
Do Not Blame Users for Misconfigurations

Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng,

Ding Yuan∗, Yuanyuan Zhou, Shankar Pasupathy†

University of California, San Diego, ∗University of Toronto, †NetApp, Inc.

Abstract

Similar to software bugs, configuration errors are also

one of the major causes of today’s system failures. Many

configuration issues manifest themselves in ways simi-

lar to software bugs such as crashes, hangs, silent fail-

ures. It leaves users clueless and forced to report to de-

velopers for technical support, wasting not only users’

but also developers’ precious time and effort. Unfortu-

nately, unlike software bugs, many software developers

take a much less active, responsible role in handling con-

figuration errors because “they are users’ faults.”

This paper advocates the importance for software de-

velopers to take an active role in handling misconfigu-

rations. It also makes a concrete first step towards this

goal by providing tooling support to help developers im-

prove their configuration design, and harden their sys-

tems against configuration errors. Specifically, we build

a tool, called SPEX, to automatically infer configuration

requirements (referred to as constraints) from software

source code, and then use the inferred constraints to: (1)

exposemisconfiguration vulnerabilities (i.e., bad system

reactions to configuration errors such as crashes, hangs,

silent failures); and (2) detect certain types of error-

prone configuration design and handling.

We evaluate SPEX with one commercial storage sys-

tem and six open-source server applications. SPEX au-

tomatically infers a total of 3800 constraints for more

than 2500 configuration parameters. Based on these con-

straints, SPEX further detects 743 various misconfigu-

ration vulnerabilities and at least 112 error-prone con-

straints in the latest versions of the evaluated systems.

To this day, 364 vulnerabilities and 80 inconsistent con-

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for third-party components of this work must be honored. For all other

uses, contact the Owner/Author.

Copyright is held by the Owner/Author(s).

SOSP’13, Nov. 3–6, 2013, Farmington, Pennsylvania, USA.

ACM 978-1-4503-2388-8/13/11.

http://dx.doi.org/10.1145/2517349.2522727

straints have been confirmed or fixed by developers after

we reported them. Our results have influenced the Squid

Web proxy project to improve its configuration parsing

library towards a more user-friendly design.

Categories and Subject Descriptors: D.4.5 [Operating

Systems]: Reliability

General Terms: Reliability, Design

Keywords: Misconfiguration, Constraint, Inference,

Testing, Vulnerability

1 Introduction

1.1 Motivation

Configuration errors are one of the major causes of to-

day’s system failures. For example, Barroso and Hölzle

report that misconfigurations are the second major cause

of service-level failures at one of Google’s main ser-

vices [6]. Similar findings are reported in other stud-

ies [12, 22, 24, 27]. Recently, several systems, including

Microsoft Azure, Amazon EC2, and Facebook, expe-

rienced a number of misconfiguration-induced outages

that affected millions of their customers [2, 13, 31].

In fact, misconfigurations affect not only end users but

also support and software engineers, because they need

to spend time and effort in troubleshooting and correct-

ing them [8, 14]. A recent study [36] shows that con-

figuration issues account for 27% of customer support

cases in a major storage company. Regardless of the root

causes (software bugs or misconfigurations), the system

often misbehaves with similar symptoms (e.g., crashes,

missing functionalities, incorrect results). This leaves

users no choice but to report the problems to the techni-

cal support. When support engineers are misled by such

ambiguous symptoms, the diagnosis can take an unnec-

essarily long time [36].

Recently, many research efforts have been conducted

to address the misconfiguration problem including trou-

bleshooting anomalies caused by configuration errors [1,

3, 4, 5, 25, 32, 33, 34, 37, 40], detecting certain types of

misconfigurations [11, 35, 38], automating certain con-

244

figuration tasks [7,9,17], and some others [15,19,26,28,

30,36]. All these studies focus on parameter-relatedmis-

configurations, as they account for the majority of users’

configuration errors [36]. Similarly, this paper also fo-

cuses on parameter-related misconfigurations.

While the previous work has significantly improved

the situation by providing the last level of defense, the

fundamental problem of misconfigurations probably lies

in the configuration design and the target system itself.

Unfortunately, not much attention has been paid to these

two, partially due to our (software developers’) attitude

towards misconfigurations (which is quite different from

how we treat software bugs). For software bugs, devel-

opers typically take a responsible and active role. This is

reflected in many ways, such as various choices of bug-

tracking databases, patch releases, unit/regression tests,

and bug checkers. In contrast, developers often take laid-

back roles in handling misconfigurations because “they

are users’ faults.” Such an attitude is reflected in two

main aspects: (1) Misconfigurations are much less rig-

orously tracked; and (2) After a configuration error is

identified as the root cause, developers often do not take

any further action, such as changing the code or releas-

ing patches in order to avoid the same misconfigurations

by other users (which is often the case).

In most cases, even though it is the users who com-

mit the configuration errors, they should not take all the

blame. After all, a misconfiguration is referred to as an

“error” simply because it does not match our (software

developers’) requirements for configuration. Therefore,

before blaming users for configuration errors, we need to

question whether we have the right requirements in the

first place. For example, are we assuming too much from

users? Users do not write our code and sometimes can-

not read our code. How could they have the same level of

understanding of the requirements and impact of various

configuration settings as we do? Are our configuration

requirements too strict or too confusing? After all, users

are human beings, and just like us, also make mistakes,

especially when the requirements are error-prone.

Moreover, while we are often trained and educated to

implement our code to tolerate hardware and network

errors, we place little emphasis on tolerating or reacting

gracefully to users’ configuration errors. In fact, just like

hardware errors, human errors are a force of nature, too.

Unfortunately, in reality, developers often unconsciously

assume correct configurations. As a result, many con-

figuration errors lead to system crashes, hangs, incorrect

results, etc., leaving users clueless and forced to report to

support engineers for assistance in failure diagnosis. On

the other hand, if the software could pinpoint the config-

uration errors with explicit log messages, users could di-

rectly fix their mistakes by themselves without resorting

to the technical support. Different from software bugs,

InitiatorName: iqn.time.domain:TARGET
Misconfiguration:

Symptom:
The storage share cannot be recognized.

Root Cause:
InitiatorName only allows lowercase letters, while the user sets the name

with the capital letters TARGET .

Diagnosis Efforts

75 rounds of communication

10 collections of system logs

Figure 1: A real-world example from a commercial com-

pany. The configuration constraint was too strict and users

made mistakes despite two documents explaining it.

listener-threads 32
Misconfiguration:

Symptom:
Crash after server startup with the only

log message: Segmentation fault .

Root Cause:
OpenLDAP only supports a hard-coded

maximum of 16 listener threads.

The user manual does not

mention this limit.

Developer's Response:

Refused to change the source

code and the manual because

the setting is not valid.

Figure 2: A real-world example from OpenLDAP. The

server crashes when “listener-threads” is set to be larger

than 16. More real-world examples are given in Figure 7.

if accurate error messages are provided by the system,

most configuration errors can be easily fixed by users

themselves. Therefore, providing good reactions to con-

figuration errors can significantly reduce the number of

issues reported to support engineers.

Figures 1 and 2 give two real-world examples to fur-

ther illustrate the points above. As shown in Figure 1,

a commercial system1 required users to type all low-

ercase letters to configure the initiator names of iSCSI

adapters. This requirement is too strict. As a result, sev-

eral customers made mistakes and had to call the com-

pany to help troubleshoot the problem. In this particular

case, the diagnosis took over 75 rounds of communica-

tion with the customer as well as 10 rounds of debugging

message collection. It resulted in not only customers’

downtime but also high supporting cost.

The second example, as shown in Figure 2, is from

the latest version of OpenLDAP. With the parameter,

“listener-threads”, configured to be larger than 16, the

LDAP server would crash after startup with “segmenta-

tion fault.” The crash symptom misled at least two users

to report it as a software bug. This problem is detected

by our tool. Unfortunately, after we reported this prob-

lem, the developer refused to take any action, such as

changing the configuration design, editing the manual

entry, or adding code to check the value and printout ex-

plicit error messages. This was mainly due to the com-

mon attitude many developers have towards configura-

tion errors: “It is not a bug, but an invalid setting.”

Of course, not all developers are like this. Some de-

velopers have a more responsible attitude towards han-

dling configuration errors. For example, after we re-

ported the misconfiguration vulnerabilities (bad system

1We are required to keep the company and the product anonymous.

245

reactions to configuration errors such as crashes, hangs,

silent failures) and error-prone constraints to Squid (an

open-source Web proxy and cache server), Squid devel-

opers fixed the reported problems immediately. Also,

the large U.S. commercial company we worked with has

been very cooperative, allowing us to publish our evalu-

ation results of their system.

Certainly, the ultimate solutions to avoid misconfig-

urations are auto-configuration and completely rethink-

ing, redesigning configuration to prevent user mistakes.

While these solutions are revolutionary and fundamen-

tal, they are challenging and probably prohibitively diffi-

cult, because they have to balance two conflicting goals:

usability and flexibility (to adjust the system). In addi-

tion, not every configuration parameter can be automat-

ically configured. Moreover, few user studies have been

conducted to design configuration in better ways.

1.2 Our Contributions

In this paper, we make one of the first steps towards tak-

ing an active role in handling misconfigurations. Our ap-

proach is more evolutionary and practical. Specially, the

solutions and proposed changes in this paper can easily

be adopted by existing software systems. In particular,

we aim at improving the configuration design of today’s

software systems by (1) hardening systems against con-

figuration errors; and (2) detecting certain types of error-

prone configuration design and handling.

Achieving the above goals would need the specifica-

tion of configuration requirements referred to as con-

figuration constraints in this paper. A constraint for a

configuration parameter specifies its data type, format,

value range, dependency and correlation with other pa-

rameters, etc., in order to configure the parameter cor-

rectly. Since large-scale systems usually contain hun-

dreds or even thousands of configuration parameters,

it is time-consuming and error-prone to let developers

specify each constraint manually [16]. Another solution

is to leverage user manuals. Unfortunately, manuals are

written in natural languages and are hard to analyze au-

tomatically. Moreover, user manuals are often incom-

plete and outdated as shown in a recent study [26].

As source code always contains up-to-date informa-

tion, our idea is to automatically infer configuration con-

straints from source code by analyzing how the configu-

ration parameters are read and used. We implement our

idea in a tool called SPEX. Furthermore, SPEX leverages

the inferred configuration constraints to: (1) harden sys-

tems against misconfigurations by injecting errors that

violate the constraints, in order to expose misconfig-

uration vulnerabilities; and (2) detect certain types of

error-prone configuration design and handling, in order

to make them more user-friendly.

We evaluate SPEX with the latest versions of one

commercial system from a major U.S. storage vendor,

and six open-source server software including Apache,

MySQL, PostgreSQL, OpenLDAP, VSFTP, and Squid.

SPEX automatically infers a total of 3800 constraints

for more than 2500 configuration parameters. Based

on these constraints, it exposes 743 misconfiguration

vulnerabilities that caused system misbehavior such as

crashes, hangs, indeterminate failures, etc. It also de-

tects at least 112 error-prone configuration constraints.

To this day, 364 vulnerabilities and 80 error-prone con-

straints have been confirmed or fixed by developers after

we reported them. Section 5 reports our experiences in

interacting with developers during our work and some

good practices we have observed. Our results have influ-

enced the Squid Web proxy server to improve its config-

uration library towards a more user-friendly design, ben-

efiting more than 150 configuration parameters in Squid.

2 Configuration Constraint Inference

This section describes the design and implementation

of SPEX, a tool that automatically infers configuration

constraints (i.e., rules that differentiate correct config-

urations from misconfigurations) from source code. In

the next section, we will discuss how we use such con-

straints to expose misconfiguration vulnerabilities, and

to detect error-prone configuration design and handling.

SPEX requires the target software’s source code and

simple annotations as a starting point to help identify

and analyze configuration parameters in source code. In

this section, we first describewhat kinds of configuration

constraints we can infer and then discuss how to infer

them. Finally, we discuss the limitations, in particular,

what kinds of constraints cannot be inferred by SPEX.

2.1 What Constraints Can Be Inferred?

Many configuration requirements are reflected in the

software’s source code. Examples include data types,

formats, value ranges, multi-parameter dependencies,

etc. Some of these can be automatically inferred via

static code analysis by leveraging the properties of vari-

ous operations and system/library APIs when accessing

(reading or assigning to) configuration-related variables.

Of course, as we will discuss in Section 2.3, not all

configuration constraints are reflected in source code or

can be automatically inferred via static analysis. This

work provides a first step in this direction. Our evalu-

ation has shown promising results with even a modest

real-world impact on both commercial and open-source

software, as briefly presented in Section 4.1.

SPEX analyzes source code and infers constraints that

manifest through concrete, recognizable program pat-

246

Transforming from char* type

to 32-bit integer type

MySQL-5.5.29

int ft_init_stopwords() { ...

fd = my_open(ft_stopword_file, ...) ...

}

File my_open(const char *FileName, ...) {

/* mysys/my_open.c */

fd = open((char *) FileName, Flags);

...

...
}

(b) Semantic-type constraint (FILE)

/* storage/myisam/ft_stopwords.c */

Code Snippets: ft_stopword_file

Constraint Inferred:

The semantic type of ft_stopword_file is a FILE.

(c) Semantic-type constraint (PORT)

static int *config_generic(ConfigArgs *c)

{ ...

if (c->value_int < 4)

c->value_int = 4;

else if (c->value_int > 255)

c->value_int = 255;

OpenLDAP-2.4.33

...
/* servers/slapd/bconfig.c */

Code Snippets:

index_intlen

(d) Data-range constraint

Constraint Inferred:

The valid range of index_intlen is 4 to 255.

fsyncstatic TransactionId

RecordTransactionCommit() { ...

if(enableFsync &&

MinimumActiveBackends(CommitSiblings))

/* access/transam/xact.c */

PostgreSQL-9.2.1

}

Control dep.

Code Snippets:

...
}

(e) Control-dependency constraint

commit_siblings

/* All commit_siblings 's usages

are inside the func. call. */

Constraint Inferred:
commit_siblings takes effect only when fsync

is not set as zero.

MySQL-5.5.29

/* storage/myisam/ft_parser.c */

uchar ft_get_word(...) { ...

if(length >= ft_min_word_len && ...

length < ft_max_word_len)) {

... //full-text operations
}

Code Snippets:

(f) Value-relationship constraint

ft_min_word_len

ft_max_word_len

Constraint Inferred:

ft_max_word_len should be greater than

ft_min_word_len .

(a) Basic-type constraint

Storage-A

Constraint Inferred:

Code Snippets: log.filesize

...

The basic data type of log.filesize is a 32-bit

integer number.

static char *set_max_ranges(..., char *arg, ...)

{ ...

int val = strtoll(arg, NULL, 0);

}

Squid-3.2.5

Code Snippets:

Constraint Inferred:
The semantic type of udp_port is a PORT.

/* src/icp_v2.cc */

...

void icpOpenPorts() { ...

icpIncomingConn->local.SetPort(port);

unsigned short

Ip::Address::SetPort(unsigned short prt) {

m_SocketAddress.sin6_port = htons(prt);

}

}

udp_port

...

...

/* prt is passed to the sin6_port of

struct sockaddr_in6 */

/* src/ip/Address.cc */

}

Figure 3: Real-world examples to illustrate what configuration constraints our SPEX infers. The arrows show the data-

flow, which motivates SPEX to do data-flow analysis. Configuration parameters are quoted in the figure, and the program

variables that store the parameters are shaded. Section 2.2 explains how these constraints are inferred.

terns. These constraints can be classified into attributes

and correlations. The former define the correct settings

of a parameter, while the latter specify the correlations

among multiple parameters. Figure 3 gives several con-

crete real-world examples of various kinds of configura-

tion constraints our SPEX infers. We describe each kind

in more detail as follows. The next subsection will ex-

plain in detail how SPEX infers them, starting from how

it identifies configuration variables in source code.

Data Type: To set a configuration parameter correctly,

users first need to know the expected data type. We call

such constraints type constraints. There are two classes

of data types for configuration parameters: basic types

and semantic types. The basic-type constraint speci-

fies a parameter’s value by the low-level data representa-

tion including integer, character, boolean, floating-point

number, string, etc.

However, basic types alone may not be sufficient. For

example, a “string” parameter may refer to either a file

path or an IP address. Each such semantic type has its

own specific requirements. For example, a file path has a

specific path-like format and should represent a valid file

in the file system. In addition to the “file path” and “IP

address” types, there are many other types such as user

name, port number, timeout, etc. In SPEX, we support

the high-level semantic types of most standard libraries.

Figures 3(a), (b), and (c) show three real-world exam-

ples of type constraints inferred by SPEX. In the first

example, via static code analysis, SPEX infers the pa-

rameter, “log.filesize”, to be a 32-bit integer number.

Figure 3(b) gives an example of the “FILE” type, and

Figure 3(c) shows an example of the “PORT” type.

Value Range: Configuration parameters may be further

constrained by some acceptable ranges of valid values,

such as minimum and maximum values or a list of ac-

ceptable values as in the enumerative type. Figure 3(d)

shows a range constraint inferred by SPEX from OpenL-

DAP, in which, as the code indicates, “index intlen”

needs to be between 4 and 255.

Control Dependency: Multiple configuration parame-

ters might have dependencies. Often, the resolution to

problems like, “Why does my setting of parameter A not

work?” is simply, “Turn on parameter B.” When such

dependencies are neither documented in the manual, nor

pinpointed explicitly by log messages, it is difficult for

users to figure them out. Such constraints are typically

manifested as control dependencies in source code.

Formally, we define the control dependency of two

parameters as (P,V,⋄) 7→ Q which means that the usage

of parameter Q relies on the setting of parameter P, un-

der the condition of P⋄V , where ⋄ ∈ {<,>,=, 6=,≥,≤},
andV is a constant value. Figure 3(e) shows an example

247

from PostgreSQL, where “commit siblings” takes effect

only when “fsync” is non-zero.

Value Relationship: In addition to the control depen-

dency between two parameters, the relationship of their

values may also impose constraints. For example, in

Figure 3(f), the value of “ft max word len” should be

greater than that of “ft min word len”.

2.2 How to Infer Constraints?

To infer configuration constraints, SPEX first needs to

identify configuration variables in source code. It then

tracks the data-flow of each program variable corre-

sponding to the configuration parameter, and records any

constraint that is discovered along the data-flow path.

We implement SPEX’s analysis to be inter-procedural,

context-sensitive, and field-sensitive. Inter-procedure is

necessary because configuration parameters are com-

monly passed through function calls. SPEX also needs

to be field-sensitive because configuration parameters

could be stored in composite data types. SPEX is built

on top of the LLVM compiler infrastructure [18].

As a design choice, we do not use symbolic execution

for SPEX. Symbolic execution is able to explore all the

possible code paths in the program for the given input.

However, it suffers from path explosion when applied to

large systems such as Storage-A. Moreover, as shown in

Section 2, SPEX looks for concrete code patterns on the

data-flow path of each configuration parameter, which

does not fit the strength of symbolic execution.

SPEX scans the source code twice. In the first pass, it

infers the data-flow path of each parameter and looks for

data-type and data-range constraints for each parameter.

To further infer constraints involving multiple parame-

ters (i.e., control dependencies and value relationships),

SPEX scans the code again, but this time only on the pro-

gram slice containing the data-flow of each parameter.

2.2.1 Mapping Parameters to Variables

To start constraint inference, SPEX has to know the pro-

gram variables that store the values of configuration pa-

rameters. Different software projects may have differ-

ent conventions. We observe that developers often use

clean interface to manage the mapping information. By

examining 18 widely-used software projects (shown in

Table 1), we find that all but one of them map configu-

ration parameters into program variables via one of the

three interfaces: structure, comparison, and container.

Correspondingly, SPEX provides three template toolkits

to extract the mapping information with minimal anno-

tation efforts.

In structure-based mapping, data structures are used

to directly map each configuration parameter to the cor-

Software Desc. Type Software Desc. Type

Storage-A Storage struct Squid Proxy comparison

MySQL DB struct Redis DB comparison

PostgreSQL DB struct ntpd NTP comparison

Apache httpd Web struct CVS SCM comparison

lighttpd Web struct Hypertable DB container

Ngnix Web struct MongoDB DB container

OpenSSH SSH struct AOLServer Web container

Postfix Email struct Subversion SCM container

VSFTP FTP struct OpenLDAP LDAP hybrid

Table 1: Parameter-to-variable mapping in 18 software

projects. All of them fall into one of the three conventions:

structure, container, comparison, or their combinations.

struct config_int ConfigureNamesInt[] =
{ { "deadlock_timeout",

char* set_document_root(..., char * arg) {

static command_rec core_cmds[] = {
AP_INIT_TAKE1("DocumentRoot",
set_document_root, ...),

void obtain_master_lock(...) { ...

}}

} else if(...)

void loadServerConfig(...) { ...
if (!strcasecmp(argv[0],"timeout")) {

server.maxidletime = atoi(argv[1]);

/* src/config.c */

uint32_t retry_interval =
context->props->
get_i32("Connection.Retry.Interval");

...

/* src/cc/Hypertable/Master/main.cc */

(a) Structure-based mapping (direct) (b) Structure-based mapping (function)

(c) Comparison-based mapping (d) Container-based mapping

/* src/backend/utils/misc/guc.c */ /* server/core.c */

PostgreSQL-9.2.1 Apache-httpd-2.4.1

Redis-2.4.17 Hypertable-0.9.6.4

}
...

...

&DeadlockTimeout,

...,
..., },

};

};
...

...

{ @STRUCT = ConfigureNamesInt
@PAR = [config_int, 1]
@VAR = [config_int, 3] }

{ @STRUCT = core_cmds
@PAR = [command_rec, 1]
@VAR = ([command_rec, 2], $arg) }

{ @PARSER = loadServerConfig
@PAR = $argv[0]
@VAR = $argv[1] }

{ @GETTER = get_i32
@PAR = 1
@VAR = $RET }

...

Annotation

...

82 mapping in this structure

103 mapping in this structure

Code Snippets Code Snippets

Annotation

Code Snippets Code Snippets

51 mapping in the function

Annotation Annotation

the getter function

Figure 4: Examples of mapping conventions, and the cor-

responding annotations to get the mapping information.

responding variable(s) in source code [as shown in Fig-

ure 4(a)], or to the parsing function [as shown in Fig-

ure 4(b)]. In the former case, developers only need to

provide the structure variable’s name and each specific

field. For Figure 4(a), three lines of annotations are suf-

ficient to extract the mapping information of 82 parame-

ters in PostgreSQL. In the latter case, developers need to

further annotate which parameter in the parsing function

is the configuration variable [e.g., arg in Figure 4(b)].

Comparison-based mapping, as shown in Figure 4(c),

uses string comparison functions (e.g., strcasecmp) to

match parameters. It further assigns values to the vari-

ables in the branch blocks. SPEX recognizes standard

string comparison functions. In this case, developers

need to annotate the parsing function and the initial input

variables holding the parameter names and values.

Container-based mapping, exemplified in Figure 4(d),

stores all the configuration parameters in a central con-

tainer and uses common getter functions to retrieve the

248

value. In such cases, developers need to annotate the

getter functions (typically only a few).

By asking developers to annotate the mapping inter-

faces rather than every mapping pair, the toolkits require

a limited amount of information from developers. In the

evaluation, the number of annotations needed for most

software is less than 10, as shown in Table 4. Note: The

annotation only requires modest understanding of source

code. The configuration-related code is usually modu-

larized and can be found by simply searching parameter

names in source code (e.g., using grep).

Starting from the annotations, the SPEX toolkits infer

the mapping information in the form of key-value pairs:

(“parameter name”, variable name). For example,

the key-value pair in Figure 4(a) is (“deadlock timeout”,

DeadlockTimeout). In the remainder of this section,

we refer to the variables storing the parameters’ values

as “parameters,” to simplify our description.

2.2.2 Data Type Inference

Basic Type: SPEX infers each parameter’s basic type

from its type information in source code. On the data-

flow path of a parameter, its type might be casted mul-

tiple times. In such cases, we record the type after the

first casting as the basic type, because it is common for

a parameter to be first stored as a string (e.g., a char

array) before being transformed into its real type. Fig-

ure 3(a) shows an example from the commercial soft-

ware Storage-A, in which the parameter is converted

from a string to a 32-bit integer. Thus, the basic-type

constraint of “log.filesize” is inferred as 32-bit integer.

Semantic Type: SPEX infers semantic-type constraints

by searching the following patterns along a parameter’s

entire data-flow path: (1) the parameter is passed to a

known function call (e.g., system- and library-call) or a

known data structure; or (2) the parameter is compared

with, or is assigned with, the return value of a known

function call (e.g., the return value of the time syscall).

Figure 3(b) shows an example from MySQL of the

first pattern. In this example, SPEX infers the semantic

type of “ft stopword file” to be a file path because it is

used in the open syscall. Note: SPEX searches such

patterns along the entire data-flow path, even after the

parameter is modified, because the modification seldom

affects the semantic type. For example, a file path after

canonicalization is still used as a file path.

Currently, SPEX supports standard library APIs and

data types. In addition, we also allow developers to im-

port their own library APIs and data types by pointing to

their header files. For example, for the commercial stor-

age software used in our evaluation, we also imported its

proprietary library APIs. For constraint inference, the li-

brary APIs included in .h files are enough, but for mis-

configuration injection described in the next section, we

need developers to provide types of configuration errors

to inject for each customized data type. Note: They do

not need to provide such information for types defined in

standard libraries. In our evaluation, such customization

is used only for the commercial storage system.

2.2.3 Data Range Inference

SPEX infers range constraints when the parameter is

compared with constant values in conditional branches.

SPEX infers two types of ranges: numeric and enumera-

tive. For numeric comparison, SPEX treats the constant

numbers as thresholds of the data range. Enumerative

ranges are inferred if the parameter is used in switch

statements or “if...else if...else” logics.

For each range inferred, SPEX further decides whether

the range is valid or not by analyzing the program behav-

ior within the corresponding branch blocks. The reason

for inferring such information is to guide misconfigu-

ration injection to expose bad system reactions. If in

the branch block, the program exits, aborts, returns error

code, or resets the parameter, SPEX treats the range as

invalid. Otherwise, it is valid. Figure 3(d) shows an ex-

ample of range inference from OpenLDAP, in which the

range of “index intlen” is divided into (−∞,4), [4,255],
and (255,+∞). Both (−∞,4) and (255,+∞) are in-

valid because the parameters are reset in those ranges.

The default in a switch statement or the last else

in “if...else if...else” logics is also treated as

invalid. Please note: Since such information is used

to guide misconfiguration injection, some false positives

are not a major concern. It just wastes some testing time.

As a good practice, range constraints should be ex-

plicitly documented, but this is not always the case. As

shown in Figure 3(d), OpenLDAP limits index lengths

within [4,255]. However, this constraint is not docu-

mented. If users set out-of-range values, the system mis-

behaves silently, leaving users suspecting it as a bug.

2.2.4 Control Dependency Inference

To infer control dependencies, SPEX starts from the us-

age statements of a parameter Q, and looks for con-

ditional branches that dominate these statements in a

bottom-up manner. If the condition involves the vari-

able that is part of the data-flow of another parameter P,

SPEX records a control dependency between P and Q in

the form of (P,V,⋄) 7→Q.

Figure 3(e) gives an example of a control dependency

from PostgreSQL. Starting from the usage statement of

“commit siblings” inside a function call (omitted in the

figure), SPEX goes backwards to check the conditions

that allow the execution of this usage and infers the de-

pendency: (“fsync”,0, 6=) 7→ “commit siblings”. Note:

249

Passing a parameter to a function and modifying its

value are not considered as usage because they do not

change program behavior [29]. They have to be used in

branches, arithmetic operations, and system-/library-call

arguments to be considered as usage statements.

However, if we blindly treated every such occurrence

of control dependencies as one constraint, there would

be many false ones. For example, VSFTP has three

parameters: “listen” (for ipv4), “listen ipv6”, and “lis-

ten port”. “listen port” is used after the check of “lis-

ten” and the check of “listen ipv6”. If we blindly gen-

erated two constraints: (“listen”,1,=) 7→ “listen port”

and (“listen ipv6”,1,=) 7→ “listen port”, both would be

too strict. To handle this problem, SPEX aggregates

all the inferred control dependencies for each parame-

ter from all control-flow paths, and calculates the MAY-

belief confidence of each dependency in a way similar to

[10]. If the confidence exceeds a predefined threshold

(currently set to 0.75), the dependency will be reported.

In the above example, each dependency will have a con-

fidence of 0.5, not exceeding the threshold. Therefore,

both of them are filtered out.

2.2.5 Value Relationship Inference

Similar to control-dependency inference, the value rela-

tionship also involves multiple parameters. SPEX looks

for comparison statements in parameters’ usage. If two

variables from different parameters’ data-flow paths are

compared with each other, SPEX infers the value rela-

tionship of the two parameters in the form of P ⋄ Q.

In addition, the value relationship is transitive, which

means it can be transited through intermediate variables.

Figure 3(f) gives such an example fromMySQL that the

min-max relation is transited by a local variable. In the

current prototype of SPEX, we only check one interme-

diate variable for transitivity, which is fast and captures

common cases. SPEX further tries to decide whether the

inferred relationship indicates a valid setting or not, in a

manner similar to that in range-constraint inference.

2.3 Discussion and Limitation

No tool is perfect, and SPEX is no exception. SPEX can-

not infer all configuration constraints and it also has false

positives, even though our evaluation with commercial

and open-source software has shown good results.

Currently, the constraint inference of SPEX is limited

within the scope of a single program. However, when

we study real-world misconfiguration issues (presented

in Section 4.2), we find that cross-software configura-

tion correlations also account for a considerable number

of misconfiguration cases. Inferring these constraints re-

quires new techniques to consider the software stacks as

a whole, which remains our future work.

Even within a single program, SPEX does not infer all

constraints. Some constraints are program-specificwith-

out common, concrete program patterns. For example, it

is hard for SPEX to understand the complicated string

manipulation logics used in parsing certain parameters

(e.g., nesting and semi-structured rules), which might

appear in software providing services of networking and

access controls (e.g., Bind9, Netfilter). Moreover, SPEX

cannot infer all the possible semantics of parameters.

The constraints inferred by SPEX are basic and can-

not capture certain complicated constraints (e.g., depen-

dencies involving complicated compositions of boolean

or arithmetic operations). Fortunately, according to our

inspection, systems seldom have these complicated con-

straints on the configuration, possibly because users can-

not handle such complexity.

Not every constraint inferred by SPEX is a true con-

straint. Section 4.3 provides the evaluation results for

false positives. SPEX’s inference accuracy is above 90%

for most evaluated software. To further improve accu-

racy, we would need developers to manually examine

each constraint and prune out the 10% false ones.

The analysis of SPEX works on LLVM’s intermediate

code representation (IR), a generic assembly language

in the static single assignment (SSA) form [18]. Thus,

SPEX is applicable to software programs written in pro-

gramming languages that can be compiled into LLVM

IR. In our evaluation, we use Clang as the front-end tool

to compile C/C++ source code into LLVM IR.

3 Use Cases of Configuration Constraints

3.1 Harden Systems against Configuration

Errors

Given the configuration constraints inferred by SPEX,

we take one step further. We build a misconfiguration

injection-based testing tool called SPEX-INJ, to expose

misconfiguration vulnerabilities. SPEX-INJ automati-

cally generates configuration errors by violating the con-

straints inferred by SPEX. Then, it injects the errors to

the configuration settings and tests how the system re-

acts. If the system does not react well (e.g., crashes,

hangs, failures), SPEX-INJ reports the bad reactions to

the developers. By fixing these vulnerabilities (e.g.,

adding checks and log messages to detect and pinpoint

the errors), developers can harden systems against users’

misconfigurations, and allow users to quickly find their

configuration errors so as to fix the errors by themselves.

Misconfiguration Generation and Injection: Table 2

summarizes how SPEX-INJ generates configuration er-

rors by intentionally violating the inferred constraints.

Each misconfiguration includes one or several erro-

250

log.filesize : 32-bit INTEGER (Storage-A)

(a) Basic-type violation

ft_stopword_file : FILE (MySQL-5.5.29)

(b) Semantic-type Violation (FILE)

udp_port : PORT (Squid-2.3.5)

(c) Semantic-type Violation (PORT)

System crash! (caused by segmentation fault)

Bad Reaction Exposed:

ft_stopword_file = a_directory_path
udp_port = an_occupied_port

Abort with the misleading log message:

FATAL: Cannot open ICP Port

Bad Reaction Exposed:

commit_siblings silently takes no effect

ft_min_word_len = 25

ft_max_word_len = 10

Incorrect results returned by full-text search.

index_intlen : [4, 255] (OpenLDAP-2.4.33)

(d) Data-range violation (e) Control-dependency violation

ft_min_word_len < ft_max_word_len

(f) Value-relationship violation

Bad Reaction Exposed:

fsyn = off

commit_siblings = 5

Bad Reaction Exposed:

(fsync , 0,) commit_siblings

SPEX Injects: SPEX Injects:

SPEX Injects: SPEX Injects:

log.filesize = 9,000,000,000

Bad Reaction Exposed:

Change the setting to the

overflowed number

SPEX Injects:

log.filesize = 9G

Bad Reaction Exposed:

Ignore G as the unit, using

9 bytes as the size

SPEX Injects:

Bad Reaction Exposed:

index_intlen = 300

Change the setting to 255 without notifying users

(the constraint is not documented in user manual)

SPEX Injects: (PostgreSQL-9.2.1) (MySQL-5.5.29)

Figure 5: Real-world examples to illustrate the configuration error generation of SPEX-INJ (based on the rules in Table 2),

and the exposed misconfiguration vulnerabilities (bad system reactions). How the constraints are inferred from these exam-

ples is shown in Figure 3. All the vulnerabilities are detected by SPEX-INJ in the latest versions of the evaluated systems.

Constraint Generation Rules

Basic type Generate parameter values with invalid basic types

Semantic Generate invalid parameter values specific to

type different semantic types

Range Generate out-of-range values

Control dep. Generate (P ⋄ V)∧Q for (P,V,⋄) 7→ Q

Value relat. Generate invalid value relationships

Table 2: SPEX-INJ generates configuration errors for dif-

ferent types of constraints inferred by SPEX.

neous parameter values that violate a specific constraint.

SPEX-INJ may generate several misconfigurations in

various aspects for a parameter: violating the constraints

of its data type, its data range, its dependencies and cor-

relations with other parameters. Every generation rule

is implemented as a plug-in, which can be extended for

customization. Figure 5 lists several real-world exam-

ples for each rule along with the exposed vulnerabilities.

SPEX-INJ injects misconfigurations by replacing the

default parameter values with the generated erroneous

values in configuration files. We use the configuration

file parser in ConfErr [15] to parse a template configura-

tion file into an abstract representation (AR), and trans-

form the modified AR with errors injected to a usable

configuration file for testing. In fact, other configuration

file parsing tools such as Augeas can also be used.

Category of Misconfiguration Vulnerabilities (Bad

System Reactions): When a misconfiguration occurs,

the system should pinpoint either the misconfigured pa-

rameter’s name/value or its location information (e.g.,

line numbers in the file). Otherwise, SPEX-INJ considers

the system reaction as a misconfiguration vulnerability.

Table 3 categorizes different types of misconfigura-

tion vulnerabilities. The first category, system crashes

and hangs, is considered as severe vulnerabilities, espe-

cially for server applications where availability is cru-

Reaction Description

Crash/Hang The system crashes or hangs.

Early The system exits without pinpointing the

termination injected configuration error.

Functional The system fails functional testing without

failure pinpointing the injected error.

Silent The system changes input configurations to

violation different values without notifying users.

Silent The system ignores input configurations

ignorance (mainly for control-dependency violation).

Table 3: The category of bad system reactions.

cial. Such symptoms would mislead users and sup-

port engineers to suspect them as software bugs. The

second category, early termination without pinpointing

message, is also undesirable. In this case, the system

terminates itself but does not give useful feedback for

users to fix the problems by themselves. Similarly, func-

tion failures without pinpointing error messages can also

confuse users, as shown in the MySQL example in Fig-

ure 5(f). As for the last two categories, it is still unac-

ceptable (maybe less severe) to silently violate or ignore

the users’ intention, which might cause users’ confusion

or sophisticated problems (e.g., performance issues, fea-

ture not activated), as shown in Figure 5(a) and (d).

In this paper, we do not consider performance issues

caused by misconfigurations, mainly because of the dif-

ficulties in objectively judging whether the performance

is acceptable. Unless the performance degradation af-

fects the system usability (belonging to “hang”), we con-

sider it acceptable as long as the functionality is correct.

Testing and Analysis: SPEX-INJ leverages each soft-

ware’s own test infrastructure, including test cases and

test oracles, for accepting/rejecting test results. For each

generated configuration file (containing one misconfig-

uration), SPEX-INJ first launches the target system. If

the system successfully starts, SPEX-INJ will further ap-

251

ply existing functional test cases one by one and monitor

the system status and output. During testing, SPEX-INJ

records all the system and console logs. If the test results

fail to pass the test oracles, SPEX-INJ checks the logs to

see whether the system pinpoints the misconfiguration.

If not, it generates an error report for the developers.

The error report (the output of SPEX-INJ) contains the

constraint, the injected error, and the failed test cases,

associated with all the log messages. Therefore, the de-

velopers can know what misconfigurations caused what

problems. SPEX-INJ reports silent violation/ignorance if

the system does not pinpoint errors but passes testing.

The testing process can be slow, as N× T , where N

is the number of misconfigurations SPEX-INJ generates

and T is the time to run all input test cases once. To

shorten the time, we apply two optimizations. First, for

each misconfiguration, SPEX-INJ stops immediately af-

ter the first failed test case. Second, we sort the running

time of each test case and run the shortest test case first.

By using these optimizations, the testing time of SPEX-

INJ on the evaluated software is under 10 hours. Note:

This is a one-time cost because SPEX-INJ can be made

incrementally. Only those constraints affected by code

modification during each revision need to be retested.

3.2 Detect Error-Prone Design

Configuration settings which are expected to be per-

formed by users, should be intuitive and less prone to

errors. Carefully-designed configuration constraints can

prevent users’ confusion and mistakes. More specifi-

cally, since the configuration setting is also one type of

software interface exposed to the users, it should follow

the interface design principles [20, 23].

We expect configuration design to be (1) consistent in

constraints of different parameters, (2) explicit to users

when changing (violating) their settings, and (3) com-

plete in documenting the requirements of parameters

(i.e., constraints). In this section, we show how to lever-

age the constraints to detect error-prone configuration

design and handling that break these three principles.

Design Inconsistency: Consistency is a primary in-

terface design principle to prevent user mistakes. The

inferred constraints provide opportunities for detecting

two types of configuration inconsistency: (1) case sen-

sitivity, and (2) unit granularity. Such inconsistency is

error-prone because users are likely confused by the con-

tradictory requirements for parameters of same types.

Figures 6(a) and (b) show two real-world examples

of the two types of constraint inconsistency. In Fig-

ure 6(a), different from most string case-insensitive con-

figuration parameters in MySQL, the values of param-

eter “innodb file format check” are case sensitive. In

(a) Inconsistency of case sensitivity (b) Inconsistency of parameter units

MySQL-5.5.29 Apache httpd-2.4.3

/* storage/innobase/srv/srv0start.c */ /* server/mpm_common.c */

Most size parameters in Apa-

che use "byte" as the unit.

value = strtol(arg, NULL, 10);

Most enum options in MySQL

are insensitive (strcasecmp)!

unit: "Kilobyte"

MaxMemFree

if (!strcmp(method, "fsync")) {

} else if (!strcmp(method, "O_DSYNC")) {

...

...

(c) Silent Overruling

/* src/cache_cf.cc */

(d) Using unsafe API

/* src/Parsing.cc */yes and enable are

treated as off silently

if (!strcasecmp(token, on)) {

*var = 1;

} else {

*var = 0;

}
The return value of invalid

input is undefined.

int i;

sscanf(token, %i , &i);

//use the value

input from users
input from users

ap_max_mem_free = value * 1024;

...

...

Squid-2.3.5 Squid-2.3.5

innodb_file_format_check

Figure 6: Real-world examples of error-prone configura-

tion design and handling in source code.

Figure 6(b), different from the other size parameters in

Apache that use Bytes as the unit, “MaxMemFree” uses

KBytes as the unit. Therefore, users can easily make

mistakes here due to the inconsistency. As shown in

Section 4.1, we find that more than half of the evaluated

systems have these two kinds of inconsistency.

The inconsistency is detected based on SPEX’s infer-

ence of semantic-type constraints. Remember that SPEX

records the API calls that use the parameters. The case

sensitivity is inferred by identifying string comparison

functions. If the parameter is used in comparison func-

tions like strcasecmp, it is case insensitive. Otherwise

it is sensitive when used in functions like strcmp. Sim-

ilarly, the unit information is inferred according to the

API’s unit. For example, parameters used in sleep have

the unit second, while parameters used in usleep are of

unit microsecond. We also consider the transformation

of the parameter, along its data-flow path before it falls

into the API call, as shown in Figure 6(b).

Silent Overruling: Silent overruling refers to the case

that the system changes an unacceptable user setting into

the default value without notifying the user. It may cause

silent violation of user intention as one type of mis-

configuration vulnerabilities. As shown in Figure 6(c),

Squid silently treats any boolean parameter as “off” as

long as it is not set to “on”, even if its value is “yes” or

“enable”. Such design can easily confuse users because

the system behavior would not match their expectation.

To detect silent overruling, for enumerative range

constraints inferred in “if...else if...else” or

switch logics, if the parameter is silently overwritten

in the else block or default case, we flag it as silent

overruling. In Squid and Apache, we detect many silent

overruling cases that affected 74 parameters. All of these

have been fixed by developers after we reported them.

252

We do not consider static initialization of configura-

tion parameters as silent overruling. It is mainly used to

assign default values that would be overwritten by user

settings. Thus, it is not relevant to users’ configuration.

Unsafe APIs: Using unsafe APIs in configuration han-

dling can also create confusing behavior. For example,

unsafe string-to-number transformation APIs, including

atoi, sscanf and sprintf are vulnerable to erroneous

user inputs. Taking atoi as an example, there is no way

to check unexpected characters [atoi(1O0) returns 1]

and overflow issues [atoi(INT MAX) returns -1]. These

APIs are handy in controlled contexts but should be

avoided in configuration parsing since user inputs may

not be trustworthy and can easily be misspelled [39]. In-

stead, a good practice is to use safe APIs such as strtol

and check errors through errno and end pointers. Most

bug detection tools do not report these vulnerabilities be-

cause they cannot know whether a variable comes from

user settings. SPEX can detect them exactly because it is

starting from parameter settings. Our evaluation shows

that many systems use unsafe APIs, affecting large num-

bers of parameters as exemplified in Figure 6(d).

Undocumented Constraints: The inferred constraints

are also useful for developers to check whether the con-

straints are documented in any form (e.g., user manu-

als, error messages, or even accurate parameter nam-

ing). Our evaluation shows that some configuration con-

straints have never been documented in any form. As the

consequence, users can easily make mistakes with them.

4 Evaluation

We evaluate the effectiveness of our tools using one

commercial system and six open-source systems as

listed in Table 4. The commercial system, Storage-A, is

from a major storage vendor in the U.S. It is a distributed

operating system used for managing network attached

storage devices. It serves storage over networks using

both file-based protocols (including NFS, CIFS, FTP,

HTTP) and block-based protocols (including FC, FCoE,

iSCSI). The system provides users with a large number

of configuration parameters. The open-source systems

are mature, widely-used server applications with consid-

erable numbers of configuration parameters.

The test cases we use to drive SPEX-INJ are from the

test suites shipped with the software projects or provided

by the developers. To collect related warning and error

log messages, we set sufficient logging verbosity.

Table 4 also shows the numbers of annotations we

added in each software so that SPEX can use them as

the starting points to identify and analyze configuration-

related variables in source code. As shown in Table 4,

the annotation efforts in terms of lines are acceptable.

Software Proprietary LoC #Parameter LoA

Storage-A Commercial – – 5

Apache Open source 148K 103 4

MySQL Open source 1.2M 272 29

PostgreSQL Open source 757K 231 7

OpenLDAP Open source 292K 86 4

VSFTP Open source 16K 124 5

Squid Open source 180K 335 2

Table 4: Evaluated software systems. “–”: We are re-

quired to keep the concrete numbers of Storage-A confi-

dential. “LoA” is the abbreviation of lines of annotations.

4.1 Overall Results

We first present the end results exposed by SPEX-INJ:

the misconfiguration vulnerabilities (bad system reac-

tions) and error-prone configuration design and han-

dling. Later in Section 4.3, we will show the interme-

diate results: the constraints inferred by SPEX.

Misconfiguration Vulnerabilities: Table 5(a) shows

the number of misconfiguration vulnerabilities (bad sys-

tem reactions) exposed in the latest versions of the eval-

uated systems. SPEX-INJ exposes a total of 743 vulner-

abilities (they are true vulnerabilities verified by us). To

this day, 364 of them have been confirmed or fixed by the

developers. The vulnerabilities exposed by SPEX-INJ

are of various kinds in all the evaluated systems. Most

notably, all the open-source systems experienced bad re-

actions such as crashes, hangs, and early terminations

under some misconfigurations. In addition, silent vio-

lation and ignorance are more prevalent compared with

terminations and failures. This once again reflects that

developers pay less attention to defending against mis-

configurations as long as they do not affect the system’s

own execution. Figure 7 gives five additional examples

for each type of vulnerabilities exposed by SPEX-INJ.

Since one source-code location could affect the con-

straints of several configuration parameters, Table 5(b)

further shows the number of unique code locations that

cause these vulnerabilities. The 743 vulnerabilities are

caused by 448 locations in source code, and the 364 con-

firmed bad reactions can be fixed by 97 code patches.

Error-Prone Configuration Design and Handing:

Table 6 shows the distribution of the case-sensitivity re-

quirements for string parameters in each system. We can

see that more than half of the systems have inconsistent

case-sensitivity requirements. The inconsistent require-

ments of 80 parameters in Apache, MySQL, and Squid

have been confirmed and fixed after we reported them.

Table 7 shows the unit requirements for size and time

parameters. More than half of the systems have incon-

sistent size and time units. For example, in Storage-A, 20

size parameters use Bytes as their units except three pa-

253

Software
Crash/ Early Functional Silent Silent

Total
Hang terminat. failure violation ignor.

Storage-A 0 (0) 0 (0) 7 (5) 74 (72) 83 (0) 164 (77)

Apache 5 (2) 4 (3) 9 (3) 29 (2) 5 (1) 52 (11)

MySQL 5 (5) 10 (3) 12 (4) 71 (70) 16 (0) 114 (82)

PostgreSQL 1 (0) 10 (1) 2 (0) 1 (0) 35 (2) 49 (3)

OpenLDAP 1 (0) 3 (0) 6 (0) 7 (0) 0 (0) 17 (0)

VSFTP 12 (12) 5 (0) 18 (0) 23 (0) 68 (0) 126 (12)

Squid 2 (2) 3 (2) 29 (1) 173 (173) 14 (1) 221 (179)

Total 26 (21) 35 (9) 83 (13) 378 (317) 221 (4) 743 (364)

(a) Misconfiguration vulnerabilities (bad system reactions)

Software
Source-code

location

Storage-A 119 (34)

Apache 52 (1)

MySQL 46 (16)

PostgreSQL 44 (3)

OpenLDAP 17 (0)

VSFTP 107 (12)

Squid 62 (21)

Total 448 (97)

(b) Corresponding code locations

Table 5: The number of exposed misconfiguration vulnerabilities, and the corresponding source-code locations. A patch

to one source-code location might fix multiple vulnerabilities. The numbers in “()” are the numbers of confirmed or fixed

cases by the developers after we reported them. The cases that have not been confirmed are discussed in Section 5.1.

Bad Reaction Exposed:

Crash

SPEX Injects:

performance_schema_events_ \

waits_history_size = 0

SPEX Injects:

ThreadLimit = 100000

SPEX Injects:

sockbuf_max_incoming 1
SPEX Injects:

pcs.size = 512MB

No System Log
System Log:

Segmentation fault (core

dumped)

Bad Reaction Exposed:

Ignore MB and use 512GB

(default unit) as pcs.size

MySQL-5.5.29 Apache httpd-2.4.3

Bad Reaction Exposed:

Abort during startup

System Log:

Cannot allocate memory: AH00004:

Unable to create access scoreboard

(anonymous shared memory failure)

Storage-AOpenLDAP-2.4.33

Bad Reaction Exposed:

Any client request leads to:

Can't contact LDAP server (-1)

System Log:

conn=xx ACCEPT from IP=x.x.x.x

conn=xx closed (connection lost)

(a) System Crash

(crash/hang)

(b) Early termination with

misleading message

(c) Functional failure without

pinpointing message

(d) Silently change user inputs

(silent violation)

(e) Silently ignore user inputs

(silent ignorance)

VSFTP-3.0.2

SPEX Injects:

virtual_use_local_privs = yes

one_process_mode = yes

Bad Reaction Exposed:

The setting of virtual_use_\

local_privs has no effect

No System Log

Figure 7: Examples of different types of misconfiguration vulnerabilities (categorized in Table 3) exposed by SPEX-INJ.

Software
Case sensitivity Developers’

Sensitive Insensitive fixes

Storage-A 32 (7.1%) 453 (92.9%) being investigated

Apache 3 (11.5%) 26 (88.5%) all sens.→insens.

MySQL 1 (1.7%) 58 (98.3%) all sens.→insens.

PostgreSQL 0 (0.0%) 92 (100.0%) N/A

OpenLDAP 0 (0.0%) 9 (100.0%) N/A

VSFTP 0 (0.0%) 73 (100.0%) N/A

Squid 85 (52.8%) 76 (47.2%) all insens.→sens.

Table 6: Case-sensitivity requirements of different config-

uration parameters in the evaluated systems.

rameters, each of which uses different unit size, namely

KBytes, MBytes, and GBytes. Storage-A mitigates the

inconsistency via naming, including the unit information

in parameter names (c.f., Section 5.2). However, none of

the open-source systems makes such effort, so the incon-

sistencies may confuse users and cause mistakes.

Table 8 shows other types of error-prone constraints.

SPEX detects 74 parameters with silent overruling in

Apache and Squid, all of which were fixed by the de-

velopers after we reported them. In addition, more than

half of the systems use unsafe transformation APIs for

large numbers of parameters. Moreover, a number of

inferred constraints are not documented in any form.

However, it might be arguable whether the cases in

Table 7 and 8 are really confusing and error-prone to

Software
Size Time

B KB MB GB µs ms s m h

Storage-A 20 1 1 1 2 10 53 12 4

Apache 20 1 0 0 0 1 26 0 0

MySQL 29 0 0 0 2 2 13 0 0

PostgreSQL 1 3 0 0 1 12 9 1 0

OpenLDAP 2 0 0 0 0 0 3 0 0

VSFTP 1 0 0 0 0 0 6 0 0

Squid 18 2 0 0 1 6 33 0 0

Table 7: The different units of size- and time-related con-

figuration parameters in the evaluated systems.

Software

Silent Unsafe Undoc. Constraints

over- trans- Data Ctrl Val.

ruling form. range dep. rel.

Storage-A 0 28 2 0 2

Apache 1 27 0 1 0

MySQL 0 0 4 3 1

PostgreSQL 0 0 3 3 2

OpenLDAP 0 0 2 0 0

VSFTP 0 20 3 47 1

Squid 73 115 3 4 4

Table 8: Other types of error-prone configuration design

and handling in the evaluated systems.

users. To be conservative, we did not report them to

the developers. For the same reason, we did not include

them in the results presented in the abstract and intro-

duction sections.

254

Software
Parameter Bad reactions that can be

misconfig. potentially avoided by SPEX

Storage-A 246 68 (27.6%)

Apache 50 19 (38.0%)

MySQL 47 14 (29.8%)

OpenLDAP 49 12 (24.5%)

Table 9: Real-world misconfiguration cases that can be

potentially avoided among all sampled historic cases.

Software
Inference incapability Conform to Good

Single-SW Cross-SW constraints reactions

Storage-A 19 (7.7%) 51 (20.7%) 76 (30.9%) 32 (13.0%)

Apache 5 (10.0%) 12 (24.0%) 9 (18.0%) 5 (10.0%)

MySQL 1 (2.1%) 12 (25.5%) 18 (38.3%) 2 (4.3%)

OpenLDAP 9 (18.4%) 4 (8.2%) 12 (24.5%) 12 (24.5%)

Table 10: The breakdown of misconfiguration cases

that cannot benefit from SPEX/SPEX-INJ. “Conform con-

straint” and “Good reactions” are explained in the text.

4.2 Benefits to Real-World Configuration

Problems

It is hard to predict the benefits of SPEX in avoiding fu-

ture misconfiguration reports and in reducing miscon-

figuration diagnosis time. To provide some estimation

of the end benefits, we have to leverage past misconfig-

uration cases committed by real users and evaluate how

many customer reports could have been avoided if our

tools had been used. Note: The results in this section

are from the perspective of system vendors. We do not

consider the users’ downtime and frustration.

We study real-world historical misconfiguration cases

from four systems: Storage-A, Apache, MySQL, and

OpenLDAP. For Storage-A, we randomly sampled 246

parameter misconfiguration cases from the company’s

customer issue database. For open-source applications,

we randomly collected 177 parameter misconfigurations

from official forums, mailing lists, and ServerFault.com

(a popular system administration forum). The data have

been presented in our early paper [36].

As shown in Table 9, 24%–38% of the misconfigura-

tion cases could have been potentially avoided if SPEX

had been used to improve the configuration design and

harden the system against misconfigurations. The re-

sults may not sound impressive. However, if we consider

the total number of configuration issues encountered in

today’s server systems, eliminating approximately one-

third of the issues is noteworthy. Here, we consider all

parameter-related configuration errors as the denomina-

tor. The percentages will be larger if we consider only

one subtype such as illegal misconfigurations [36]. As

a first step in the direction of improving configuration

design, we believe that 24%–38% is a promising result.

To guide future research in this direction, Table 10 fur-

ther breaks down the misconfiguration cases that cannot

Software
Data type Data Ctrl Value

Basic Semtc range dep. rel.

Storage-A 922 111 490 81 20

Apache 103 22 42 1 9

MySQL 272 74 213 35 10

PostgreSQL 231 52 186 44 6

OpenLDAP 75 15 20 0 2

VSFTP 130 34 84 68 1

Squid 258 46 120 14 9

Total 1991 354 1155 243 57

Table 11: Configuration constraints inferred by SPEX.

Software
Data type Data Ctrl Value

Basic Semtc range dep. rel.

Storage-A 97.0% 95.7% 87.1% 84.1% 94.1%

Apache 96.1% 91.7% 94.6% 100.0% 81.8%

MySQL 100.0% 98.7% 99.1% 94.7% 71.4%

PostgreSQL 100.0% 96.3% 97.3% 91.7% 85.7%

OpenLDAP 88.2% 93.7% 73.1% N/A 50.0%

VSFTP 100.0% 100.0% 100.0% 63.9% 100.0%

Squid 77.0% 100.0% 100.0% 77.8% 100.0%

Table 12: Accuracy of constraint inference.

benefit from our tools. First, as discussed in Section 2.3,

SPEX cannot infer all the configuration constraints. In

addition, a configuration setting might conform to the

constraints, but does not match the users’ intention. For

example, a permission setting might be valid from the

constraints’ perspective, but insufficient for the user to

access files. Finally, even if the system already provides

“good reactions” by our criteria (i.e., printing log mes-

sages containing the faulting parameters), users might

still report the problem because the semantics of the text

messages might be confusing.

4.3 Configuration Constraint Inference

Table 11 breaks down different kinds of constraints in-

ferred by SPEX. It infers a total of 3800 constraints from

the evaluated systems. We can see that basic types can

be inferred for most configuration parameters. In com-

parison, the number of semantic types is much smaller.

SPEX cannot extract the semantic type for every param-

eter. It can only infer the semantic type if the param-

eter interacts with known APIs. Data range and inter-

parameter correlations, especially control dependencies,

are also common in the evaluated systems.

Table 12 shows the accuracy of constraint inference.

We manually and carefully examined all of the 3800

constraints inferred by SPEX. SPEX achieves over 90%

inference accuracy in most cases. We find that the inac-

curacy is mainly caused by pointer aliasing. If a config-

uration parameter is pointed by aliased pointers, and/or

there are complicated pointer arithmetic logic, SPEX

may lose the correct mapping from the configuration pa-

rameter to the program variable, and thereby infer con-

255

straints that do not belong to the right parameter. Cur-

rently, SPEX does not perform any pointer-alias analysis.

This explains why OpenLDAP has the lowest accuracy:

many of its parameters are referenced through pointers.

However, our overall accuracy is still over 90%, because

most of the configuration parameters are not aliased.

5 Experience and Practice

5.1 Interaction Experience

We reported the detected vulnerabilities and error-prone

constraints to developers through the official bug report-

ing systems. To this day, 364 of our reported vulnerabili-

ties and 80 inconsistent constraints have been confirmed

or fixed by the developers. The others are ignored or

rejected or being investigated. Here, we share our expe-

riences in interacting with developers.

Positive Experience. We are encouraged by the pos-

itive feedback from many developers of the evaluated

systems, and we appreciate their help.

• Storage-A: Misconfigurations account for one-third

of the customer issues of Storage-A in this major U.S.

storage company. It has incurred significant financial

cost for troubleshooting these issues. Therefore, they

actively investigate solutions to misconfigurations and

have been very supportive to our work, including pro-

viding us with source code, test cases, and allowing us

to include Storage-A’s results in this paper. All the ex-

posed issues have been sent to the corresponding de-

veloping teams. Many of them have been fixed (c.f.,

Table 5), and others are under investigation.

• Squid: The developers immediately paid great atten-

tion to our reported misconfiguration vulnerabilities.

We worked together and improved their configuration

parsing library by adding more checks for configura-

tion errors and more logging in reporting errors.

Negative Experience. Not all interaction with develop-

ers is positive. Some of our reports and patches so far

have been rejected or ignored. The following summa-

rize the typical negative responses: (1) Some developers

think the information is clearly described in the docu-

ment, so there is no need for systems to check or to pin-

point the configuration errors in log messages — “The

manual states, near the top...” However, users may not

read manuals line by line, especially given that manu-

als for large systems are usually lengthy (e.g., MySQL-

5.5’s manual has 4502 pages). Also, users may have

problems understanding manual contents because many

users come from a different background. (2) Some open-

source developers tend to assume that administrators

read source code (since it is open sourced) when they

configure systems. In the response to one of our patches,

the developer wrote, “Most users never adjust these val-

ues. Those who do, read the code.” Note: Users can read

open-source code, but this does not mean that users have

time or are willing to read the code. (3) Some developers

optimistically assume that users will not make mistakes,

“If you work exactly and carefully, it does not matter;

if not, you should not maintain the server at all.” As

a result, it is not uncommon that developers closed the

report with comments like, “This is not a bug.” The im-

plication is that “the user must be a novice or not think-

ing.” However, such optimistic assumptions are often

proved unrealistic as partially demonstrated in our work

and previous work on misconfiguration.

The negative experiences indicate that the battle to

have developers take an active role in misconfigura-

tion handling is challenging. The main impediment is

the controversial responsibilities of misconfigurations

between users and developers. Often, it is only until

the system suffers considerable support cost or failures

(caused by misconfigurations) will the importance of ac-

tive handling be appreciated by developers. We believe

one way to raise this awareness is through education

on user-friendly configuration design, hopefully leverag-

ing the trend and attention in good user-interface design

raised by Apple’s success. As articulated in [24], devel-

opers should view system administrators and operators

as their first-class users.

5.2 Practice

We highlight some of the good practices we have ob-

served from the evaluated software projects.

Hiding Critical Configurations from Users: Despite

the trend that systems expose more and more configu-

ration knobs to users, some systems choose to hide ad-

vanced and critical parameters from users, in order to

avoid careless mistakes. Storage-A provides two lev-

els of configuration interfaces: one for normal users and

the other for advanced administrators. Moreover, it does

not allow users to directly modify system configuration

files. Users’ configuration settings are enforced to go

through the interfaces which perform basic checking. In

fact, developers sometimes are struggling with the con-

figurability. For example, eight Squid parameters have

the following explanation in their manual entries:

“Heavy voodoo here. I can’t even believe you

are reading this. Are you crazy? Don’t even

think about adjusting these unless you under-

stand the algorithms in comm select.c first!”

A good practice should hide such esoteric parameters

from users, or forewarn users with clear log messages

when they are trying to configure these parameters.

256

Handling Inconsistency: We observe two efforts in

Storage-A in handling unit inconsistency. First, the unit

information is exposed in naming (e.g., “cleanup.msec”,

“takeover.sec”) which serves as both constraint descrip-

tions and mnemonics for users. Second, some parame-

ter settings enforce users to specify unit suffixes to help

them express their intention explicitly.

Exploiting Data Structures: Storage-A, MySQL, and

PostgreSQL use global data structures which enforce de-

velopers to specify the data type and the minimum,max-

imum value for each configuration parameter. In this

way, the systems easily enforce uniform validity check-

ing for configuration settings. Consequently, they have

fewer misconfiguration vulnerabilities that violate type

and range constraints, as shown in Table 5.

6 Related Work

The major research efforts in addressing misconfigura-

tion problems focus on detecting [11, 35, 38] and trou-

bleshooting [1,3,4,5,21,25,32,33,34,37,40] configura-

tion errors in a timely manner. While these studies pro-

vide remedies to find root causes of misconfiguration-

induced system failures and anomalies, it is often too

late to alleviate users from frustrating experiences.

Our work is different but complementary to miscon-

figuration detection and troubleshooting. We propose

to improve the configuration design, to harden systems

with graceful reactions to misconfigurations, and to pro-

vide users with explicit log messages so as to enable

users to fix configuration errors by themselves. Doing

these can help eliminate many configuration errors, or

at least help users self-diagnose the problems quickly

(based on system error messages) without the need to

run any extra detection or troubleshooting tools. Al-

though we have made only a modest step in this direc-

tion, we strongly believe that having developers take a

more active role to improve configuration design and an-

ticipate/tolerate configuration errors should be the ulti-

mate solution (maybe not immediately achievable).

ConfErr [15] pioneers the configuration testing di-

rection. Since it is not guided by configuration con-

straints, it makes generic alternations to valid configu-

ration settings (e.g., omissions, substitutions, and case

alternations of characters). Similarly, fuzz testing can be

used to generate random data as configuration settings.

Our work is complementary to ConfErr and fuzz test-

ing. The major part of our work focuses on configuration

constraint inference. Based on the inferred constraints,

our injection are guided to be program- and constraint-

specific. Take the range constraint as an example, SPEX-

INJ generates values exactly covering in and out of the

specific range. Besides misconfiguration injection, we

also leverage the constraints to detect error-prone config-

uration design and handling. Although not demonstrated

in the paper, the inferred constraints can also be used as

references for developers or UI engineers to examine if

the configuration constraints are too complicated or un-

natural, or not backward-compatible, etc.

Rabkin and Katz extract configuration parameters

together with their data types from Hadoop-like pro-

grams [26]. Our work differs from theirs in the following

three aspects. First, we have different objectives. Their

objective is to understand the types of configuration pa-

rameters, whereas ours is to advocate and enable devel-

opers to take an active role in reducing configuration-

related issues. Second, their work focuses on data types

only, whereas our work also extracts other kinds of con-

straints including data ranges, control dependencies, and

value relationships. Third, their work focuses on the

characteristics but shows no use case of the extracted

information, whereas our work uses the inferred con-

straints to expose misconfiguration vulnerabilities and to

detect error-prone configuration design and handling.

7 Conclusion

This paper advocates the importance for software de-

velopers to take an active role in handling misconfigu-

rations. It makes a concrete useful step by providing

tooling support for developers to expose misconfigura-

tion vulnerabilities, and detect error-prone configuration

design and handling. Our tools have exposed 743 vul-

nerabilities and at least 112 error-prone constraints in

both commercial and open-source systems. To this day,

364 vulnerabilities, together with 80 inconsistent con-

straints, have been confirmed or fixed by developers af-

ter we reported them. Our results have influenced the

Squid Web proxy project to improve its configuration

parsing library towards a more user friendly design. We

hope our work can inspire developers to improve their

practices as well as follow-up research in this direction.

8 Acknowledgement

We would like to express our great appreciation to our

shepherd, Haibo Chen, who was very responsive and

provided us with valuable suggestions to improve our

work. We also thank the anonymous reviewers for their

insightful comments and suggestions. We are grateful to

the Opera group in UCSD, the ATG group in NetApp,

Laurent Nicolas, Kevin Nomura, Raghavan Kalkunte,

Matus Telgarsky, Brad Chen, and Marc Dacier for their

feedback and insights. We thank all the developers who

reviewed our reports and patches and interacted with us.

This research is supported by NSF CNS-1017784, NSF

CNS-1321006, and a NetApp Faculty Award.

257

References

[1] B. Aggarwal, R. Bhagwan, T. Das, S. Eswaran,

V. N. Padmanabhan, and G. M. Voelker. NetPrints:

Diagnosing Home Network Misconfigurations Us-

ing Shared Knowledge. In Proceedings of the 6th

USENIX Symposium on Networked System Design

and Implementation (NSDI’09), April 2009.

[2] Amazon Web Services Team. Summary of the

Amazon EC2 and Amazon RDS Service Disrup-

tion in the US East Region.

http://aws.amazon.com/message/65648, 2011.

[3] M. Attariyan, M. Chow, and J. Flinn. X-ray: Au-

tomating Root-Cause Diagnosis of Performance

Anomalies in Production Software. In Proceedings

of the 10th USENIX Conference on Operating Sys-

tems Design and Implementation (OSDI’12), Oc-

tober 2012.

[4] M. Attariyan and J. Flinn. Using Causality to

Diagnose Configuration Bugs. In Proceedings of

the 2008 USENIX Annual Technical Conference

(USENIX’08), June 2008.

[5] M. Attariyan and J. Flinn. Automating Configu-

ration Troubleshooting with Dynamic Information

Flow Analysis. In Proceedings of the 9th USENIX

Conference on Operating Systems Design and Im-

plementation (OSDI’10), October 2010.

[6] L. A. Barroso and U. Hölzle. The Datacenter

as a Computer: An Introduction to the Design of

Warehouse-Scale Machines. Morgan and Claypool

Publishers, 2009.

[7] K. Chen, C. Guo, H. Wu, J. Yuan, Z. Feng,

Y. Chen, S. Lu, andW.Wu. Generic and Automatic

Address Configuration for Data Center Networks.

In Proceedings of the 2010 Annual Conference of

the ACM Special Interest Group on Data Commu-

nication (SIGCOMM’10), August 2010.

[8] Computing Research Association. Grand Research

Challenges in Information Systems, Technical Re-

port, September 2003.

[9] S. Duan, V. Thummala, and S. Babu. Tuning

Database Conguration Parameters with iTuned. In

Proceedings of the 35th International Conference

on Very Large Data Bases (VLDB’09), August

2009.

[10] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and

B. Chelf. Bugs as Deviant Behavior: A Gen-

eral Approach to Inferring Errors in Systems Code.

In Proceedings of the 18th ACM Symposium on

Operating Systems Principles (SOSP’01), October

2001.

[11] N. Feamster and H. Balakrishnan. Detecting

BGP Configuration Faults with Static Analysis.

In Proceedings of the 2nd USENIX Symposium

on Networked System Design and Implementation

(NSDI’05), May 2005.

[12] J. Gray. Why Do Computers Stop and What Can

Be Done About It? Tandem Technical Report 85.7,

June 1985.

[13] R. Johnson. More Details on Today’s Outage.

http://www.facebook.com/note.php?note id=431441

338919, 2010.

[14] A. Kappor. Web-to-host: Reducing Total Cost of

Ownership. Technical Report 200503, The Tolly

Group, May 2000.

[15] L. Keller, P. Upadhyaya, and G. Candea. ConfErr:

A Tool for Assessing Resilience to Human Config-

uration Errors. In Proceedings of the 38th Annual

IEEE/IFIP International Conference on Depend-

able Systems and Networks (DSN’08), June 2008.

[16] S. Kendrick. What Takes Us Down? USENIX

;login:, 37(5):37–45, October 2012.

[17] N. Kushman and D. Katabi. Enabling

Configuration-Independent Automation by

Non-Expert Users. In Proceedings of the 9th

USENIX Conference on Operating Systems Design

and Implementation (OSDI’10), October 2010.

[18] C. Lattner and V. Adve. LLVM: A Compila-

tion Framework for Lifelong Program Analysis &

Transformation. In Proceedings of the 2004 Inter-

national Symposium on Code Generation and Op-

timization (CGO’04), March 2004.

[19] R. Mahajan, D. Wetherall, and T. Anderson. Un-

derstanding BGP Misconfigurations. In Proceed-

ings of the 2002 Annual Conference of the ACM

Special Interest Group on Data Communication

(SIGCOMM’02), August 2002.

[20] D. J. Mayhew. Principles and Guidelines in Soft-

ware User Interface Design. Prentice Hall, Octo-

ber 1991.

[21] J. Mickens, M. Szummer, and D. Narayanan.

Snitch: Interactive Decision Trees for Trou-

bleshooting Misconfigurations. In Proceedings of

the 2nd USENIX Workshop on Tackling Computer

Systems Problems with Machine Learning Tech-

niques (SysML’07), April 2007.

258

[22] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Mar-

tin, and T. D. Nguyen. Understanding and Deal-

ing with Operator Mistakes in Internet Services.

In Proceedings of the 6th USENIX Conference

on Operating Systems Design and Implementation

(OSDI’04), December 2004.

[23] D. A. Norman. Design Rules Based on Analy-

ses of Human Error. Communications of the ACM,

26(4):254–258, April 1983.

[24] D. Oppenheimer, A. Ganapathi, and D. A. Patter-

son. Why Do Internet Services Fail, and What

Can Be Done About It? In Proceedings of the 4th

USENIX Symposium on Internet Technologies and

Systems (USITS’03), March 2003.

[25] A. Rabkin and R. Katz. Precomputing Possible

Configuration Error Diagnosis. In Proceedings

of the 26th IEEE/ACM International Conference

on Automated Software Engineering (ASE’11),

November 2011.

[26] A. Rabkin and R. Katz. Static Extraction of Pro-

gram Configuration Options. In Proceedings of the

33th International Conference on Software Engi-

neering (ICSE’11), May 2011.

[27] A. Rabkin and R. Katz. How Hadoop Clusters

Break. IEEE Software, 30(4):88–94, July 2013.

[28] A. Schüpbach, A. Baumann, T. Roscoe, and S. Pe-

ter. A Declarative Language Approach to Device

Configuration. In Proceedings of the 16th Inter-

national Conference on Architectural Support for

Programming Languages and Operating Systems

(ASPLOS’11), March 2011.

[29] M. Sridharan, S. J. Fink, and R. Bodı́k. Thin

Slicing. In Proceedings of the ACM SIGPLAN

2007 Conference on Programming Language De-

sign and Implementation (PLDI’07), June 2007.

[30] Y.-Y. Su, M. Attariyan, and J. Flinn. AutoBash:

Improving Configuration Management with Oper-

ating System Causality Analysis. In Proceedings

of the 21st ACM Symposium on Operating Systems

Principles (SOSP’07), October 2007.

[31] Y. Sverdlik. Microsoft: Misconfigured Network

Device Led to Azure Outage.

http://www.datacenterdynamics.com/focus/archive/

2012/07/microsoft-misconfigured-network-

device-led-azure-outage, 2012.

[32] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and

Y.-M. Wang. Automatic Misconfiguration Trou-

bleshooting with PeerPressure. In Proceedings of

the 6th USENIX Conference on Operating Systems

Design and Implementation (OSDI’04), December

2004.

[33] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen,

H. J. Wang, C. Yuan, and Z. Zhang. STRIDER: A

Black-box, State-based Approach to Change and

Configuration Management and Support. In Pro-

ceedings of the 17th Large Installation Systems Ad-

ministration Conference (LISA’03), October 2003.

[34] A. Whitaker, R. S. Cox, and S. D. Gribble. Config-

uration Debugging as Search: Finding the Needle

in the Haystack. In Proceedings of the 6th USENIX

Conference on Operating Systems Design and Im-

plementation (OSDI’04), December 2004.

[35] Y. Xiong, A. Hubaux, S. She, and K. Czarnecki.

Generating Range Fixes for Software Configura-

tion. In Proceedings of the 34th International Con-

ference on Software Engineering (ICSE’12), June

2012.

[36] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairava-

sundaram, and S. Pasupathy. An Empirical Study

on Configuration Errors in Commercial and Open

Source Systems. In Proceedings of the 23rd

ACM Symposium on Operating Systems Principles

(SOSP’11), October 2011.

[37] C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M.

Wang, and W.-Y. Ma. Automated Known Problem

Diagnosis with Event Traces. In Proceedings of the

1st EuroSys Conference (EuroSys’06), April 2006.

[38] D. Yuan, Y. Xie, R. Panigrahy, J. Yang, C. Ver-

bowski, and A. Kumar. Context-based Online

Configuration Error Detection. In Proceedings of

the 2011 USENIX Annual Technical Conference

(USENIX’11), June 2011.

[39] A. Zeller. Why Programs Fail: A Guide to System-

atic Debugging (2nd Edition). Morgan Kaufmann

Publishers, June 2009.

[40] S. Zhang andM. D. Ernst. Automated Diagnosis of

Software Configuration Errors. In Proceedings of

the 35th Internationl Conference on Software En-

gineering (ICSE’13), May 2013.

Notice: NetApp, the NetApp logo, and Go further, faster

are trademarks or registered trademarks of NetApp, Inc.

in the United States and/or other countries.

259

	Introduction
	Motivation
	Our Contributions

	Configuration Constraint Inference
	What Constraints Can Be Inferred?
	How to Infer Constraints?
	Mapping Parameters to Variables
	Data Type Inference
	Data Range Inference
	Control Dependency Inference
	Value Relationship Inference

	Discussion and Limitation

	Use Cases of Configuration Constraints
	Harden Systems against Configuration Errors
	Detect Error-Prone Design

	Evaluation
	Overall Results
	Benefits to Real-World Configuration Problems
	Configuration Constraint Inference

	Experience and Practice
	Interaction Experience
	Practice

	Related Work
	Conclusion
	Acknowledgement

