
ECE244 Programming Fundamentals Fall 2022

Lab 3 : A Command Line Parser

1 Objectives

The objectives of this assignment are for you to practice: (1) the use of C++ I/O streams, includ-
ing error handling, (2) writing a simple class with constructors, accessors and mutators, and (3)
dynamic allocation and de-allocation of one-dimensional arrays. You will do so through the design
of a program that parses drawing commands from the standard input, displaying appropriate error
messages if necessary, and creating and maintaining objects that represent drawn shapes.

2 Problem Statement

The assignment consists of two main parts. In the first part, you will write a command parser
that provides a textual input interface to your program. The parser takes a sequence of commands
as input. The commands create, delete, modify and display shapes to be drawn on the screen.
Each command consists of an operation keyword followed by arguments. The command and the
arguments are separated by one or more spaces. Thus, the code you will write for this part of
the assignment should take input from the standard input, parse it, verify that it is correct, print
a response or error message and either create, delete or modify Shape objects that represent the
shapes specified in the command. The command parser loops, processing input as long as input is
available.

In the second part of the assignment, you will implement a simple “database” of objects that
stores the created shapes. To do so, you will implement a class called Shape that is used to store the
shape properties. Further, you will create and maintain a dynamically allocated array of pointers
to Shape objects to keep track of Shape objects created and deleted.

In this assignment, you will not actually draw the shapes to the screen, just process the com-
mands and maintain the database of the Shape objects.

3 String Streams

In the lectures, you were introduced to the standard input stream (handled by cin) as well as
user-created file streams (handled by ifstream objects that you create). There is one more useful
type of user-defined streams, namely string streams. These streams come handy when processing
input one line at a time, as you will do in this assignment. The rest of this section introduces you
to string streams and how to use them. You will find that they are not that much different than
using cin or ifstream.

String streams allows the extraction of input from a string, as opposed to from the keyboard
(cin) or a file (ifstream)1. The following example demonstrates how this may be done.

1String streams can be also used as output streams, but in this section, only their use for input is described.

Page 1 of 13



1 #include <iostream>

2 using namespace std;

3 #include <string>

4 #include <sstream>

5

6 int main () {

7 int anInteger;

8 string inputLine = "204 113 ten";

9

10 stringstream sin (inputLine);

11

12 sin >> anInteger; // Extracts 204

13 if (sin.fail()) return (-1);

14 sin >> anInteger; // Extracts 113

15 if (sin.fail()) return (-1);

16 sin >> anInteger; // Extraction fails

17 if (sin.fail()) return (-1);

18

19 return (0);

20 }

The #include <sstream> on line 4 imports the definition of string streams, allowing it to be
used in the example. The main function creates a string variable called inputLine on line 8 and
initializes it to "204 113 ten". The declaration on line 10 creates a new string stream handler
called sin (ala cin, but you can give it any other name). This stream is initialized from the
inputLine string variables created and initialized earlier2.

Once this is done, we can use the sin handler in the same way we use cin. We can extract an
integer from the stream, as shown on line 12. The handler sin has the same set of flags that cin
has. Thus, we can check if the extraction operation failed by invoking the method sin.fail(). In
the example, the extraction succeeds and the value 204 is placed in anInteger. The same happens
for the second extraction on line 14, which extracts 113. In contrast, the third extraction on line
16 fails, the value of anInteger is not affected and main returns with exit code -1.

The above example is not very interesting because it extracts input from a string initialized by
the program and has the foreknowledge that three integers are expected. More interesting is when
we wish to extract input from a string provided by the user and we have no knowledge of how many
extractions we have to do. The example below illustrates how to do this.

In the example, the function getline() is used to read the input the user provides through the
keyboard and places the entire stream received by cin into the string inputLine. This includes all
the white spaces in the stream (see your lecture notes for details). It also appends an eof to the
stream. Thus, while a cin stream may end with an Enter or an end-of-file (eof) a string stream
always ends with an eof. In the example, we assume the user entered 204 113 10 as input. Thus,
inputLine contains "204 113 10".

The string inputLine is then used to build the string stream handler called sin on line 11.
Subsequently, the while loop iterates until there is no more integers in a line. sin is used to extract

2A copy of the string variable is made inside the string stream. Thus, if inputLine changes after the string stream
is created, the stream in sin does not change.

Page 2 of 13



an integer from the input (the string), as shown on line 16. The first extraction succeeds and thus
the fail and eof flags of sin are false. The integer (204 in our example) is printed to the standard
output and the moreInput flag remains true. The next two iterations of the while loop extract
the next two integers, 113 and 10, and prints them to the output.

On the next iteration of the while loop, the extraction fails because the eof is encountered.
Both the fail and the eof flags are set to true. The code checks for these flags as shown on lines
17 and 18. Since the eof flag is true, the moreInputs flag is set to false (line 19) causing the while
loop to exit and the program to terminate. Since the program immediately exits after checking the
eof flag, there is really no need to clear the flags of sin, as the comment indicates in the code on
line 20. Thus, it is safe to remove this line from the code.

1 #include <iostream>

2 using namespace std;

3 #include <string>

4 #include <sstream>

5

6 int main () {

7 int anInteger;

8 string inputLine;

9

10 getline(cin, inputLine);

11 stringstream sin(inputLine);

12

13 bool moreInput=true;

14 while (moreInput) {

15

16 sin >> anInteger;

17 if (sin.fail()) {

18 if (sin.eof()) {

19 moreInput = false;

20 sin.clear(); // Not necessary

21 }

22 else {

23 cout << "Bad input\n";

24 sin.clear(); // Not necessary

25 sin.ignore(10000,’\n’); // Again not necessary

26 }

27 }

28 else cout << "The integer read is: " << anInteger << endl;

29 }

30

31 return (0);

32 }

Now, let’s assume that the user provides " 204 113 ten" as input. The first two extraction
succeed as above. However, the third extraction fails because of the ten. The fail flag is set to true
but the eof flag is set to false. The code then checks if the reason of failure is the eof (line 18), and
this is not the case. A message is printed to instruct the user that the input is bad. When using

Page 3 of 13



cin the flags must be cleared (using cin.clear()) and the input stream must be flushed using
cin.ignore(). However, with string streams, this is unnecessary since we can simply discard the
input by reading another line from cin using getline() and then rebuilding the stream handler
using the new input (not shown in the example). This automatically resets the flags and flushes
the old input, replacing it by the new one. Thus, the two calls on lines 24 and 25 are not really
necessary and can also be removed from the code.

The use of string streams is helpful when input must be processed one line at a time and the user
is not allowed to break input across multiple lines of input, separated by Enters. String streams
allows your program to get the entire line of input, analyze it and decide if the line is valid or not.
While this can be done using cin, it is more difficult since cin allows user input to be split into
multiple lines. Indeed, this is the case for this assignment and the skeleton of the main program
(included with the lab release) shows a modified version of the above example.

4 Specifications

It is important that you follow the specifications below carefully. Where the specification says
shall or must (or their negatives), following the instruction is required to receive credit for the
assignment. If instead it saysmay or can, these are optional suggestions. The use of should indicates
a recommendation; compliance is not specifically required. However, some of the recommendations
may hint at a known-good way to do something or pertain to good programming style. Even though
your code is not marked subjectively for style, it will be a good practice to take the recommendations
unless you have a good reason not to.

Example input and output for the program are provided in Section 6 for your convenience.
They do not cover all parts of the specification. You are responsible for making sure your
program meets the specification by reading and applying the description below.

4.1 Coding Requirements

1. The code you will write shall be contained in only two source files named parser.cpp and
Shape.cpp. Skeletons of the two files are released with the assignment’s zip file. The zip

file also contains two .h files: globals.h and Shape.h. These files are NOT to be modified
in any way. Modifying these files often results in a mark of 0 for the assignment.

However, you may make use of helper functions to split up the code for readability and
to make it easier to re-use. These functions (and their prototypes) must be in one of the
aforementioned two .cpp files. That is, you must not add any new .h or .cpp files.

2. Input and output must be done only using the C++ standard library streams cin and cout.

3. The stream input operator >> and associated functions such as fail() and eof() shall be
used for all input. C-style IO such as printf and scanf shall not be used.

4. Strings shall be stored using the C++ library type string, and operations shall be done
using its class members, not C-style strings.

5. C-library string-to-integer conversions (including but not limited to atoi, strtol, etc) shall
not be used.

Page 4 of 13



Argument Description, type, and range

name a string consisting of any non-whitespace characters3; except strings that
represent commands, shape types or the reserved word all.

type a string that represents the type of a shape and must be one of: ellipse,
circle, rectangle or triangle

loc a non-negative integer (0 or larger) that represents the location of the shape
in either the x or y dimension

size a non-negative integer (0 or larger) that represents the size of the a shape
in either the x or y dimension

value a non-negative integer (0 or larger) that represents the maximum number of
shapes in the database

angle a non-negative integer between 0 and 360 (inclusively) that represents angle
of rotation of a shape

Table 1: Acceptable input arguments

4.2 Command Line Input

Input will be given one command on one line at a time. The entire command must appear on one
line. All input must be read using the C++ standard input cin. The program shall indicate that
it is ready to receive user input by prompting with a greater-than sign followed by a single space
(> ); see Section 6 for an example. Input shall always be accepted one line at a time, with each
line terminated by a newline character4. If there is an error encountered when parsing a line, the
program shall print an error message (see Section 4.3), the line shall be discarded, and processing
shall resume at the next line. The program shall continue to accept and process input until an
end-of-file (eof) condition is received5.

Each line of valid input shall start with a command name, followed by zero or more arguments,
each separated by one or more space characters. The number and type of arguments accepted
depend on the command. The arguments and their permissible types/ranges are shown below in
Table 1.

Command Arguments Output if Command is Valid

maxShapes value New database: max shapes is value
create name type loc loc size size Created name: type loc loc size size
move name loc loc Moved name to loc loc
rotate name angle Rotated name by angle degrees
draw name Drew name: type loc loc size size
draw all Drew all shapes
delete name Deleted shape name
delete all Deleted: all shapes

Table 2: Valid commands and arguments and their output

The valid commands, their arguments, and their output if the command and its arguments are

3Whitespace characters are tab, space, newline, and related characters which insert “white space”; they mark the
boundaries between values read in by operator<<. All other characters (digits, letters, underscore, symbols, etc.)
are non-whitespace characters.

4A newline character is input by pressing Enter.
5eof is automatically provided when input is redirected from a file. It can also be entered at the keyboard by

pressing Ctrl-D.

Page 5 of 13



Error message Cause

invalid command The first word entered does not match one of the valid commands
invalid argument The argument is not of the correct type. For example, a floating point

number or a string may have been entered instead of an integer where
an integer is expected.

invalid shape name The name used for a shape is a reserved word (e.g., a command name
or a shape type)

shape name exists A shape with the name name exists in the database, i.e., has once
been created and has not been deleted

shape name not found A shape with the name name specified in a command does not exist
invalid shape type The type used for a shape is not one of the allowed types
invalid value The value specified in a command is invalid. For example, a less than

0 value for a loc argument, a rotation angle not between 0 and 360,
or the two size arguments of the circle shape are not equal.

too many arguments More arguments were given than expected for a command
too few arguments Fewer arguments were given than expected for a command
shape array is full An attempt to create more shapes than the argument given to the

maxShapes command

Table 3: List of errors to be reported, in priority order

all legal are shown below in Table 2. Notice that the last two commands (draw and delete) can be
run in two ways (depending on their argument): with a specific shape name, or with the keyword
all. In the case of the draw all command, the program prints not only the message shown in the
table, but also all the shapes in the database (see the example in Section 6).

Also notice that for the circle shape, the two size arguments must be equal, or an error
message is printed, as described in Section 4.3.

The program shall verify that the command and arguments are correctly formatted and within
range, and that a command is followed by the correct number of arguments. The handling of
command names shall be case-sensitive.

The first line of input to your program will always be the maxShapes command. It creates
a new (empty) database of shapes with the specified maximum allowed number of shapes. You
shall assume that this command will not have any errors in it. The maxShapes command may be
given multiple times. A subsequent maxShapes command shall create a new database with the new
maximum allowed number of shapes (see Section 4.5 for more details).

If there is an error, a message shall be displayed as described in Section 4.3. Otherwise, a
successful command produces a single line of output on the C++ standard output, cout, as shown
in Table 2. The values in italics in Table 2 must be replaced with the values given by the command
argument. Strings must be reproduced exactly as entered. Where locs or sizes are printed, they
shall appear on the order entered in the command.

4.3 Error Checking

The program must check that the input is valid. It must be able to identify and notify the user
of the following input errors, in order of priority. Where multiple errors exist on one input line,
only one should be reported: the one that occurs first as the line is read from left to right. If more
than one error could be reported for a single argument in the line, only the error occuring first in
Table 3 should be reported.

Page 6 of 13



Errors shall cause a message to be printed to cout, consisting of the text “Error:” followed by
a single space and the error message from Table 3. In the messages, italicized values such as name
should be replaced by the value causing the error. Error message output must comply exactly
(content, case, and spacing) with the table below to receive credit. There are no trailing spaces
following the text.

The program is not required to deal with errors other than those listed in Table 3. The following
are some clarification on the errors.

1. The commands and the shape types are case sensitive. Thus, while a shape cannot be named
all, draw or triangle, it can be named All, Draw or triAngle.

2. For every line of input, your program must output something. Either a message indicating
success (Table 2) or an error (Table 3). So for an empty line of input (nothing or just
whitespace) your program should print Error: invalid command.

3. Only the first error from the left should be reported per line of input. In the case of miss-
ing/extra arguments, these are errors in the arguments that are missing/extra and should be
reported only if the preceding arguments were valid.

4. You should let the extraction operator (>>) do the work for you. Recall that the operator
stops when the next character cannot be converted to the destination type. This may or may
not be a white space. Learn how to use the cin.peek() method explained in Section 5 below.

4.4 The shape Class

The shape class holds the properties of a shape, including its name, type, location, size and
rotation. The definition of the class appears in Shape.h, which is re-produced in Figure 1. Examine
the file and read through the comments to understand the variables and methods of the class. You
must implement this class in the file Shape.cpp.

4.5 The Database

The program shall keep track of all shapes using an array whose elements are pointers to Shape

objects. The array should be dynamically allocated after the first line of the input to have a size
that matches exactly the argument given to the maxShapes command. The array elements shall
all be initialized to NULL. This array is declared in parser.cpp. An integer variable shapeCount

is used to track the actual number of Shape objects stored in the database. Figure 2 depicts what
the database may look like during program execution.

All shapes shall be stored in the array (i.e., by having the pointer element of the array point to
a Shape object) starting at element 0 for the first shape added and incrementing from there. When
a Shape object is deleted, the memory allocated to the object must be freed and the element of the
array that used to point to the Shape object must be assigned the value NULL When a new Shape
object is added after another one is deleted, it must be added at location shapeCount. Thus, you
must not “pack” the array after deletions or reuse “deleted” locations.

When the maxShapes command is issued after a database has been created with an earlier
maxShapes command, all the shapes created so far must be deleted. Further, the existing dynami-
cally allocated array must be de-allocated. Only then can a new array, with the new shapeCount

value be created. It is critical that your program deletes Shape objects and the database array so
as no memory leaks occur. Indeed, it should delete all the memory it allocates with new before
it exits. In this assignment, memory leaks will be checked for and reported by exercise and the

Page 7 of 13



1 #ifndef Shape_h

2 #define Shape_h

3

4 #include <iostream>

5 #include <string>

6 using namespace std;

7

8 class Shape {

9 private:

10 string name; // The name of the shape

11 string type; // The type of the shape (see globals.h)

12 int x_location; // The location of the shape on the x-axis

13 int y_location; // The location of the shape on the y-axis

14 int x_size; // The size of the shape in the x-dimension

15 int y_size; // The size of the shape in the y-dimension

16 int rotation = 0; // The rotations of the shape (integer degrees)

17 public:

18 // Build a Shape object with its properties

19 Shape(string n, string t, int x_loc, int x_sz, int y_loc, int y_sz);

20

21 // Accessors

22 string getType(); // Returns the type

23 string getName(); // Returns the name of the shape

24 int getXlocation(); // Returns location of the shape on the x-axis

25 int getYlocation(); // Returns location of the shape on the y-axis

26 int getXsize(); // Returns the size of the shape in the x-dimension

27 int getYsize(); // Returns the size of the shape in the y-dimension

28

29 // Mutators

30 void setType(string t); // Sets the type (see globals.h)

31 // No error checking done inside the method

32 // The calling program must ensure the type

33 // is correct

34 void setName(string n); // Sets the name of the shape

35 void setXlocation(int x_loc); // Sets location of the shape on the x-axis

36 void setYlocation(int y_loc); // Sets location of the shape on the y-axis

37 void setXsize(int x_sz); // Sets size of the shape in the x-dimension

38 void setYsize(int y_sz); // Sets size of the shape in the y-dimension

39

40 void setRotate(int angle); // sets the rotation of the shape

41

42 // Utility methods

43 void draw(); // Draws a shape; for this assignment it

44 // only prints the information of the shape

45 };

46

47 #endif /* Shape_h */

48

Figure 1: Defintion of the class shape

Page 8 of 13



autotester, but there is no penalty for having memory leaks. In future assignments there will be
penalties for leaking memory.

A good way to check if you have deleted all the memory you allocated with new is to run the
valgrind memory checking program. A tutorial on valgrind is released with this assignment.
You are encouraged to learn and use this tool. It is used by exercise to check for memory leaks
in your code.

0 1 max_shapes-1 

shape shape shape 

shapesArray

Figure 2: A depction of the database

5 Hints

• You can check a stream for end-of-file status using the eof member function.

• The ignore member function in iostream may be useful to you if you need to ignore the
remainder of a line.

• To save typing, you can create one or more test files and pipe them to your program. You
can create a text file using a text editor (try gedit, gvim, or the NetBeans editor). If your
file is called test.txt, you can then send it to your program by typing main < test.txt.
Building a good suite of test cases is important when developing software.

• If you want to look ahead (“peek”) at what character would be read next without actually
reading it, peek() does that. For instance, if you type “Hello” then each time you run peek()

you will get ’H’. If you read a single character, it will return ’H’ but then subsequent calls to
peek() will return ’e’.

• When interacting with your program from the keyboard, Ctrl-D will send an end-of-file (eof)
marker.

• Reading from cin removes leading whitespace. When reading strings, it discards all whites-
pace characters up to the first non-whitespace character, then returns all non-whitespace
characters until it finds another whitespace. For integers (numbers), it skips whitespace and
reads to the first non-digit (0-9) character.

• Remember you can use the debugger to pause the program, step through it, and view variables
(including strings).

• If you decide to pass the string stream you created to a function, remember that string streams
(and other types of streams for that matter) can only be passed by reference, not by value.

A suggested (but not mandatory) structure for your code appears in the skeleton parser.cpp

file released within the assignment’s zip file.

Page 9 of 13



6 Examples

6.1 A Short Example

The program when first started, ready to receive input:

>

Now the user types a command (ending with Enter) to create a new database of size 100.

> maxShapes 100

To which the program should respond with the message indicating the successful creation of new
database with 100 entries.

New database: max shapes is 100

The user then creates a new ellipse called my circle located at x and y positions of 30 and 40 and
with a x and y sizes of 10 and 10.

> create my_circle ellipse 30 40 10 10

To which the program should respond with the message for a successful creation of a shape:

Created my_circle: ellipse 30 40 10 10

6.2 Full session

The following is an example session. Note that the text from the prompt (> ) up to the end of the
line is typed by the user, whereas the prompt and line without a prompt are program output.

> maxShapes 4

New database: max shapes is 4

> create my_circle ellipse 50 65 20 20

Created my_circle: ellipse 50 65 20 20

> create my_square rectangle 100 150 60 60

Created my_square: rectangle 100 150 60 60

> create a_circle circle 120 200 30 40

Error: invalid value

> create my_triangle triangle 40 75 -90 90

Error: invalid value

> create my_rectangle rectangle 100 275 90 180

Created my_rectangle: rectangle 100 275 90 180

> create ellipse rectangle 100 275 90 180

Error: invalid shape name

> create my_rectangle triangle 70 50 10 5

Error: shape my_rectangle exists

> create second_triangle triangle 70 50 10 5

Created second_triangle: triangle 70 50 10 5

> move my_circle

Page 10 of 13



Error: too few arguments

> mve my_circle

Error: invalid command

> move my_circle 70 90

Moved my_circle to 70 90

> rotate my_rectangle 90 100

Error: too many arguments

> rotate my_rectangle 100

Rotated my_rectangle by 100 degrees

> rotate my_rectangle 400

Error: invalid value

> draw my_trinagle

Error: shape my_trinagle not found

> draw my_circle

Drew my_circle: ellipse 70 90 20 20

> draw all

Drew all shapes

my_circle: ellipse 70 90 20 20

my_square: rectangle 100 150 60 60

my_rectangle: rectangle 100 275 90 180

second_triangle: triangle 70 50 10 5

> delete my_square

Deleted shape my_square

> draw all

Drew all shapes

my_circle: ellipse 70 90 20 20

my_rectangle: rectangle 100 275 90 180

second_triangle: triangle 70 50 10 5

> delete all

Deleted: all shapes

> draw all

Drew all shapes

>

7 Procedure

Create a sub-directory called lab3 in your ece244 directory, and set its permissions so no one else
can read it. Download the lab3 release.zip file, un-zip it and place the resulting files in the
lab3 directory. There are two .cpp files in which you will add your code. The first is parser.cpp
in which you will write the command parser code. The second file is Shape.cpp in which you will
implement the class Shape. Both files are in the directory parser. You must not rename these files
or add more files. There is also a NetBeans project to help you get started with NetBeans.

The release also contains two include files globals.h and Shape.h. You may NOT modify
these files to add to or delete from their content. Modifying the files commonly results in a mark
of zero for the assignment. In addition, there is a Makefile that is used by NetBeans to separately
compile your project. Do not modify this file either.

Write and test the program to conform to the specifications laid out in Section 4. The hints in

Page 11 of 13



Section 5 may help get you started, and the example sessions in Section 6 may be used for testing.
The ~ece244i/public/exercise command will also be helpful in testing your program. You

should exercise the executable, i.e., parser.exe, using the command:

~ece244i/public/exercise 3 parser.exe

As with previous assignments, some of the exercise test cases will be used by the autotester

during marking of your assignment. However, we will not provide all the autotester test cases in
exercise, You should create additional test cases yourself and ensure you fully meet
the specification listed above.

In addition, there is a reference implementation provided by the teaching stream. It can only
be executed on the ECF machines. You can use this reference solution to test any undeclared
behaviors. In general, your program should generate exactly the same output as the reference
solution. Run the following command on your ECF terminal to execute the reference solution:

~ece244i/public/parser-ref.exe

8 Deliverables

Submit the parser.cpp and Shape.cpp files as lab 3 using the command

~ece244i/public/submit 3

Page 12 of 13


	Objectives
	Problem Statement
	String Streams
	Specifications
	Coding Requirements
	Command Line Input
	Error Checking
	The shape Class
	The Database

	Hints
	Examples
	A Short Example
	Full session

	Procedure
	Deliverables

