
ECE244 Programming Fundamentals Fall 2022

Lab 1 : The ECE244 Programming Environment

1 Objectives

The objectives of this assignment are multifold:

• to learn basic UNIX commands you will need during the course,

• to setup and learn how to use the NetBeans IDE (Integrated Development Environment) to
enter, browse, build, and debug your code.

• to learn how to submit your solutions to the autotester program,

• to provide you with practice on the edit-compile-run-debug cycle of C++ programs in a UNIX
environment, and

• to setup your remote connection to ECF machines, if you wish to work on your assignments
remotely

Even though the assignment uses C++, which you are still learning in class, it requires only
knowledge of the C subset of the language that you are already familiar with. Thus, doing the
assignment in C++ should be straightforward.

2 Preparation: Tutorials and Background Documents

Please read the three background documents listed below and do the exercises contained within.
They are released on the lab documentation page.

• ECF Unix guide.pdf: The ECF UNIX Environment, commands and filesystem

• Getting Started with NetBeans.pdf: A guide to getting started with NetBeans

• Introduction to Debugging.pdf: An introduction to Debugging with NetBeans

• Remote Access to ECF.pdf: A guide for remotely accessing ECF from your home ma-
chine/laptop, if you wish to do so

It is critical that you read the entirety of these documents – taking shortcuts now will lead to
you having a poor understanding of the tools we will use in this course, and make later labs very
difficult to complete. Make sure in particular that you understand the process to check and submit
your work. Some students receive a grade of 0 on a lab, not for failing to do the work,
but because they did not submit the files correctly.

Page 1 of 9

https://www.eecg.utoronto.ca/~yuan/teaching/ece244/lab-documentation.html


3 Problem Statement

In this lab you will create a directory for ECE244 assignments in the file system under your UNIX
account on ECF. You will then copy a simple C++ program, compile it, check it for correct output,
edit the program, recompile and submit to the autotester. Next, you will use the GNU Debugger
(GDB) from within NetBeans to debug several programs. The first few programs give in-depth
guidance on how to accomplish the goals, while the latter programs leave you with just hints. To
follow the hints, consult the debugging guide, which will have more details.

4 Procedure

4.1 Setting up your directory

Create a new directory for this course called ece244, and protect it by setting the permissions so
only you can read or write it. See the “ECF Unix Environment” document reading for details (hint:
chmod −R go-rwx ece244). Make your ece244 your working directory. Create a ditectory called
lab1 in your ece244 directory and set its access permissions similar to the ece244 one. This lab1
directory will contain all your lab1 files.

It is your responsibility to ensure that others cannot copy your work. If another
student is able to copy your work, and we determine that two submitted solutions
stem from the same source, then we have no option but to take action against both
parties.

Download the lab1 files from https://www.eecg.utoronto.ca/ yuan/teaching/ece244/lab1 release.zip.
They will be in an archive called lab1 release.zip. Extract the file into your lab1 folder using
the command unzip lab1 release.zip1 This will create the folders and files of the assignment.

4.2 Importing and building the “Hello, World” program

The classic ”Hello, World!” program is shown below. It can be found in the hello folder under
lab1 which was extracted from the archive. Use the cd command to change your current directory
to the hello directory.

1 // hello.cpp -- "Hello, world" C++ program

2

3 #include <iostream>

4 using namespace std;

5

6 int main () {

7

8 cout << "Hello " << endl;

9 cout << "world!" << endl;

10 return (0);

11 }

12

1. Open NetBeans (from the command line, you can type netbeans to start it).

2. Create a new project (File → New Project) from existing sources

(a) Choose C/C++ from existing sources since the files are already there, then click next

1How to use the zip and unzip commands is covered in the ECF Unix Environment document.

Page 2 of 9

https://www.eecg.utoronto.ca/~yuan/teaching/ece244/lab1_release.zip


(b) Click the Browse button and select the folder you just created (<...>/ece244/lab1/hello)

(c) Leave all other settings at default

3. In the project navigator at left, open hello.cpp by double-clicking. Note the C++ keywords
are highlighted.

4. NetBeans will by default have built (compiled and linked) the program after importing. If
you want to build again after making source changes, you can do so by clicking the hammer,
or through the menu Run → Build Main Project. The hammer-and-broom icon is for clean
and build (ie. delete all non-source files first)

5. Run the program by clicking the green right arrow button in the toolbar or from the menu
Run → Run Main Project. You should see the expected output in the window pane below
the source editor2.

Figure 1: NetBeans basic toolbar for building and running projects

4.3 Starting with the debugger: using breakpoints

Before going on, be sure you have read the “Introduction to Debugging” document, and worked
through the examples within it.

One of the most fundamental functions of the debugger is to “pause” a program either at a
specified source line, or when a certain condition is true to let you inspect what is going on. The
most basic way to do this is through setting a breakpoint, which will be illustrated below:

1. Set a breakpoint on the line where “world” is printed

2. Run the program normally, noting that it runs just like before: the breakpoint does nothing
unless we start the debugger.

3. Now run with the debugger. Either click the button that shows a breakpoint with a green
triangle at lower right (see Fig 2), or menu Debug → Debug Main Project3.

4. Note that the program prints “Hello,” and stops. The source line is also highlighted in green.
The program execution has paused, waiting for your action. In this case, simply continue.
The program should print the rest and finish.

2NetBeans was recently upgraded to a new version on ECF. The graphic shown in the figures below may differ
very slightly from what you see on the screen, but is essentially the same.

3If you have multiple projects open, be sure that hello is the main before you do this. See the NetBeans intro
for more detail

Page 3 of 9



Figure 2: The debugging toolbar

4.4 Using exercise to test your program

One utility provided to help you is the exercise script4. It will run your program and provide it
with test input, then compare the output expected against what is actually provided. You will be
notified whether or not the two differ. When you run the hello program, you should see:

Hello

world!

Figure 3: Output produced

Now let’s test the program before submitting it to see if that works:

1. Run the program and verify that you get the output shown in Fig 3

2. Use the exercise script to test your hello program

3. You should find that it fails - it was expecting something more like Fig 4

4. Edit the code so that it produces the expected output

5. Test again, hopefully it works

Hello, world!

Figure 4: Expected output

You should run through this process for every lab that you submit to ensure you are producing
correct output. Remember that output produced must be exactly what is specified in the handout
- no difference is permitted in spaces, capitalization, spelling, etc. The functionality marks are
produced by a test script which checks for exact equivalence. Note also that (where user input
controls the program) the exercise script will only run one or a few test cases. In the future, you
will be evaluated on more cases than are run in exercise to ensure your program can handle a
range of input.

4For details, read the document on the ECF Unix Environment

Page 4 of 9



4.5 Finding a run-time bug with harmonic.cpp

The next program, found in the harmonic folder, is supposed to ask the user for a number and
then print the corresponding harmonic number. The N-th harmonic number is defined as

N∑
1

1

i
= 1 +

1

2
+

1

3
+ . . .+

1

N
(1)

In this program, it has been implemented as a for loop with a variable used to accumulate the
sum as it goes. However, you will find that although the program compiles correctly and runs it
does not produce the expected output.

1. Create a project and compile the file

2. Run for a few test cases to see if correct output is produced

3. Find the bug. Suggested procedure:

(a) Set a breakpoint within the loop body

(b) Run the program with a reasonable (small) input number, say 3

(c) Check the value of the variables (Variables window) when the breakpoint is encountered

(d) Hit continue to go through the loop step-by-step and watch the values

4. Change the code and recompile

5. Re-test to ensure correct functioning

When you believe you have fixed the bug, you should run
~ece244i/public/exercise 1 harmonic

to confirm that the program generates the expected output.

4.6 Another run-time bug: temperature conversion with convert.cpp

Our third program takes a temperature in degrees Fahrenheit, Celsius, or Kelvin, and prints out its
equivalent in the other scales. Where TF , TC , and TK are the temperatures in each of the scales,
the conversion between them is defined by the equations below:

TF =
9

5
TC + 32.0 (2)

TK = TC + 273.0 (3)

For your convenience in testing, several equivalent values with physical significance are given
below.

1. Create a NetBeans project

2. Compile the program, fixing errors as needed5. NetBeans will help you navigate the error
messages, and flag syntax errors. You can run

~ece244i/public/exercise 1 convert

to automatically run some test cases, but you should also try some test cases of your own.

5Read the “Getting Started with NetBeans” document which discusses some common errors

Page 5 of 9



Definition o C o K o F
Boiling point (liquid nitrogen) -196.0 77.0 -320.8
Freezing point (pure water) 0.0 273.0 32.0
Boiling point (pure water) 100.0 373.0 212.0
Normal body temperature 37.0 310.0 98.6

Table 1: Selected temperature values

3. If you find that it does not, try to find and fix the error(s). As often happens with software,
be aware there may be more than one bug to be fixed.

HINT Sometimes when debugging a process involving many steps, the single-step function in
the debugger can be very useful to follow along. This can help you confirm that program control
is following the path you think (or not!). Often, this is a far more efficient process than inserting
random print statements or staring at code.

Important Make sure you do not change the output formatting. The exact same spacing and
number of decimal places must be given to receive credit.

4.7 Making sure your environment is using C++ 2011

The C++ 2011 standard is assumed in both developing and marking assignments. Thus, it is
essential that your ECF environment be set up to use the appropriate C++ compiler, i.e., one
that suppots (at least) the 2011 standard.

Start a terminal and type the following command at the prompt:

g++ -v

The command will print a few lines of output that should end with the following line if the
environment is set up correctly to use C++ 2011 compilers:

gcc version 8.4.1 20200928 (Red Hat 8.4.1-1) (GCC)

If the gcc version is not 8.4.1, please ask one of the TAs for help.

It is also essential to make sure that NetBeans is using the appropriate C++ compiler. Normally,
this would be the case. However, you may have used NetBeans before with an older version of the
C++ compiler (e.g., in APS105). Thus, NetBeans needs to be told to update the compiler version.
This can be done in a few simple steps. These steps need to be done only once.

1. Start NetBeans (if not already started).

2. Click on Tools menu and select Options from the dropdown menu.

3. Select C/C++ to display the locations of the C/C++ compiler and associated tools (see Figure 5
below). Observe the location of the C++ compiler (this may be different than the ones shown
in the figure).

4. Click on Restore Defaults button at the bottom (see Figure 5 below) and click OK in the
resulting dialog box. You may observe that the locations of the C/C++ tools has changed.
The locations will not change if NetBeans is already using the latest C++ compiler version.

Page 6 of 9



Figure 5: Window for restoring C/C++ Default Compiler

You can verify that NetBeans is setup correctly using the test11.cpp code shown below. You
do not need to understand what the code is doing at this stage. The code can also be found in the
test11 folder under lab1, which was extracted from the archive. Use the cd command to change
your current directory to the test11 directory.

1 #include <iostream>

2 using namespace std;

3

4 class Test11 {

5 public:

6 int x=9;

7 };

8

9 int main() {

10 Test11 a;

11

12 cout << a.x;

13

14 return 0;

15 }

16

17

1. Open NetBeans

2. Create a new project (File → New Project) from existing sources

3. Choose C/C++ from existing sources since the files are already there, then click next

Page 7 of 9



4. Click the Browse button and select the folder you just created (<...>/ece244/lab1/test11)

5. Leave all other settings at default

Build and run the code and if NetBeans is setup correctly, you will get no build or runtime
errors.

Should you create a new project from scratch in NetBeans, make sure that you select the C++11
option as shown in Figure 6.

Figure 6: Make sure a new project is created for C++11

4.8 Remotely Accessing ECF Machines

You may, if you choose, carry out your assignments by remotely accessing ECF machines from your
home machine or laptop. The “Remote Access to ECF” handout describes multiple ways you can
do so. Read the handout and follow the instructions to setup your remote access.

If you encounter problems setting up your remote access, then seek help from the TAs. You
can do so outside your regularly scheduled lab session by posting the issue under the folder titled
“remote access to ecf” on Piazza. Alternatively, you may seek help from one of your TAs during
your lab session.

5 Deliverables

Please submit the following files to the autotester, after you have fixed the code in each so they
produce correct output and pass exercise.

Page 8 of 9



• hello.cpp

• harmonic.cpp

• convert.cpp

Remember to use exercise to test each program. When you are satisfied both programs are
correct and perfectly match the expected output, copy all three files into one directory and use

~ece244i/public/submit 1

to submit the assignment for marking. Carefully examine the output from the submit

command to ensure your program was submitted correctly and passed basic checks,
or you may receive 0 for this part of the lab. You can submit your work as many times as you
like; only the last submission will be marked. Also check that you have set your file permissions
correctly to prevent others from copying your work.

Page 9 of 9


	Objectives
	Preparation: Tutorials and Background Documents
	Problem Statement
	Procedure
	Setting up your directory
	Importing and building the ``Hello, World'' program
	Starting with the debugger: using breakpoints
	Using exercise to test your program
	Finding a run-time bug with harmonic.cpp
	Another run-time bug: temperature conversion with convert.cpp
	Making sure your environment is using C++ 2011
	Remotely Accessing ECF Machines

	Deliverables

