → indicates a happens-
before relationship. “*” indicates an external API call.

Jumping directly from an event to its prior causes (with-
out analyzing the intermediate code path) significantly
reduces the complexity of debugging.
This ‘jumping’ strategy is based on the Partial Trace Obser-

vation rather than on domain knowledge of the system. Pen-
sieve implements this strategy as an automated analysis, ag-
gressively skipping irrelevant dependencies and code paths,
using logs to choose between mutually exclusive causes,
and analyzing most loop bodies only once. For HDFS-4022,
this produces a simplified trace containing 166 events. By
comparison, a symbolic execution (SE) based approach ana-
lyzing the complete execution path (containing 72 million
branch instructions) easily leads to path explosion. Even
SherLog [27], a symbolic execution approach that aggres-
sively applies heuristics to prune explored paths, infers a
path constraint with over 100 million Z3 AST nodes (opera-
tors and operands) that simply cannot be solved by today’s
SMT solvers (§ 5.2 contains a more detailed discussion). In
the end Pensieve infers a chain of events, shown in Figure 3,
that captures all dependencies discussed above.

3.3 Basic Event-Chaining Analysis
Pensieve’s static analysis infers chains of events that are
causally necessary to reproducing the failure. An event iden-
tifies a point in time during the system’s execution. There
are four types of events:
• A condition event represents a condition (stored as a sym-
bolic expression) that holds at a program location.
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• A location event represents reaching a program location.
• An invocation event represents a method being called.
• An output event represents a log message being printed.
An event consists of three components: a unique logical

timestamp, a description of the event, and a task ID identify-
ing the process and thread that the event occurs in. The logi-
cal timestamps imply a partial order among the events [13].
When event eB is generated as a prior cause of event eA,
Pensieve concludes that eB happens-before eA, or eB → eA.
Pensieve begins with a set of output events correspond-

ing to the failure symptoms and processes each event by
searching the code base for prior causes of the event. These
prior causes generate additional events to be processed. We
say that an event is explained by finding these causally prior
events. The goal of the analysis is to generate events corre-
sponding to external API calls to the system.

Pensieve explains each type of event differently. A condi-
tion event is explained by using data flow analysis to find
program locations that define each variable value used in the
condition and generating new location events correspond-
ing to these definition points. The definitions of the values
are then substituted into the condition, generating a new
condition event in terms of the definition points.
A location event is explained using control flow analysis

to find dominating branch conditions guarding the location
and generating condition events corresponding to these con-
ditions, as well as an invocation event for the containing
method. If there are two or more branch conditions ‘a’ and
‘b’ such that at least one must be satisfied to reach the ex-
plained location, Pensieve creates a condition event ‘a| |b’.

An invocation event is explained by generating a location
event for the invoked method’s callsite. An output event is
explained by generating a location event that corresponds
to the log printing statement. If any stack trace is printed in
the log message, Pensieve analyzes it to direct the search for
the location event’s callsites.

Consider Figure 3. The analysis begins with a single output
event e1. Pensieve explains e1 by finding the log printing
statement at line 3 in Figure 2, creating a location event e2.

Each event represents a point in time during the program’s
execution as opposed to a static program location. Therefore,
Pensieve needs to distinguish different invocations of the
same method. Locations and variable values in location and
condition events are assigned (using a scheme described
in § 3.6) an invocation-ID consisting of a method name and
a numerical ID. For example, “transferBlock0” in Figure 3
is an invocation ID representing one particular invocation
of transferBlock(). Similarly, Pensieve uses iteration-IDs to
distinguish iterations of a loop. Iteration-IDs are only needed
when a location occurs inside a loop body. (No events in
Figure 3 occur in a loop body, so iteration-IDs are not shown.)

A variable value in a condition event has the form “vari-
able name:program location:invocation-ID:[iteration-IDs]”.
Pensieve’s analysis models the program using Static Single
Assignment (SSA) form. Therefore, each method-local vari-
able is defined at one program location. Two variables that
have the same name, program location, invocation-ID, and
iteration-IDs are guaranteed to have the same value. This im-
portant property allows our analysis to detect contradictions
among conditions containing the same variables. Similarly,
a location event has the form “program location:invocation-
ID:[iteration-IDs]”, uniquely representing a point in time
during the execution.
A set of causally related events forms an event chain.

Events in the chain form a directed acyclic graph, with each
edge representing a happens-before relationship. At any mo-
ment during our analysis, Pensieve maintains several chains
of events representing alternative possibilities based on mul-
tiple mutually exclusive causes (e.g., an object field defined at
multiple program locations). Each chain has a search frontier
of events that are not yet explained. In our example, e1 has
been explained by e2, therefore the current search frontier is
{e2}. Pensieve’s analysis repeatedly explains events that are
in the search frontier. An event is removed from the frontier
when no reasoning steps can be applied to it, such as when
a condition event has resolved to true (e.g. “2==2”). Pensieve
also removes a condition event on the return value of a native
binary method from the frontier because Pensieve can only
analyze Java bytecode. However, Pensieve retains such con-
dition events in a buffer so that during the verification phase
(§ 4) it can detect a divergence from the expected execution
if the native method returns an unexpected value.

After each reasoning step, Pensieve takes the logical con-
junction of all the conditions from condition events within
the frontier. It then uses the Z3 SMT-solver [8] to determine
whether this conjunction is satisfiable. If it is unsatisfiable,
the event chain is removed from the analysis. Z3 is also used
to translate constraints from condition events into concrete
parameter values for external API calls.

The analysis continues until a point where the remaining
unexplained events correspond to external API calls and
their parameters. Usually, several API calls are required to
reproduce a failure. Their ordering is inferred from happens-
before relationships in the event chain. Z3 is used to assign
concrete values to API parameters that satisfy the condition
events where they are used. One complication is when the
parameter requires an object type. In this case we first check
if any previous APIs return an object of the same type. If so,
we use that return value. Otherwise we construct an object
by invoking its constructor and setting its fields to values that
satisfy the condition events. The final output is a sequence
of API calls packaged as a unit test and the event chain, a
directed acyclic graph like the one shown in Figure 3.
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3.4 Selective Search for Dependencies
Next, we describe specific rules Pensieve uses to selectively
search for data and control dependencies. When a variable
value is a field of an object, say ‘obj1.obj2.field’, Pensieve
uses a search heuristic that we call fuzzy search: it searches
globally in the code base for any program location defining
‘.field’, say ‘X.field’, where X has matching type to obj2. The
JVM memory model guarantees that all such locations can
be determined statically. Pensieve does not analyze the data
flow from X to ‘obj1.obj2’, and it does not verify whether a
path exists between the definition and use points without
any intervening redefinitions of ‘.field’. In addition to aggres-
sively skipping code paths, this policy also allows Pensieve’s
analysis to include dependencies between aliased object ref-
erences. For local variables Pensieve uses dataflow analysis
to find a definition location inside the same method.
Pensieve explains a location event L by searching for

branch conditions whose basic blocks dominate L on the
control-flow graph. In addition, Pensieve generates an invo-
cation event indicating that themethod containing L needs to
be invoked. In Figure 3, e4, e8, e10, e12, and e14 are invocation
events. When explaining L, Pensieve discards exception-not-
thrown conditions (i.e., branch conditions where the alternate
path leads to an exception throw). Pensieve does this because
a large number of statements could potentially throw excep-
tions, whereas in practice exceptions only occur sparingly
in a real execution of the system. However, Pensieve does in-
clude exception-thrown conditions: if a location event e occurs
in a catch block, Pensieve determines the set of instructions
which could throw an exception leading to e and generates
corresponding location events.

3.5 Forking and Scheduling
When there are several mutually exclusive possibilities for
explaining an event, Pensieve forks the analysis so that each
possibility is analyzed in a separate event chain. Specifically,
Pensieve forks in the following circumstances: (1) multiple
program locations defining a variable value; (2) multiple
callers of a method; (3) multiple instructions throwing an
exception which is caught in a catch block; (4) when a condi-
tion event is a logical disjunction. For example, a dominating
condition ‘a| |b’ causes the analysis to fork into two chains,
one with condition ‘a’ and another with condition ‘b’.
Pensieve uses a simple multilevel feedback queue sched-

uler to decide which forked event chains to analyze. The idea
is to penalize the events that lead to a large number of forks,
rewarding likely-taken paths as evidenced by log printing
while pruning chains that do not encounter logs. The ini-
tial chain receives a priority value of 1000. If at any point
Pensieve forks an event chain with priority P into N chains,
each child chain receives a priority P −N . However, if a child

LOG.info("updatePipeline(block="

+ b + ")");

msg1: b.blockID=3852, b.gS=1038..

msg2: b.blockID=8263, b.gS=1003..

msg3: b.blockID=8263, b.gS=1002..

Figure 4: The logMap for a log printing statement.

chain leads to a log printing statement (LPS) which outputs a
message found in the log file, Pensieve increases its priority
back to 1000 while reducing the priorities of the child chain’s
immediate siblings to 0, effectively pruning them from the
search. After each reasoning step, Pensieve selects the chain
with the highest priority to analyze next. Chains of equal
priority are analyzed in a round-robin manner.
Pensieve determines whether a forked chain leads to the

printing of a log message found in the log file in the following
manner. Before the event chaining analysis, Pensieve parses
all the log messages from the log file by mapping them to
LPSes and extracting variable values (log parsing has been
extensively discussed in prior works [25, 27, 31]). Pensieve
maintains a logMap data structure that maps each LPS L
to the logs output by L. Figure 4 shows the logMap for the
LPS at line 19 of Figure 2. For each event chain, Pensieve
maintains a set of logmessages that are assumed to be printed
by the failure execution, starting with user-selected error log
messages. Whenever the analysis forks on multiple program
locations, Pensieve searches the code around each program
location for LPSes that have a non-empty logMap, which
indicates that the LPS outputs amessage found in the log. The
search scope includes the method containing the location as
well as its callers.

There can be multiple program locations obtained from a
fork with nearby LPSes that output messages found in the
log. In this case Pensieve selects the LPS whose logMap con-
tains a log message with the most logged variables whose
value overlaps with existing variable values that have been
parsed from other logs appearing in the current event chain.
Pensieve does not require all of variable values parsed from a
log to match existing values, because some values may have
been modified between the printing of the two log messages.
Similarly, if there are multiple log messages printed by the
same LPS (i.e., multiple log messages in the logMap of this
LPS), Pensieve selects the log message with the largest num-
ber of overlapping variable values. The selected log message
is added to the set of logs for the current event chain.

A similar scheduling policy is used for pickingwhich event
in a chain’s search frontier to analyze next. Each event has a
priority value. Events leading to log output gets higher prior-
ity, while those produced from forks receive lower priority.

This policy has several advantages. First, it favors minimal
failure reproductions, asmore complex chainswill be deprior-
itized. In addition, it favors failure reproductions that include
more messages from the failure logs, and are therefore more
likely to capture the actual root cause. Finally, prioritizing
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chains leading to log output effectively reduces the effects
of polymorphism on forking. Programmers tend to output
different logs in different overriding methods because they
themselves need to distinguish polymorphic objects when
debugging. When explaining an event whose causes may
occur in one of several overridden methods on an object,
Pensieve performs a static search for the initialization points
of the object to determine a smaller subset of possible types.

3.6 Invocation-ID Assignment
Invocation-IDs distinguish different invocations of the same
method. Pensieve assigns an invocation-ID to any newly
generated location event that occurs in a different method. If
this method has not appeared in other events in the current
event chain, Pensieve creates a new invocation-ID consisting
of the method name appended with “0”.

1 int a = b = 0;

2 void bar() {

3  if (a==3&&b==4)

4    LOG("ERROR");

5 }

6 void foo(int c) {

7  if(c==1)a=3;

8  else b=4;

9 }

<e1, O, "ERROR">

<e2,L,4:bar0>

<e3,C,a:bar0==3> <e5,C,invoke(bar0)*><e4, C, b:bar0==4>

<e6, L, 7:foo0><e7, L, 8:foo0>

<e8,C,invoke(foo0)*>

<e9, L, 8:foo1>

<e10,C,c:foo0==1*><e11,C,c:foo0!=1*> <e13,C,c:foo1!=1*>

<e12,C,invoke(foo1)*>

EC1 EC2

Figure 5: Example of invocation-ID assignment.

If other events already have an invocation-ID for this
method, Pensieve must consider two possibilities: reusing
an existing method invocation or creating a new one. Pen-
sieve forks the chain so that the event in one child chain
will use a new invocation-ID while the other child reuses
the existing invocation-ID. Figure 5 shows an example with
two event chains, EC1 and EC2, resulting from a fork. The
events that are in the framed boxes are unique to each chain,
while other events are shared by both chains. EC1 uses the
same invocation-ID (foo0) in e6 and e7, which results in a
reproduction that attempts to only invoke foo() once, while
Pensieve uses two different invocation-IDs (foo0 and foo1)
in EC2. Initially, Pensieve decreases EC2’s priority to 0 after
forking to favor EC1, because EC1 reuses invocation-IDs.
However, in this example, Pensieve quickly infers that EC1
leads to an infeasible path due to a contradiction between
e10 and e11. At this point, Pensieve resumes the analysis of
EC2, which eventually leads to a feasible path, producing
the command sequence ‘foo(1); foo(0); bar();’.

When multiple invocation-IDs exist for the same method,
Pensieve picks the one that appears in the largest number
of events and prioritizes it over all other forked chains. A
invocation-ID can only be reused if doing so does not intro-
duce a cycle to the event chain.

1 for (i=0;i<N;i++)

2 a[i] = b[i] * 2;

3 if(a[10]==100) FAIL;

1 int flag = 0;

2 for (i=0;i<N;i++)

3 if (a[i] > T)

4 flag=1;

5 if(flag) FAIL;

1 int sum = 0;

2 for (i=0;i<N;i++)

3 sum++;

4 if(sum > 3) FAIL;

(A) Map loop          (B) Map loop (with condition)      (C) Other  

Figure 6: Three types of loops that are handled differently.

3.7 Handling Loops
When Pensieve explains a condition event, the definition
location of a variable value v can be within a loop body. If
following the ordinary analysis logic, we would be forced to
generate events for all previous iterations of the loop.

To avoid analyzing irrelevant loop iterations, when a value’s
origin is inside a loop, Pensieve analyzes control and data
dependencies for the value’s definition. We say v is a map
value with respect to a loop if its definition point has no
loop-carried dependencies outside of container indices. More
specifically, Pensieve performs an intra-procedural analysis
to compute control and data dependencies for v and iden-
tifies whether it is subject to a cyclic dependency. If v is a
function call return, Pensieve assumes thatv has data depen-
dencies on the function call’s parameters. When explaining
a condition on a map value, Pensieve discards any location
events that would come from previous loop iterations, un-
less a different event leads the analysis there. For the loop in
Figure 6(A), Pensieve finds a[i] to be a map value and only
analyzes the loop body once, explaining the condition a[10]
== 100 by generating b[10]*2==100.
When a map value is guarded by a condition (other than

the loop guard condition), the same reasoning applies if the
condition is itself a map value. For the loop in Figure 6(B),
Pensieve explains the condition flag!=0 by locating its defi-
nition point at line 4, and infers the dominating condition
a[i]>T to be amap value. Pensieve will then search elsewhere
in the program for definitions of a[i] that satisfy a[i]>T.

For other kinds of loops, such as the one in Figure 6(C), Pen-
sieve models multiple iterations of the loop, distinguishing
events in different iterations using iteration-IDs, and fork-
ing separate chains for different numbers of iterations. To
minimize the number of iterations, iteration-IDs are reused
using a similar policy to the one for invocation-IDs. For the
example in Figure 6(C), Pensieve explains sum>3 by forking
on the two definition points (lines 1 and 3), eliminating the
chain where the condition became 0>3, and repeating this
reasoning three more times to infer the condition N>3.
Our intuition is the proportion of loops in Java software

computingmap values is sufficiently large for the “map value”
heuristic to be frequently applicable. Our observations on
the studied software seem to match this intuition. We ran-
domly sampled 95 loops in HDFS and classified computed
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e1, DFSCluster.start()*

(namenode.live=true) e2, handshake() returns success

(namenode.live==true)

e3, namenode.shutdown()*

(namenode.live=false) e4, namenode.register() throws 

SocketTimeoutException 

(namenode.live==false)

e5, "INFO Shutting down DataNode"

namenode datanode

Figure 7: Event chain for an HDFS failure that is non-
deterministic. Events with * are external APIs. The virtual
variable Pensieve uses to model the liveness of namenode is
shown in parentheses.

values which escape the loop. The majority of the loops (77%)
computed a map value, 18% computed a reduction (of the
form v = v op w), and only 24% of loops computed any values
or side effects that did not fit a map/reduce pattern.

3.8 Task-ID Inference
For each event, Pensieve infers a task-ID in the form “process-
ID:thread-ID” for use by Pensieve’s dynamic verification
phase: when causally dependent events have different task-
IDs, there is a timing dependency between parallel tasks
which must be enforced. Because Pensieve explains the in-
vocation event of a method by locating its callsites, the anal-
ysis eventually reaches a process entry method (main()),
or a thread entry method (run()) if the event belongs to a
thread other than the Java main thread. The process-ID is rep-
resented as “process-entry-method:invocation-ID” and the
thread-ID is represented as “thread-entry-method:invocation-
ID”. For example, e7-e14 in Figure 3 have task-ID “DFS-
Client.main0:DataStreamer.run0”, while e1-e6 have “Data-
Node.main0:BPServiceActor.run0”. Two events belong to the
same thread only when they have the same task-ID. The
invocation-ID in a task-ID is used to distinguish dynamic
thread instances executing the same thread entry method.
A dynamic thread D is mapped to the static thread “m:n” if:
(1) “m:n” has not been mapped to any dynamic thread, (2) D
has the entry method “m”, and (3) for any unmapped static
thread “m:k”, n <= k .

Many of the non-deterministic failures in distributed sys-
tems involve the sudden change of liveness of a particular
node (e.g., a node becomes unreachable at a particular time
point). Figure 7 shows a simplified event chain Pensieve in-
ferred for a real, non-deterministic failure in HDFS, where
a network glitch triggered a bug that led to the shutdown
of all datanodes in a cluster (HDFS-1540). The command
sequence generated by Pensieve consists of two events: DF-
SCluster.start() that starts the namenode and the datanode,
and namenode.shutdown(). However, the manifestation of
the failure requires additional time constraints among inter-
nal execution states. During startup, the datanode connects
to the namenode twice, first sending a handshake request to

check whether the version number matches, and later regis-
tering itself with the namenode. The timing dependency is
that the shutdown of the namenode has to occur between
the two requests, in order to cause namenode.register() to
throw a SocketTimeoutException, leading to the failure.

Pensieve models the liveness of a node by creating a vari-
able shared by all communicating nodes (namenode.live in
Figure 7). Node startup and shutdown set this variable to true
and false respectively. A connection to the node is modeled
by reading the variable. When Pensieve’s analysis reaches a
handler for IOExceptions thrown during a network connec-
tion, it infers that a condition event live==false needs to be
satisfied for the destination node. Figure 7 shows the event
chain inferred by Pensieve, capturing the required timing
dependency. It also reveals how Pensieve captures the de-
pendency for data race conditions (such as read-after-write)
on shared variables.

3.9 Implementation Details
We implement Pensieve’s analysis using the Chord static
analysis framework [6] on Java bytecode.
Reusing analysis across forked chains. When Pensieve
forks, each chain contains a copy of all the events in the
parent chain. Pensieve avoids repeatedly analyzing the same
event across multiple forked chains. After forking, Pensieve
will only explain one copy of the event while marking all
other copies of the same event as “blocked”. After Pensieve
explains all non-blocked events of a chain and the remaining
events in the chain’s frontier correspond to external APIs,
it selects a blocked event and checks its status in the chain
where it was not blocked. It has one of three states: (1) it
is on a path leading to external API calls; (2) its analysis
is incomplete; or (3) it leads to unexplainable events (e.g.,
native library calls). In the first two cases, Pensieve resumes
analyzing the blocked event following the path it inferred
on the non-blocked copy. Pensieve must reanalyze the event
instead of reusing an explanation from another chain because
invocation-, loop-, and task-IDs can be assigned differently
in different event chains.
Modeling the environment. We model the semantics of
the system’s configuration, the external environment (e.g. file
system operations) and generic libraries (e.g. Java standard
library containers) by implementing additional reasoning
steps (“annotations”) to directly generate explanations for
these operations. Pensieve used a total of six types of anno-
tations for the evaluated cases. While the use of annotations
is not ideal, we found that our event chaining model sim-
plifies the annotation task, as all we need is to provide an
explanation in terms of prior events for any generic library
operation that Pensieve cannot automatically explain.
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4 VERIFICATION AND REFINEMENT
Pensieve’s selective analysis of dependencies leads to two
major sources of inaccuracy. First, given e1 → e2, if e1 defines
a variable v and e2 uses v , then it is possible for v to be
redefined on the path from e1 to e2. Second, given e1 → e2, an
instruction along the path may throw an exception, causing
the execution to diverge from the path e1 → e2.

Pensieve relies on a dynamic verification phase, Pensieve-
D, to refine the event chain analysis and correct inaccuracies.
Pensieve-D has three goals: (1) verify that the generated se-
quence of API calls can indeed reliably reproduce the failure;
(2) if not, identify the point of divergence from the expected
execution and correct the analysis based on feedback from
the dynamic trace; (3) replicate non-deterministic failures by
enforcing happens-before relationships that have a timing
dependency, i.e., when two events have different task-IDs.

4.1 Divergence Detection and Refinement
Pensieve-D first executes the unit test containing the repro-
duction steps using the testing framework provided by each
system. Mature distributed systems typically provide testing
frameworks that use different threads to simulate different
nodes and can process input events the same way as they
are processed in a real cluster. The unit test is executed three
times. If the expected failure symptoms are reproduced every
time, Pensieve outputs the unit test as a successful reproduc-
tion. Otherwise it considers the execution to have diverged
and searches for the point of divergence.
We detect the point of divergence by checking if any of

the happens-before relationships in the event chain are vi-
olated during the execution. Pensieve-D uses the JVM Tool
Interface [12] to set breakpoints at bytecode locations corre-
sponding to each event. For a condition event, the breakpoint
location is at the branch instruction where the condition
was inferred. Initially, Pensieve-D only sets breakpoints at
the root events in the event chain, i.e., those nodes that do
not have predecessors. These include external API calls and
events which Pensieve was not able to explain (e.g. return
values of native methods). Once a breakpoint at node e is
hit, Pensieve-D sets breakpoints for the successor nodes of e
and removes the breakpoint for e . If the execution finishes
(or hangs, i.e., an expected breakpoint is not hit within a 1
minute threshold) and there are still outstanding breakpoints
that were not visited, the corresponding events are diverging
points. A diverging point is an event that did not occur, but
all of its predecessor events in the event chain have occurred.
The program location corresponding to a single location

event could be executed multiple times, because the event
chain only contains a partial execution trace. For example,
for the majority of the loops we only analyze the loop body

1 void foo(int a) throws IOException{

2 bar(a);

3 if (a>0)

4 FAIL;

5 }

6 void bar(int a) throws IOException {

7 if (a==1) throw IOException(..);

8 }

<e1,L,4:foo0>

<e2,C,a:foo0>0>

<e3,C,a:bar0!=1> (added  

        after dynamic analysis)

(Diverging point)

... ....

Figure 8: Refinement of Pensieve’s analysis based on feed-
back from dynamic verification.

once and generate one event, whereas the dynamic execu-
tion executes multiple loop iterations. Our divergence detec-
tion algorithm tolerates this, as it does not require an exact
mapping from the statically inferred event to the dynamic
instances. As long as the program location at eA is visited
once, eA is considered to have occurred, and we expect its
successor eB to occur without considering how many more
times the program location at eA is exercised.

A divergence can be caused by the two sources of inaccu-
racy in Pensieve’s design: a variable value being redefined or
an exception thrown by an instruction. When a breakpoint
at eA is hit during dynamic verification, where eA defines
variable value v , Pensieve-D further sets a watchpoint at v .
If eB never occured and v has been modified, then the diver-
gence was caused by this modification. Similarly, Pensieve-D
also records any thrown exceptions. Note that Pensieve-D
does not stop the execution when a watchpoint is hit or an
exception is thrown; as long as the next expected event eB
occurs, the variable redefinitions or exceptions are ignored
as they did not cause the execution to diverge. Only when the
execution diverges will Pensieve-D analyze the redefinition
or exception.
When a divergence is detected, Pensieve-D negates the

branch conditions that caused the execution to diverge and
restarts the Pensieve analysis to find an explanation for the
diverging branch. Figure 8 shows an example. Initially, Pen-
sieve infers an event chain without e3, as it does not consider
the exception-not-thrown condition. This results in a unit
test ‘foo(1);’. After executing this test dynamically, Pensieve-
D observes that the expected failure symptom did not occur,
and the diverging point was at e2 because bar() threw an
IOException. Pensieve-D locates the exception throw instruc-
tion (line 7), and creates a condition event (e3) by negating
the dominating branch condition ‘a==1’. E3 is added as a
parent node for the diverging event node. Pensieve-D then
restarts the event chaining analysis with the parent node of
the diverging event in the search frontier. This time, Pen-
sieve’s analysis will generate a unit test case ‘foo(2);’. Sim-
ilarly, if the divergence is caused by a variable value being
unexpectedly redefined at location l , Pensieve-D refines the
event chaining analysis by creating an event with negated
dominating branch conditions of l . If there are multiple dom-
inating branch conditions, Pensieve forks the analysis with
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e1: a=10;

e3: a++;
e2: if (a==10) ..

e1: a=10;

      a++;

      b=-1;

e3: c=b/2;

e2: b=a*2;

(A) (B)

Thread 1 Thread 2 Thread 1 Thread 2

Figure 9: Sequence of statements executed in two vari-
able redefinition cases caused by a data race. → indicates a
happens-before relationship.

one chain for each, and prioritizes the chain that contains
the negated condition closest to the point of divergence.

4.2 Enforcing Timing Dependencies
According to a prior study [26], 26% of production failures
in distributed systems are non-deterministic. These failures
are not guaranteed to manifest under the sequence of re-
quired commands, and require enforcing additional timing
dependencies among internal events.

During dynamic verification, for each edge eA → eB in the
event chain where the two events have different task-IDs,
Pensieve-D enforces their execution order using breakpoints.
When Pensieve-D sets a breakpoint for eA and there is an
event eB such that eB is from another task and eA → eB , a
breakpoint is also set for eB . If the breakpoint on eB triggers
before the one on eA, Pensieve-D delays the execution of the
thread containing eB until eA arrives at its breakpoint, thus
enforcing the partial order. For the failure example shown
in Figure 7, Pensieve-D enforces the timing dependencies
e1 → e2 → e3 → e4 between the two nodes. If any of the
events are in a critical section (Java code section decorated by
the “synchronized” keyword), Pensieve extends the data de-
pendency of shared variables from within the critical section
to the start of the critical section.

A timing dependency could be violated due to a data race
redefining a shared variable. Figure 9 shows two such exam-
ples. In Figure 9(A), e1→ e2 can be violated by an event e3
that redefines a. Although Pensieve does not infer this in its
original event chain, Pensieve-D’s divergence detection will
identify the dependency e2→ e3. Figure 9(B) shows a case
where the event chaining analysis infers an infeasible path:
there is no schedule that can satisfy both→ relationships.

5 EXPERIMENTAL EVALUATION
We answer three questions in our experimental evaluation of
Pensieve. (1) How many real-world production distributed
systems failures can Pensieve reproduce? (2) How does it
compare with symbolic execution approaches? (3) Why does
Pensieve fail to reproduce some of the failures?
Instead of hand-picking cases on which Pensieve works

best, we evaluate Pensieve on 18 randomly sampled fail-
ures on four widely used distributed systems: HDFS, HBase,

ZooKeeper, and Cassandra. We filtered out failures whose
reported symptoms did not include any log messages. Each
failure was manually reproduced in order to collect a set of
logs. The log files for all sampled failures included only logs
at default (INFO) verbosity.

We reproduced HDFS-3436 and three Zookeeper cases on
10 nodes in order to evaluate Pensieve’s performance on log
files from a realistic workload. We ran a client generating
a random read/write workload for an extended period of
time and triggered the failure in the middle of the workload.
The resulting log files were used as input to Pensieve and
contained at least 10,000 messages for each failure. (Other
failures were reproduced without additional workload.)

5.1 Overall Results
Table 2 shows Pensieve’s effectiveness on the sampled fail-
ures. Overall, Pensieve can successfully reproduce 13 (72%)
of the sampled failures within ten minutes of analysis time.
These failures are complex, as evidenced by most of them re-
quiring multiple commands to be reproduced, and some have
taken the authors of this paper days to reproduce. For all of
the failures, Pensieve infers the same number of commands
as in the manual reproduction, suggesting that Pensieve’s
scheduling favors near-minimal reproduction steps.
The last column in Table 2 shows the number of unit

tests generated by Pensieve. Not all of the tests generated
by Pensieve’s event chaining algorithm can reproduce the
failure. Some failed because of missing APIs or constraints.
Pensieve generated more than one failure-reproducing test
for some cases either because there are indeed more than
one scenario to trigger the failure (HDFS-3436) or some tests
contain irrelevant APIs. We notice that when there are fewer
logs to constrain the event chain exploration redundancy
tend to arise, leading to the increase of the number of tests.

The number of events in the event chain leading to a suc-
cessful reproduction was consistently under 300, orders of
magnitude less than the number of instructions in the ex-
ecution, demonstrating the power of Pensieve’s design to
skip irrelevant code paths. The analysis finished within 10
minutes for all cases. We believe the event chains produced
by Pensieve are simple enough that programmers can manu-
ally examine them to gain further understanding of a failure.
Interestingly, we found Pensieve can infer simpler explana-
tions to the symptoms than we expected. For example, in
HDFS-4022 (the failure discussed in § 3), Pensieve found a
much simpler path leading to the appendFile() API compared
to the reasoning in our manual analysis.

In 7 of the failures Pensieve-D’s dynamic verification was
required to refine the analysis. Pensieve-D enforced happens-
before relationships for 2 non-deterministic failures.

There were 2 failures where Pensieve was only able to in-
fer a partial reproduction. In both cases, the failures required
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Failure Description Suc. Cmd. Refine Timing Evt. Forks Frontier Tests

H
Ba

se

2312 Newly written data is permanently lost N (failure is not fully specified by logs)
3403 A region cannot be accessed after region split fails Y 4+0 N Y 167 769 994 1/4
3627 Region server crashes during region open operation Y 2+0 Y N 131 1848 2652 8/9
4078 A column family is lost due to HDFS error Y 3+0 N N 177 1772 2525 1/6
5003 Master hangs on startup due to invalid rootdir Y 1+0 N N 50 1813 2691 3/6
7433 Fails when client and server use different versions P 2 N N 24 2 3 N/A

H
D
FS

1540 Temporary namenode outage brings down all DNs Y 2+0 Y Y 49 5 6 1/1
3415 Namenode cannot start with modified version file Y 2+0 Y N 90 1811 2512 1/9
3436 File append fails due to datanode shutdown Y 4+0 Y N 157 1629 2918 3/8
3875 Corrupted block on one DN disables other DNs N (failure is not fully specified by logs)
4022 Block always remains under-replicated Y 3+0 N N 166 1303 1617 1/6
4205 FSCK fails after creating a symbolic link Y 4+0 Y N 100 977 1385 2/6
4558 Load balancer fails to start Y 1+0 N N 8 1 1 1/1
6130 Dataloss due to an invalid fsimage P 3 Y N 96 2618 3075 N/A

Zo
oK

. 1434 Checking status of a non-existent znode fails Y 1+0 N N 18 5 6 1/1
1851 Client gets disconnected sending create request Y 2+0 N N 109 2583 2881 5/5
1900 Trying to truncate a deleted log file fails Y 3+0 Y N 236 3372 4719 2/5

Cas.1299 Garbage data is written to user table N (requires simulating table with >200,000 columns)
Averages 72% 2.5+0 46% 13% 105.2 1367.2 1870.5

Table 2: Pensieve’s result on four real world systems. “Suc.” shows whether Pensieve can successfully reproduce the failure
(‘P’ indicates a partial reproduction whose event chain is helpful for debugging). “Cmd.” shows the number of commands
inferred by Pensieve, where the first number is the minimal number of commands required to reproduce the failure, and the
second number counts the additional commands inferred by Pensieve. For partially reproduced failures, “Cmd.” shows how
many commands were inferred in the partial reproduction. “Refine” states whether refinement was required, and “Timing”
whether the failure requires enforcing a timing dependency. “Evt.” is the number of events in the chain leading to a successful
reproduction. “Forks” shows the number of forked event chains and “Frontier” the number of events (shared across forked
chains) at the end of the analysis. “Tests” shows the number of working unit tests out of the number of total generated unit
tests. For cases that Pensieve failed to reproduce we explain the reason in the last 6 columns. “Not fully specified by logs”
means that the failure had additional symptoms (e.g. data loss) that were not signaled by any log message and therefore could
not be specified in an input to Pensieve.

an invalid input generated by a different software version.
Pensieve was able to infer required commands on the new
version, as well as exact constraints on the data inputs that
cause the failure, but it cannot analyze the prior version
or generate a complete test case. (Pensieve was also able
to infer all other commands that are required to reproduce
the failures.) The partial reproductions inferred by Pensieve
capture the key error conditions; we believe that they pro-
vide sufficient information for developers to quickly finish
reproducing the failure.
There were several reasons for why Pensieve could not

reproduce a failure. HBase-2312’s symptoms consist of a data
loss and a generic error message reporting data inconsistency.
On its own, this error message was not sufficient to character-
ize the failure and guide Pensieve’s search. Cassandra-1299
occurs on tables with more than 200,000 columns, requiring
an event chain that is too large for Pensieve to complete.

5.2 Comparison with Symbolic Execution
We compare Pensieve with a backwards symbolic execution
design based on SherLog [27]. Compared to other symbolic
execution implementations, SherLog uses more aggressive

heuristics to avoid path explosion. Starting from a target
program location (the symptom), SherLog only symbolically
executes methods that are predecessors to the symptom-
containing-method in the call graph and those whose return
values are used in path conditions, skipping all other func-
tions. Because SherLog worked on C programs, we reimple-
mented its design on Java bytecode using Chord [6].

SherLog Pensieve
Failure Branches Expr Size Instr Evt. Forks
3436 115,741,257 72,882,516 412 157 1629
4022 72,943,652 109,018,324 693 166 1303

Table 3: Comparison of Pensieve and SherLog [27] on two
HDFS failures. “Branches” is the number of branch instruc-
tions on the failure execution path. “Instr” is the number of
instructions analyzed by SherLog, while “Expr Size” is the
number of operators and operands (AST nodes) in the result-
ing path constraint.

Table 3 compares the behaviour of SherLog and Pensieve
on two of the studied failures. After fewer than a thousand
instructions, SherLog’s path constraint is too large for Z3
to handle: simplification and other operations become ex-
tremely slow and the analysis makes no further progress.



Pensieve: Non-Intrusive Failure Reproduction for Distributed Systems SOSP ’17, October 28, 2017, Shanghai, China

In general, symbolic execution is poorly suited for failure
reproduction in a distributed system because (1) the sys-
tem’s codebase is complex, with any execution path includ-
ing many network operations and loops operating over data
that is causally unrelated to the failure and (2) more fun-
damentally, the Partial Trace Observation further indicates
that simulating this entire execution path is unnecessary. In
addition, symbolically executing parallel software is difficult,
and requires either including a thread scheduler model as
in ESD [28] (which forks possibilities at every preemption
point, further increasing the complexity of the search) or
accepting some imprecision in the analysis.
By comparison, Pensieve infers a partial trace which ig-

nores a large portion of the code on the failure execution
path. Pensieve even allows its analysis to skip hypotheti-
cally unimportant parts of the data flow while jumping to
important events which are surrounded by logs. Potential
mistakes caused by ignoring an “unimportant” event can be
subsequently corrected by dynamic refinement. Pensieve is
also able to naturally model events in parallel threads by only
imposing a partial order on its event chains and subsequently
enforcing that partial order using Pensieve-D.

5.3 Case Study
Case 1: HDFS-4022We continue our discussion of the anal-
ysis on HDFS-4022, described in § 3. Pensieve infers the fol-
lowing reproduction steps:

1 MiniDFSCluster.numDataNodes (1).start();

2 createFile("/random", 2);

3 appendFile("/random", "random data");

4 startDataNode (1);

The first command starts a cluster with only 1 datanode. The
second command creates a file with replication factor 2. We
have already outlined how Pensieve inferred the command
appendFile(). Pensieve infers the condition ‘replica.liveReplicas
< requiredReplication’ after searching for the callsite of trans-
ferBlock(). Pensieve further infers that requiredReplication
is initialized in the second parameter of the API call cre-
ateFile(String, short), and that liveReplicas comes from the
parameter of MiniDFSCluster.numDataNodes(int). There-
fore Pensieve infers these two external APIs must also be
invoked and uses the SMT-solver to assign parameter values.
Finally, Pensieve infers that, in order for transferBlock() to
be invoked, at least one data node has to be started. Thus, it
includes startDataNode(1) . The order of these reproduction
commands is inferred from the partial order of the events.
The failure occurred because the HDFS namenode was

missing code to update the generation stamp. When a file is
created, the namenode puts the file’s under-replicated data
blocks into a replication queue. When the user appends to
the file, the generation stamp of the block is updated on the

datanode (from 1038 to 1039 in our example log). However,
the namenode does not update generation stamps of blocks
in the replication queue. When a new datanode is added, the
namenode requests that block blk_3852_1038 be replicated,
which the existing datanode refuses to do since it has a block
with generation stamp 1039.
Case 2: HDFS-6130 This failure occured during an system
upgrade. It is reproduced by starting a cluster in ‘UPGRADE’
mode, providing a filesystem image (FSImage) from the ap-
propriate prior version of HDFS. Then the cluster must be
shut down and restarted again. The shutdown corrupts the
FSImage, causing the restarted namenode to crash with a
null pointer exception.
Pensieve’s static analysis infers that the failure requires

cluster initialization and restart commands. On their own,
these commands are insufficient to reproduce the failure,
but dynamic verification detects that the execution diverged
from the failure path when a variable of type INode was
initialized. The initialization is treated as a redefinition (from
the original null value), and Pensieve prevents it by negating
the following condition in FSImageFormat$Loader.load():

if (NameNodeLayoutVersion.supports(

LayoutVersion.Feature.

FSIMAGE_NAME_OPTIMIZATION , imgVersion))

An FSImage satisfying this condition must come from a prior
version of HDFS, which Pensieve does not model. Out of
thousands of forked event chains, only 22 unique test cases
were produced for dynamic verification, and only 8 have
meaningful constraints on input data. This is a sufficiently
small number for the developer to study the Pensieve output,
recognize the event chain which constrains the FSImage ver-
sion, and test the inferred commands on a suitable FSImage.

6 LIMITATIONS
The design of Pensievemakes a number of assumptions about
the structure of the system and the way in which failures can
be characterized. First, the system must be controlled by ex-
ternal API calls. Many systems take complex data structures
as input. Replicating a failure may require synthesizing an
instance of the data structure subject to arbitrarily complex
constraints. For example, Pensieve would not work as-is for
a system like MapReduce whose functionality is exercised by
writing a program. However, a partial event chain inferred
by Pensieve would likely still be helpful.
The failure must be characterized by a set of external

outputs such as log messages or a stack trace.We assume that
reproducing the log messages selected by the programmer
is equivalent to reproducing the failure. In practice, failures
may have additional requirements not reflected in the logs. If
the selected failure logs insufficiently constrain the system’s
behaviour, Pensieve may produce an execution unrelated to
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the underlying root cause. In such cases the programmer can
verify Pensieve’s reproduction to be incorrect and restart the
analysis with a more complete set of failure logs.

In general, formally describing the external symptoms of
a failure is an open problem. Certain types of failures are
straightforward to characterize: for example, a program crash
with core dump can be characterized by selecting a subset of
the data structures in the core dump. Infinite loops are more
difficult to characterize, since there is not a single state at
which the system can be said to fail. More subtle failures in
other types of software (e.g. incorrect code generated by a
compiler) may only be possible to describe with reference to
the expected semantics of the system.

7 RELATEDWORK
Static programslicing, originally formulated byWeiser [23]
in 1981 and later extensively refined [21, 24], extracts a subset
of the program that is relevant to a given program state via
control and data flow analysis. While Pensieve also analyzes
control and data dependencies, the key difference is that
Pensieve aims to infer a dynamic trace that is likely executed
by the failure execution, instead of a subset of static program
statements. The use of invocation-IDs, loop iteration-IDs,
task-IDs, as well as forking and log-guided scheduling are
all unique to our goal. In addition, program slicing combines
mutually exclusive causes (e.g., multiple definitions of a vari-
able) into the same slice, which can result in uninformative
slices that contain most of a program [24]. (Dynamic slic-
ing [24] can reduce the size of a slice, but requires a failure to
already have been reproduced.) Pensieve separates mutually
exclusive causes into different chains and uses carefully de-
signed search heuristics to aggressively reduce the code paths
being considered. Despite these differences, both Pensieve
and Weiser’s work [23] are inspired by human debugging
principles; Pensieve pushes this idea to further extremes.
Symbolic execution, originally proposed for detecting bugs
by exploring all possible execution paths [5], has recently
been used to reproduce failures by searching for an execution
trace containing the desired symptoms. Given a target symp-
tom represented by a coredump, ESD [28] extracts a subpro-
gram using static program slicing (“static phase”), then uses
symbolic execution to search for paths that exercise the en-
tirety of this subprogram and reach the symptom (“dynamic
phase”). Pensieve’s approach is different but complementary.
Symbolic execution infers a more precise trace than Pensieve,
as it analyzes the complete path. The difference between the
event chaining analysis and ESD’s static phase is that Pen-
sieve aims to infer a partial trace which skips a large part of
the code on the execution path. Since the event chain already
captures a dynamic trace, our dynamic verification phase

simply verifies this trace by executing the commands con-
cretely instead of symbolically, avoiding path explosion. In
addition, ESD requires a coredump, which typically contains
much more information than the failure log and is often not
available for non-crashing failures.
BugRedux instruments software to record a partial trace

that reduces the search space of symbolic execution [11].
SherLog [27] is discussed in § 5.2.
Log analysis tools are used to detect performance anom-
alies instead of failure reproduction. lprof [31] assigns each
log output from a distributed system to a request, generat-
ing per-request profiling information including the request
latency and the nodes that were traversed. It also uses static
analysis, but only analyzes the call-graph of request process-
ing code to infer which log printing statements correspond
to a request, as its goal is log grouping rather than causal
diagnosis. Stitch [30] uses pattern matching on logs to re-
construct the hierarchical relationship of objects in a system.
Other log analyses [16, 25] detect anomalies using machine
learning techniques.

ReproLite [14] provides a Domain Specific Language to de-
scribe a series of events comprising a failure scenario, along
with an engine that executes the scenario while enforcing
event ordering. Its log analyzer generates an initial failure
scenario based on a set of user-selected log messages. Re-
proLite does not aim to automatically recreate a complete
failure scenario without human involvement, instead relying
on the developer to manually refine the scenario.

8 CONCLUDING REMARKS
This paper describes and evaluates Pensieve, a tool for au-
tomatically reproducing failures in complex distributed sys-
tems. Pensieve’s event chaining analysis is based on the
Partial Trace Observation, which gives rise to a debugging
strategy that aggressively skips code paths to produce a
trace containing only relevant prior causes. We demonstrate
the feasibility of using event chaining for automatic failure
reproduction, using feedback from dynamic verification to
refine the analysis in cases where event chaining is unsound
or incomplete, enforcing timing dependencies, and making
extensive use of the system’s log output to guide the search.
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