University of Toronto
Faculty of Applied Science and Engineering

ECE 244F
PROGRAMMING FUNDAMENTALS
Fall 2015
Final Examination
Examiners: Michael Stumm and Hamid Timorabadi

Duration: Two and a Half Hours

This exam is CLOSED Textbook and CLOSED notes. The use of computing and/or
communicating devices is NOT permitted.

Do not remove any sheets from this test. All questions must be answered in the space provided.
Work independently. The value of each question is 5. The total value of all questions is 100.

Write your name and student number in the space below. Do the same on the top of each sheet
of this exam book.

Name:

(Underline last name)

Student Number:
Q1. , Q11.
Q2. Q12.
Q3. Q13.
. Q14.
Qs. Q15.
Q6. Q16.
Q7. Q17.
Q8. : Q18.
Q. Q. Total
Qu.___ Q20.

Page 1 of 18

Question 1. (5 marks). Warmup questions.

a) How many plusses (‘+’) does the name of the programming language fnswer:
have that you have been using in this class?
x [dnswer:
b) 27 =2z Solve for x:

x —
¢) What is base 2 log of 128? nswer:
d) How many members does an object of class B have if defined as below:

Ynswer:
class A{ inta; } ;
class B : public A{ int a ; } ;

e) Inthe following recursive implementation of Fibonacci, a call to ib with 4 as an argument,
fib(4), will generate how many calls to fib?

nswer:
int fib(int n) { -
if(n==0@) return 0 ;
if(n==1) return 1 ;

. return fib(n-1)+fib(n-2) ;
}
Question 2. (5 marks). More warmup questions.
Please circle the correct answer:

a) True or False:

An O(log‘(n)) algorithm is always faster than an O() algorithm when n > 1?2

b) True or Falsé:_ The complexity of the following function is O(2 4).

int Boo(int n) {
if (n == 4) return (2);
else return (2* Boo(n+1l));

The complexity of HashTable::Insert(int v) which inserts the value v into a

|
oo
. ¢) True or False:
- closed hash table using linear probing is always O("]).

Page 2 of 18

d) Control-C or Control-D:

You are testing a program that reads from the standard input until end of file is reached. -
When you have completed providing input, what do you type?

e) True or False:
and possibly allocate memory for the base object.
Question 3. (5 marks). Simple complexity analysis.

Using big-O notation, what is the complexity of the following algorithms:

a) factorial: A

A derived class constructor must always call the default base class constructor to initialize
|
|
|

int fact(int n) { . o E dnswer: -
' int f=1; B ’ _ ' '
for(int i=n; i>1; i--) ‘ T(n) = O()
f *= i ;
return f ;
} -
b) summation of the first n numbers (due to Gauss):
. Answer:
int sum(int n) {
return n * (n+l) / 2 ; T(@m) = O()
} :
¢) Fibonnaci
int fib(int n) {
int *fibarray = new int[n] ; Unswer:
. . fibarray[@] = @ ;. U
fibarray[1] = 1 ; T(m) = O()
for(int i=2; i<n+1; i++)

fibarray[i] = fibarray[i-1] + fibarray[i-2] ;
return fibarray[n] ;

Page 3 of 18

Question 4. (5 marks). Yet more complexity analysis.

Suppose that you have an array A of integers; the integers are not in any sorted order, and the array
may contain duplicate items. Three algorithms are described below that copy all items of array A into
another array B, but in a way that prevents items that may be duplicated in A from beirg duplicated
in B. What is the average running time in big-O notation of each algorithm? State any assumptions
you make. “ '

a) For each item in array A, copy the item into another array B unless the item already exists in B.

b) Sort A using Quicksort, and then for each item in array A, copy the item into another array B
unless the item already exists in B, which can now be determined with just one lookup.

¢) Insert each element of A into a hash table unless a duplféaté item already exists in the hash table.
At the end, copy all items from the hash table into array B.

Page 4 of 18

Question 5. (5 marks). Complexity analy&is of recursive functions.
(Some parts of this question may take some time to solve.)

Assume that the function 1ini(int n) in the algorithms below has a linear running time,
T(n) = O(n), so that T(n) < ¢ n for some constant c.

Using big-O notation, what is the running time of the function f(int n) in the following five cases?

- a) void f(int n) { inswer:
if(n>0) {
f(n/3.4) ; S —
, T() = O()
}
b) void f(int n) { Unswer:
if(n»e) { :
lini(n) ; T(n) =O()
. f(n/2) ;
} .
3
¢) void f(int n) { rswer:
if(n>0) {
lini(n) ; T(n) = O()
f(n/2) ;
f(n/2) ;
}
}
d) void f(int n) { Unswer:
if(n>e) {
lini(n) ; T(n) = O()
f(-n-1) ;
}
}
€) void f(int n) { - p—
if(n>e) { e
lini{ n) ;
), T(n) = O()
f(n-1) ;
}

Page 5 of 18

Question 6. (5 marks). Pointers and Classes.

Doubly-linked lists were not covered in the lectures in any detail. Nevertheless, nodes in doubly-
linked lists also contain prev pointers that point to the previous node in the list (in addition to next
pointers that point to the next node in the list) as in the following diagram:

R

g prev value next prey value next * prey value next

A novice programmer wrote the following particularly poor implementation of class DLNode that
uses casting, where “(DLNode*) p” converts the pointer p to a point to a DLNode object. Moreover, the
implementation relies on default destructors:

class LLNode { class DLNode: public LLNode {
private: private: :
int value ; . DLNode * prev ;
LLNode *next ; public:
public: DLNode* getNext()
" LLNode* getNext() { return next ; } {return (DLNode *) LLNode :getNext(); }
void setNext(LLNode *n) DLNode* getPrev() {return prev ; }
{ next =n; } void setPrev(DLNode *p)
. { prev = p ; }
Y .

}s

Further assume you have been passed a DLNode pointer, p, that points to an element which resides
somewhere in the middle of a very large list. Your task is to write the lines of code which would free
the space of the node pointed to by p (the node with value 12), using the delete operator, after

“properly removing it from the list. The remaining elements in the list must be properly linked to one

another after the deletion.

Note that you are not being asked to write a complete function: just the lines deleting the appropriate
node (i.e., the DLNode with value=12) from the list that is shown above, starting only with p. You
may not allocate or use any additional variables (including pointers). Assume the code does not
belong to a member function; i.e., private data members and methods cannot be accessed.

Your code:

Page 6 of 1ﬁ

Question 7. (5 marks) Pointers.

Consider the following data elements. Note that some have a name at the top-left (i.e., xx and yy),
while others do not. All of the elements are pointers, except the objects depicted on the right hand
side and denoted as class A objects. Assume that class A has been declared already.

Class A
object

XX:

class A
object

class A
object

In the space below, provide the declarations and statements needed to create the data structure shown
above. The number of statements used should be minimal; i.e., marks will be deducted for extra
statements. Elements without a name in the figure may not have a name in your code.

dnswer.

Page 7 of 18

Question 8. (5 marks). Linked Lists.

Linked lists can be used to implement various data structures. Here, we consider the use of linked
lists to implement a stack. A stack is a LIFO (last in, first out) abstract data type which is used to
maintain a collection of objects. The stack has two principal operations:
push, which adds an element to the collection at the top of the stack, and
pop, which removes the element at the top of the stack.

Assume class Node has been defined as in class with two private data
members, int value and Node * next, and with the following
constructors:

Node() ;
Node(int v) ;
Node(int v, Node* n) ;

Moreover, class Stack is declared as a friend. Assume class Stack is defined as:

class stack {
private:
Node * sp ;
public:
stack() { sp = NULL ; }
~Stack() { delete sp ; }
void push(int value) { sp = new Node(value, sp) ; }
) Node * pop() ;

In the space below, implement stack: :pop() that removes the node at the top of the stack and returns
a pointer to the node if it exists and returns nuLL if it does not exist. You are to implement this by
adding at most five lines of code in the space below:

lAnswer:

Node * stack::pop() {

Page 8 of 18

Question 9. (5 marks). Argument passing.

What does the following program output:

void func(int*& a, int* b, int* c) {
afe] = 5; a[1] = 6;

o

c[e] =7; c[1] = 8&;
a=c;
a[e] = 9; a[1] = 18;
b[e] = 11; b[1] = 12;
}
int main() {
int* m = new int[2];
int* n = new int[2];
m[e] = 1; m[i] = 2;
n[e] = 3; n[i1] = 4;
func(m,'m, n);
cout << m[@] << "-" << m[1] << "-" << n[@] << "-" << n[1] << endl;
¥ " Wnswer:

Question 10. (5 marks). Memory Management.

Assume that variables of type int or float each consume 4 bytes of memory and that each pointer
also consumes 4 bytes of memory. How much memory space (in bytes) will the following program
have allocated — whether on the stack or dynamically, and whether leaked or not — by the time we
reach Point A of the program, and how much memory space will have leaked by the time the

program reaches point A:.

class A {
int numItems;
int* items;
A(int n) {
numItems = n ;
items = new int[numItems] ;
¥
} s)
int main() {
A* firstObject;
for(int i=1; i<4; i++) {
firstObject = new A(i) ;
}
// Point A
}

Total memory allocated by time we reach

point A:
bytes

Leaked memory by the time we reach
point A:
bytes

Page 9 of 18

Question 11. (5 marks). Operator Overloading.

One of the disadvantages of C and C++ arrays is that they have no bounds checking. This results in
erroneous program behavior and crashes when the program contains off-by-one errors when indexing
into arrays. For this reason, you wish to implement a “smart array” of objects of type T. The goal is
to automatically check the bounds of the array when indexing into the array. The declaration of your
smart array starts as follows: '

class smartTarray {
private:
T *array;
int size;
public:
SmartTarray(int arraySize) ;

1

You may assume that class T and the constructors/destructor of class SmartTarray are properly
implemented. Write the operator[] function that is used to index into the array and returns a copy
of the indexed T object if successfill. If the array is accessed with an index out of bounds, it should
output the error message “out of bound access”, and in that case any value can be returned.

Write your answer in the box below.

[dnswer:.

Page 10 of 18

Question 12. (5 marks). Tree Traversals.

Assume TreeNode is a class as defined in the lectures with data members consisting of value, left
and right. Further, assume the following function that traverses a binary tree:

void TreeNode::wtraverse() {
cout << this-»value << " - " ;
if(right = NULL) right->wtraverse() ;
if(left != NULL) left->wtraverse() ;

}

What is output when the function wtraverse() is called on the node labeled “15” in the tree shown
below (in the next question, before any modifications to the tree)?

Answer:

Qﬁestion 13. 4(5 mai‘ks). Binary Sédrch Trees.

The following is a binary search tree.

Assume that the node with the key “45” is deleted from the tree and then subsequently re-inserted as
a new node (also with the key “45”). Draw changes to the tree above that result from the deletion
followed by the insertion. You can make the changes directly in the diagram of the tree above.

Page 11 of 18

Question 14. (5 marks). Inheritance.

Consider the following code fragment. First cross out (like-this) all lines that are incorrect; i.e., lines
that might cause a compiler error or a run-time error. Then determine what output generated by the

following code?

#include <iostream>
using namespace std;

class B {
public:
B()
virtual void Foo() ;
}s
class D : public B {
public:
D() ;
void Foo() ;
}s

B::B() { this->Foo() ; }

void B::Foo() { cout <« “é::Foo()" << endl ; }
D::D() { this->Foo(); }

void D::Foo() { cout << "D::Foo()" << endl; }

int main() { D objectD; }

Output.

Page 12 of 18

Question 15. (5 marks). More inheritance.

Consider the following code fragment. First cross out (Yike-this) all lines in main() that are incorrect;
i.e., lines that might cause a compiler error or a run-time error. Then, provide the output generated by
the code (assuming the crossed-out lines are not executed). Note that the three classes have no errors.

#include <iostream>
using namespace std;

class B {
protected:

virtual void Foo()

public:

Y

class D : public B {

void Boo() { Foo() ;

virtual void Hoo()

~

protected:

virtual void Foo()

public:

} s

void Boo() { Foo()
virtual void Hoo()

class E : public D {
public:

int

void Foo() { cout << "E::Foo()" << endl ; }
void Boo() { Foo() ; cout << "E::Boo()" << endl ; }
void Hoo() { /* deliberately left empty */ }

main() {

B bObj, *bPtr ;
D dObj, *dPtr ;
E eObj, *ePtr ;

bPtr
ePtr

&e0bj ;
&e0bj ;.

bPtr -> Boo() ;
bPtr -> Hoo() ;

eObj.Boo() ;
eObj.Hoo() ;

>

cout << "B::Foo()" << endl ; }

cout << "B::Boo()" << endl ; }
/* deliberately left empty */ }

cout << "D::Foo()" €<_endl S

@ ;

cout- << "D::Boo()" << endl ; } -

Output.

Page 13 of 18

Question 16. (5 marks). Hash tables.

Assume you are given a closed hash table with size M = 11, and the following hash function:
h(key) = (key % M) (Note: the “%” is the modulus operator in C++)

Assume that quadratic probing is used to resolve key collisions, and that the hash table is initially

empty. Ifiis the initial hash index generated by the hash function above, quadratic probing
examines locations 7 + kz, where £ =0, 1, 2, 3, ... until an empty location is found.

Show the final contents of the hash table after all of the following operations have been performed, in
the sequence shown. Next to each operation, indicate the number of probes performed when
inserting that value, where each required examination of a hash table entry is considered to be a
probe. (Hence, the first operation, insert 7, requires one probe.)

Operation: Probes: Hash table after all insertions:
insert 7 1 0

1
insert .3 >
insert 18 3

4
insert 29

5
insert 14 6

7
insert 40

8
insert 25 9

10

Page 14 of 18

Question 17. (5 marks). Surprise: yet another complexity question.

What is the worst case running time in Big-O notation of the function
processArray(int data[], int a, int b)
of the next following Question 18, where n is the size of the data array.

Unswer:

T(n) = O()

Question 18. (5 marks). Recursion.

What does the following code snippet output:
void processArrayMore(int data[], int a, int c, int b) {
if(data[a] > data[c+1])

swap(data[a], data[c+1]) ;
}

void processArray(int data[], int a, int b) {
if(a <= b) return ;
int ¢ = (a+b)/2 ;
processArray(data, a, c) ;

processArray(data, c+1, b) ;
processArrayMore(data, a, ¢, b) ;

int main() {
int data[8] = { 4, 10, 3, 16, 2, 1, 5, 7 } ;
"processArray(data, 9, 7) ;
coﬁt << data[@] << endl ;
int data2[8] = {1, 2, 3, 4, 5, 6, 7, 8 } ;
.processArray(data2, @, 7) ;

cout << data2[e] << endl ;
}

(The code int data[8] = {1, 2, 3...} initializes array data such that the first element
(data[@]) obtains the value 1, the second element (data[1]) obtains the value 2, etc.

ldnswer:

Page 15 of 18

Question 19. (5 marks). Constructors.

Assume that class A has the following constructors and operators defined:

AQY
- A(int, float) ;
A(const A&) ;
A& operator=(const A&) ;

And assume that class B has the following constructors defined:

B() ;

B(string) ;

B(const E &) ;
B(const B &) ;

Finally, assume that class D is declared in part as follows:

class D : public B {
protected:
Aa; i
A *ap ; // a pointer to a single A object (or NULL).
public: :

};‘

Class D does not contain any additional data members beyond a and ap. In the space below, please
provide the definition (i.e., implementation) of a copy constructor for class D.

D’s Copy Construqtori

Page 16 of 18

Question 20. (5 marks). Graphs.

Consider the two classes below that are used to implement an undirected, connected graph:

class GNode{

private:
int value ;
int numEdges ; // number of edges connected to this node
GNode ** edges ; // array of edges; i.e., array of GNode *
bool visited ; // temporary data for traversing graph
public:

int getvalue() const { return value ; }

void setvalue(int v) { value = v ; }

int getNumEdges() const { return numEdges ; }
GNode* getEdge(int i) const { return edges[i] ; }
bool getvisited() const { return visted ; }

void setVisited(bool val) { visited = bal ; }

. // constructors and destructor not shown

};'

class Graph{
private:
GNode *anchor ;
pub11c
GNode* getAnchor() const { return anchor ; }
void setAnchor(GNode* a) { anchor = a ; }
. // many other methods, including constructors and destructor

Y

Note that a graph object simply points to some node in the graph (if one exists) that we refer to as the
anchor node and that all other nodes of the graph can be reached from the anchor node. In the space
below and on the next page, implement a function that is a member function of class Graph and that
returns the number of nodes in the graph that have the value v:

int Graph::count(int v)

You may add helper member functions to either of the GNode or Graph classes or both, but you may
not add any new data members and you may not use global variables.

Page 17 of 18

Page 18 of 18

