UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATION , April, 2015
Third Year — Materials
ECE344H1 - Operating Systems
Calculator Type: 2
Exam Type: A
Examiner — D. Yuan

Please Read All Questions Carefully! Please keep your answers as concise as possible.
You do not need to fill the whole space provided for answers.

There are 19 total numbered pages, 8 Questions.
You have 2.5 hours. Budget your time carefully!

Please put your FULL NAME, UTORId, Student ID on THIS page only.

Name:

UTORIid:

Student ID:

Page 1 of 19

Grading Page

Total Marks Marks Received

Question 1 8
Question 2 6
Question 3 16
Question 4 28
Question 5 15
Question 6 7
Question 7 20
Question 8 10

Total 120

Page 2 of 19

Question 1 (8 marks, 1 mark each): Virtual memory
Assume you have a small virtual address space of size 64 KB. Further assume that
this is a system that uses paging and that each page is of size 8 KB.

(a) How many bits are in a virtual address in this system?

(b) Recall that with paging, a virtual address is usually split into two components: a
virtual page number (VPN) and an offset. How many bits are in the VPN?

(c) How many bits are in the offset?

(d) Now assume that the OS is using a one-level page table. How many entries does
this page table contain?

Now assume again you have a small virtual address space of size 64 KB, that the
system again uses paging, but that each page is of size 4 bytes (note: not KB!).

(e) How many bits are in a virtual address in this system?

(f) How many bits are in the VPN?

(9) How many bits are in the offset?

(h) Again assume that the OS is using a one-level page table. How many entries does
this one-level page table contain?

Page 3 of 19

Question 2 (6 marks): Inverted page table
For an OS that uses paging, besides the one-level and multi-level page table designs
as we discussed in the class, another page table design is called inverted page table
(IPT). In an IPT, the number of entries equals to the number of physical frames in
memory. Each entry in IPT contains the physical frame number, virtual page number,
and other bits such as Valid, Modify, etc.

(a)(2 marks) Assume a system with virtual address space being 4GB, and the

physical memory space is 4MB, and each page is of size 4KB, how many entries does
an IPT have?

Page 4 of 19

(b)(4 marks) Compared to one-level page table (non-inverted) as we discussed in the
class, what are the advantages of using IPT? What are the disadvantages?

Question 3 (16 marks): Scheduling
Assume we have three jobs that enter a system and need to be scheduled. The first
job that enters is called A, and it needs 10 seconds of CPU time. The second, which
arrives just after A, is called B, and it needs 15 seconds of CPU time. The third, C,
arrives just after B, and needs 10 seconds of CPU time.

For all questions involving round-robin, assume that there is no cost to context
switching. Also assume that if job X arrives just before Y, a round-robin scheduler will

schedule X before Y.

(a)(1.5 marks) Assuming a shortest-job-first (SJF) policy, at what time does B finish?

(b)(1.5 marks) Assuming a round-robin policy (with a time slice length of 1 second),
when does job A finish?

(c)(1.5 marks) Assuming a round-robin policy (with a time-slice length of 1 second),
when does job B finish?

Page 5 of 19

(d)(1.5 marks) Assuming a round-robin policy (with an unknown time-slice which is
some value less than or equal to 2 seconds), when does job B finish?

(e)(2 marks) Assuming a round-robin policy (with an unknown time-slice), for what
values of the time-slice will B finish before C?

Now assume you have a multi-level feedback queue (MLFQ) scheduler. Recall that an
MLFQ scheduler groups jobs into different priorities, and for jobs in the same priority a
round-robin scheduling is used. Recall that the priority value is calculated with the
following formula as we discussed in the lecture:

priority value = nice + base + (recent CPU usage/2)
where
recent CPU usage = (last value + CPU count used by this process in this time slice)/2

Assume the following:
nice always equals to 0
base always equals to 0
- There are only 2 levels of priorities (thus 2 queues):
- Level 1 is for the jobs with priority value < 1,
- Level 2 is for the jobs with priority value >= 1
- The time-slice for the jobs in level 1 is 2 seconds, the time-slice for the jobs in
level 2 is 4 seconds
- The timer interrupt fires once every 0.125 second, thus the CPU count
increments by 8 in every second
- Whenever a job is moved into a different queue, it is always appended to the
end of the queue
- The priority value and recent CPU usage for each job are re-calculated when
(1) a time slice ends, (2) a job terminates, or (3) a job blocks on 1/0
- The overhead of context switching and scheduling is negligible

Page 6 of 19

(f)(2 marks) Why do we want to assign smaller time-slice for jobs in Level 1?

(9)(2 marks) How does MLFQ avoid the starvation of a job?

(h)(4 marks) Now given the same three jobs, A, B, and C as above, fill in the tables
below to show how they are scheduled under MLFQ. Each box represents 1 second,
your job is to fill in the job that is scheduled during that second. The first 2 cells are
already filled in for you, which means that for the 1st and 2nd second, job A is
scheduled to use the CPU. Assume the jobs don’t perform any 1/O.

A A

112 |3 (4 |5 |6 |7 |8 (9 [10|11|12(13[14 15|16 |17 |18

19120 (2122|123 |24 (25|26 |27 (28|29 |30(31|32|[33|34|35|36

Page 7 of 19

Question 4 (28 marks, 4 marks each question): File system
In this question, we are going to unearth the data and metadata from a very simple file
system. The disk has a fixed block size of 16 bytes (pretty small!) and there are only
20 blocks overall. A picture of this disk and the contents of each block is shown below
(each cell represents 4 bytes, and the ID of the block is at the bottom of each column):

HINT: HINT:

Super Root

Block INODE
0 1 1 1 0 0 0 0 0 1
1 1 1 1 2 2 1 1 1 2
2 10 18 14 11 12 3 15 19 0
3 0 0 0 17 13 0 0 0 8

Blk.0 Blk.1l Blk.2 Blk.3 Blk.4 Blk.5 Blk.6 Blk.7 Blk.8 Blk.9.

foo 3 7 hi a 10 11 i ECE 0
4 4 8 10 1 goo bar luv 7 0
bar 5 9 you b 11 oof ECE 344 0
5 6 10 12 2 goo da 344 8 0

Blk.10 Blk.11l B1lk.12 Blk.13 Blk.14 Blk.15 Blk.16 Blk.17 Blk.18 Blk.19.

The disk is formatted with a very simple file system. The first block (Blk. 0) is a super
block. It has just four integers in it: 0, 1, 2, and 3, in that order. The root inode (i.e.,
inode for °/”) of this file system is in Blk. 3 in the diagram.

The format of an inode is also quite simple:
type: 0 means regular file, 1 means directory
size: number of blocks in file (can be 0, 1, or 2)
direct pointer: the ID of the first block of file (if there is one)
direct pointer: the ID of the second block of file (if there is one)

(assume that each of these fields takes up 4 bytes of a block)

Finally, the format of a directory is also quite simple:
name of file
the block ID of the inode of the file
name of next file

the block ID of the inode of next file
(again assume that each field takes up 4 bytes of a block)

Page 8 of 19

Finally, assume that in all cases, no blocks are cached in memory. Thus, you always
have to read from this disk all the blocks you need to satisfy a particular request. Also
assume you never have to read the super block (just to make your life easier).

Now you have to answer some questions:

(a) To read the contents of the root directory, which blocks do you need to read?

(b) Which files and directories are in the root directory? List the names of each

file/directory as well as its type (e.g., file or directory).

(c) Starting at the root, what are names of all the reachable regular files in this file
system?

(d) What are the names of all the reachable directories?

(e) What is the biggest file in the file system?

Page 9 of 19

(f) What are the contents of the biggest file?

(g) What blocks are free in this file system? (that is, which blocks are not in use?)

Question 5 (15 marks): TLB structure
Assume the TLB structure looks like this:

0 1 2 3 45 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
VPN [G] | ASID
[PFEN [Cc |D]v]

The VPN and PFN fields should be self-explanatory, as should the V field (valid). The
ASID field is an address-space identifier field used to store the PID to which the
address-space belongs. The D field is a dirty bit. ignore any other fields.

On this system, the OS has a software-managed TLB. Thus, the OS is responsible for
installing the correct translation when a TLB miss occurs. When finished with the
update to the TLB, the OS returns from a trap, and the hardware retries the instruction.

Unfortunately, just before the OS updates the TLB, sometimes a bit gets flipped and
thus the wrong translation ends up in the TLB! For each of the following fields, both (1)
describe what the field is used for and (2) explain what you think would happen if a bit
gets flipped in said field just before the OS installs the entry in the TLB:

(a) VPN:
i (1 mark) What is the VPN field for?

ii (2 marks) What would happen if a bit in the VPN got flipped?

Page 10 of 19

(b) PEN: (same questions)
i (1 mark) What is the PFN field for?

ii (2 marks) What would happen if a bit in the PFN got flipped?

(c) ASID: (same questions)
i (1 mark) What is the ASID field for?

ii (2 marks) What would happen if a bit in the ASID got flipped?

(d) Valid: (same questions)
i (1 mark) What is the Valid bit for?

ii (2 marks) What would happen if the valid bit got flipped?

(e) Dirty: (same questions)
i (1 mark) What is the Dirty bit for?

ii (2 marks) What would happen if the dirty bit got flipped?

Page 11 of 19

Question 6 (7 marks): TLB replacement
Assume we have a TLB that has 4 entries. Each entry has a unique ID with the value
0, 1, 2, or 3. The OS implements an LRU-clock algorithm as the TLB replacement
policy. The diagram below shows how the OS organizes the 4 TLB entries as a
circular clock. The initial location of the clock hand is at entry 0.

clock hand

:
)

2 "j
Answer the following questions:

(a)(2 marks) In practice, OSes uses LRU-clock algorithms to approximate the actual
LRU algorithm. Why don’t OS programmers implement LRU?

—

.
_

(b)(5 marks) The following table shows 10 memory accesses from a process. The first
column shows the virtual address (not the virtual page number) of each memory
access in hexadecimal. Fill in the last 2 columns of the table. Put into the second
column whether the access results in a TLB hit or not, and put the ID of the TLB entry
in the last column (in the case of a hit, this is the entry that contains the mapping,
whereas in the case of a miss this is the entry that is chosen by the LRU-clock
replacement algorithm).

Assume the page size is 4KB. At the beginning the TLB is empty, with the reference
bits being all 0. The information for the first 4 accesses are already provided for you.

Virtual address TLB hit? TLB entry

Page 12 of 19

0x02030F02

No

0x02041032

No

0x321A0BC1

No

Ox31828AA3

No

0x31827325

0x0204187A

0x3182832A

Ox7A18198A

Ox7A181002

0x02030F24

Page 13 of 19

Question 7 (20 marks): 0S161
Consider the following snippet from function vm_fault in 0S161’s dumbvm.c
(variable declarations are omitted):

int vm fault (int faulttype, vaddr t faultaddress) {
spl = splhigh();

1
2
3:
4: for (i=0; i<NUM TLB; i++) {
5 TLB Read(&ehi, &elo, 1i);
6 if (elo & TLBLO VALID) {
7 continue;

8

: }
9: ehi

= faultaddress;
10: elo = paddr | TLBLO DIRTY | TLBLO VALID;
11: DEBUG (DB_VM, "dumbvm: 0x%x -> 0x%x\n", faultaddress, paddr);
12: TLB Write(ehi, elo, 1);
13: splx (spl);
14: return 0;
15: 1}
16: kprintf(“...”); // write this log message yourself

17: splx(spl);
18: return EFAULT;
19: 1}

(a)(3 marks) When is this function being called?

(b)(3 marks) What does the “for” loop from line 4 - 15 do?
Search for an invalid entry in TLB, and install a new page mapping.

(c)(3 marks) What is line 6-8 doing?
Check if this entry contains a valid mapping. if so, continue to examine the next entry.

Page 14 of 19

(d)(2 marks) What does line 9, “ehi = faultaddress;”, do?

(d)(2 marks) For line 10, why do we need to bit-wise-or paddr with TLBLO VALID?

(e)(2 marks) When vm_fault returns 0 at line 14, what does it indicate?

(f)(2 marks) What should be the proper log message at line 16 (and what variables
should you log)?

(g9)(3 marks) Why do we need two spl1x (sp1) in this code (one at line 13 and the
other at line 17)? What happens if we delete the one at line 177?

Page 15 of 19

Question 8 (10 marks): Synchronization
Let’s consider a classic concurrency problem: the dining philosophers. Five silent
philosophers sit at a table around a bowl of spaghetti. A fork is placed between each
pair of adjacent philosophers. The picture below illustrate the problem.

Each philosopher must alternately think and eat. However, a philosopher can only eat
spaghetti when he has both left and right forks. Each fork can be held by only one
philosopher and so a philosopher can use the fork only if it's not being used by another
philosopher. After he finishes eating, he needs to put down both forks so they become
available to others. A philosopher can grab the fork on his right or the one on his left
as they become available, but can't start eating before getting both of them.

Eating is not limited by the amount of spaghetti left: assume an infinite supply.
Now your job is to write a program to allow the philosophers enjoy their spaghetti! In
particular, your program has to satisfy the requirements stated above. In addition, your

program should further allow concurrency: for example, philosopher 0 and 2 should be
able to eat at the same time.

Page 16 of 19

The following code snippet provides the skeleton of the code. It does not work properly

since it lacks the proper synchronization. Your job is to further use appropriate
synchronizations to make it correct.

#define N 5 // 5 philosophers: YOU CANNOT CHANGE THIS LINE

int forks[N]; // the state of each fork.
// 0 means it is available, 1 means it 1is in use.

void take fork (i) {
forks[i % N] = 1;

void put fork(i) {
forks[i % N] = 0;

/* You have to implement this function correctly. You are not allowed
* to modify the parameter number nor the parameter type. */
void philosopher (int 1) {
while (1) { // YOU CANNOT CHANGE THIS WHILE LOOP
think(); // philosopher is thinking; YOU CANNOT CHANGE THIS LINE
take fork(i);
take fork(i+l);
eat(); // philosopher is eating; YOU CANNOT CHANGE THIS LINE
put fork(i);
put fork ((i+l) % N);

/* You cannot make any change to main()*/
void main () {
for (int i = 0; 1 < N; i++) {
// create a new thread by calling “philosopher (i)”
thread fork (i, philosopher);
}

wait(); // wait forever

NOTE: the part of code that you are not allowed to change or delete is indicated in the
comment. You can make any changes to the other parts of the code (e.g., you don’t
have to use the “int forks[N]” at all). You can use any type of synchronization primitives
we discussed in the class or the combination of them.

Page 17 of 19

Your code goes here:
#define N 5 // 5 philosophers

void philosopher (int i) {
while (1) {
think(); // philosopher is thinking;

eat (); // philosopher is eating;

}
void main() { // Don’t touch this function
for (int i = 0; 1 < N; i++) {
// create a new thread by calling “philosopher(i)”
thread fork (i, philosopher);
}

wait(); // wait forever

Page 18 of 19

This page is blank. You can use it as an overflow page for your answers.

Page 19 of 19

