
 Page 1 of 17

University of Toronto
Faculty of Applied Science and Engineering

ECE 244F

PROGRAMMING FUNDAMENTALS

Fall 2008

Final Examination

Examiner: C. Gibson, A. Goel, and M. Stumm

Duration: Two and a Half Hours

No aids allowed. No books. No notes. No calculators. No computers. No communicating
devices.

Do not remove any sheets from this test book. Answer all questions in the space provided.
No additional sheets are permitted.

There are 15 questions. The weight of each question is the same. Work independently.

Write your name and student number in the space below. Do the same on the top of each
sheet of this exam book.

Last Name: ___________________ First Name: _________________________

Student Number: ______________________

Q1. __________ Q9. __________

Q2. __________

Q10. _________

Q3. __________

Q11. _________

Q4. __________

Q12. _________

Q5. __________

Q13. _________

Q6. __________

Q14. _________

Q7. __________

Q15. _________

Q8. __________

Total

Name: _______________________________ Student Number: ___________________

Page 2 of 17

1. Warmup

a. Consider the following code:

class Data {
 private:
 int a;
 public:
 int get() { return a; }
};

int main() {
 Data data;
 return 0;
}

 Modify the code above so that data is declared as a global variable.

b. Identify what is wrong with the following code and fix the error(s):

class C {
public:
 int x;
};

void main(void) {
 int x = 78;
 C c;

 c->x = x+22;

 cout << c->x << endl ;
}

c. Identify what is wrong with the following code and fix the error(s):

const int MAX 10

int list[MAX];

void main(void) {
 int sum = 0;

 for (int i = 0; i < MAX+1; i++) {
 list[i] = i;
 }
 for (int i = 0; i < MAX+1; i++) {
 sum += list[i];
 }
 cout << sum << endl ;
}

Name: _______________________________ Student Number: ___________________

Page 3 of 17

2. GDB and Unix

a. Briefly describe (one sentence) what the “Step” command does in either gdb or DDD when debugging a

running program:

b. Assume your current working directory is your home directory. What Unix command(s) would you need
to execute to create a new directory “Lab4” under the existing “ece244” directory.

c. What command do you need to execute in order to make the contents of this directory not readable by
anyone else but yourself?

d. You are testing a program that reads from the standard input until end of file is reached. When you
have completed providing input, do you enter Control-C or Control-D?

e. What command do you issue in order to remove a file?

Answer:

Name: _______________________________ Student Number: ___________________

Page 4 of 17

3. Scope and parameters

Show the output of the following program in the box provided below. Show your work for partial credit.

#include <iostream>
using namespace std;

char confuse (char c1);
void mixup (char &c1, char c2, char c3);

char c4 = 'F';

int main () {
 char c1 = 'H', c2 = 'C', c3 = 'E';
 mixup(c2, c1, c3);
 {
 char c3 = 'G';
 cout << c1 << c2 << c3 << c4 << endl;
 }
 cout << confuse(c4) << c1 << c2 << c3 << c4 << endl;
 return 0;
}

char confuse (char c1) {
 const char c2 = 'O';
 char c3 = c1;
 if (c1 >= 'N') return c3;
 else return c2;
}

void mixup (char &c1, char c2, char c3) {
 cout << c1 << c2 << c3 << c4 << endl;
 c1 = confuse(c3);
 c2 = 'S';
 c3 = 'I';
 c4 = confuse(c2);
}

Output line 1:

Output line 2:

Output line 3:

Output line 4:

Name: _______________________________ Student Number: ___________________

Page 5 of 17

4. Complexity Analysis.

Determine the worst-case time complexity (expressed in big-O notation) for each of the program segments
below as a function of the size of the input n. Show the details of your analysis and clearly indicate your final
result. If you make any assumptions, state them.

a. The size of the input is n.

int
whatisit(int x, int n)
{
 int m;
 if (n <= 0)
 return 1;
 m = whatisit(x, n / 2);
 if (n % 2)
 return x * m * m;
 else
 return m * m;

}

Write the recurrence equation for T(n).

Solve the recurrence equation to obtain an expression of T(n) in terms of n.

Express T(n) using the big-O notation.

T(n) =

Name: _______________________________ Student Number: ___________________

Page 6 of 17

b. The size of the input is n.

int
whatisit(int n)
{
 int x;

 if (n <= 1) {
 return 1;
 }
 if (n % 2) {
 x = whatisit(n/2) + whatisit(n/2 + 1);
 } else {
 x = 2 * whatisit(n/2);
 }
 return x;
}

Write the recurrence equation for T(n).

Solve the recurrence equation to obtain an expression of T(n) in terms of n.

Express T(n) using the big-O notation.

T(n) =

Name: _______________________________ Student Number: ___________________

Page 7 of 17

5. Programming

Write the implementation of the following function to output to the standard output the null-terminated string,
passed in as a character array parameter, so that the letters of the string (prior to the null-terminating character)
are output backwards where the last character is output first, the second to last character is output next, and the
first character is output last and do so without using any types of loops, such as for loops or while loops, and
without using strlen() or any other str… functions. For example, if the array passed in as a parameter
contains the characters ‘H’, “e’, ‘l’, ‘l’, ‘o’, Ø, then the function should output the string the characters ‘o’, ‘l’,
‘l’, ‘e’, and ‘H’.

 void output_backwards(const char * cp) {
 // write your code here…

}

6. QuickSort
The following is a not-so-nice, but correctly functioning implementation of a select-and-shuffle algorithm
called by quicksort. (This function is sometimes also called “partition”.)

int selectAndShuffle(int * a, int left, int right)
{
 int i=left-1, j=right;
 int pivot=a[right];
 for (;;) {
 while (a[++i] < pivot);
 while (pivot<a[--j])
 if (j==1eft) break;
 if (i>=j) break;
 swap(a[i], a[j]);
 }
 swap(a[i], a[right]);
 return i;
}

In this implementation, the pivot value is selected as the rightmost array member. Assume the function
swap() swaps the values of the two arguments correctly.
a. Given an array a[6]=[5,5,5,5, 5,5]	 , how many swap() function calls will be executed during the

partition? The input parameters for the partition call are: left=0, and right=5.

b. if we change line 6 to while(a[++i]<=pivot);, will the algorithm still work correctly?

Answer:

Answer:

Name: _______________________________ Student Number: ___________________

Page 8 of 17

7. Classes with Pointers

The following code shows partial declarations of a node class and a binary tree class.

class Node {
 public:
 Node(int);
 Node(const Node &);
 int value;
 Node *left;
 Node *right;
};

class Tree {
 public:
 Tree();
 ~Tree();
 Node *root;
 Tree(const Tree &);
};

Assume that the code above compiles correctly and that all member functions of the Node and Tree class are
defined, except the copy constructor of the binary tree class. The copy constructor must do a deep copy of the
binary tree. The following code implements the binary tree copy constructor using a helper member function
called TreeCopy. Your job is to write the TreeCopy member function. Make sure to declare the types of all
parameters in TreeCopy.

Tree::Tree(const Tree &t) {
 TreeCopy(&root, t.root);
}

Name: _______________________________ Student Number: ___________________

Page 9 of 17

8. Exception Handling

Assume that you are given the following definitions and the main program.

#include <iostream>
using namespace std;

class BadPointer {
 public:
 void print();
};

class OutOfBound {
 public:
 void print();
};

void BadPointer::print()
 { cout << "BadPointer" << endl; }

void OutOfBound::print()
 { cout << "OutOfBound" << endl; }

void f2(int *ip, int index,
 int size)
{
 if (index < 0 || index >= size)
 throw OutOfBound();
 cout << "value = " << index
 << endl;
}

void f1(int *ip, int size) {
 try {
 if (ip == NULL)
 throw BadPointer();
 f2(ip, 10, size);
 } catch (OutOfBound e) {
 cout << "f1: "; e.print();
 }
 if (size > 0) f2(ip, size, 5);
}

int main() {
 int i;
 int *ip = NULL;

 cin >> i;
 if (i > 0) ip = new int[i];
 try {
 f1(ip, i);
 } catch (OutOfBound e) {
 cout << "main: "; e.print();
 } catch (BadPointer e) {
 cout << "main: "; e.print();
 }
 cout << "end" << endl;
 return 0;
}

What is printed if the user enters the following input:

Input Output Input Output

20 1

10 0

5 -1

Name: _______________________________ Student Number: ___________________

Page 10 of 17

9. Inheritance

Consider the C++ code shown below for three classes, node, lnode and cnode, and the main program shown on
the next page.

#include <iostream>
using namespace std;

// Calling virtual functions on a pointer, reference, not copy
// Three level hierarchy

class node {
 public:
 node(int n) { number = n; }
 int get_num() { return number; }
 virtual ~node() {};
 private:
 int number;
};

class lnode : public node {
 public:
 lnode(int l): node(10) { length = l; }
 virtual int get_num() { return 2 * node::get_num(); }
 virtual int get_len() { return length; }
 virtual ~lnode() { cout << "~lnode" << endl; }
 private:
 int length;
};

class cnode : public lnode {
 public:
 cnode(int l, char *c);
 int get_len() { return 2 * lnode::get_len(); }
 virtual ~cnode();
 private:
 char *color;
};

cnode::cnode(int l, char *c) : lnode(l)
{
 color = new char[strlen(c) + 1];
 strcpy(color, c);
}

cnode::~cnode() {
 delete color;
 cout << "~cnode" << endl;
}

Name: _______________________________ Student Number: ___________________

Page 11 of 17

int main()
{
 cnode c(12, "red");
 lnode &l = c;
 lnode *lp = &c;
 node &n = c;
 node *np = &c;

 cout << "l.get_num: " << l.get_num() << endl;
 cout << "lp->get_num: " << lp->get_num() << endl;
 cout << "n.get_num: " << n.get_num() << endl;
 cout << "np->get_num: " << np->get_num() << endl;

 cout << "l.get_len: " << l.get_len() << endl;
 cout << "c.get_len: " << c.get_len() << endl;
 cout << "lp->get_len: " << lp->get_len() << endl;

 lnode ln = c;
 cout << "ln.get_num: " << ln.get_num() << endl;
 cout << "ln.get_len: " << ln.get_len() << endl;

 return 0;
}

Show the output of the main program below.

Line Output

1

2

3

4

5

6

7

8

9

10

11

12

13

15

Name: _______________________________ Student Number: ___________________

Page 12 of 17

10. Binary Trees II

Assume that binary trees are implemented using the following declarations.

struct TreeNode
{
 int info; // data stored
 int size; // size of subtree (root included)
 TreeNode * left; // left subtree
 TreeNode * right; // right subtree

 TreeNode(int val, TreeNode * lptr, TreeNode * rptr)
 : info(val), size(1), left(lptr), right(rptr) { }
};

a. Write a function SetSize() in the space provided on the next page where its header is given.
SetSize() should set the size field of every node in its tree parameter to the number of nodes in that
node's sub-tree (including itself). The number of nodes in a tree is equal to the number of nodes in its left
sub-tree plus the number of nodes in its right sub-tree plus one. For example, the following picture shows
the result of the call SetSize(root):

b. Assume that tree T is a binary search tree ordered by the values in the nodes' info fields, and that there
are no duplicate info values. The kth value in a binary search tree is the kth smallest value in the tree.
For example, the tree shown above includes the data values 12, 25, 30, 37, 50, 62, 75, 88.

Write a function FindKth()in the space provided on the next page where its header is given.
FindKth() is to return the kth value in a binary search tree. Assume that the size fields in all nodes of
the tree have been correctly initialized. One way to determine the location of the kth value is as follows:
Consider the size of the left subtree of the current node. If k is equal to the size of the left subtree + 1, the
kth value is in the current node. If k is less than the size of the left subtree + 1, the kth value is in the left
subtree. Otherwise, the kth value is in the right subtree.

Name: _______________________________ Student Number: ___________________

Page 13 of 17

void SetSize(TreeNode * t)
{

}

int FindKth(TreeNode * t, int k)
 // assume: t is not NULL,
 // the size fields of all nodes in t are correct.
 // 1 <= k <= t->size
{

}

Name: _______________________________ Student Number: ___________________

Page 14 of 17

11. Make

Consider the following Makefile:

The following table shows several invocations of the Make utility using the above correct Makefile. For each
invocation, indicate the commands that are executed as a result of the invocation, in the order in which they are
invoked. In your answer, only provide the line numbers corresponding to the commands that are executed.

Assume that no files generated as a result of calling make exist before the first call of make. Also, the
invocations of Make are performed in the order shown in the table (i.e., the different commands are not
independent).

Assume that the Makefile exists in the same directory as all the .cpp and .h files.

Recall that the touch command simply updates the timestamp of its argument to the current time, as if the file
had been modified at the time touch was invoked.

Make Invocation Commands Executed (indicate line number)

make maintool

touch list.h
make mixtool

make findtool

make all

all: maintool findtool mixtool

tree.o: tree.cpp list.h
g++ -g -Wall -c tree.cpp -o tree.o

list.o: list.cpp list.h
g++ -g -Wall -c list.cpp -o list.o

findtool.o: findtool.cpp findtool.h
g++ -g -Wall -c findtool.cpp -o findtool.o

findtool: findtool.o
g++ findtool.o -o findtool

mixtool: tree.o list.o list.h
g++ list.o tree.o -o mixtool

maintool: findtool.o tree.o list.o
g++ tree.o findtool.o -o maintool

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Name: _______________________________ Student Number: ___________________

Page 15 of 17

12. Inheritance

Consider the following inheritance hierarchy:

class A{
 protected:
 int x, y;
 public:
 int z;
}
class B: public A{
 private:
 int a, b, c;
}

a. How many data members does B have?

b. How many of B’s data members are directly accessible in B?

13. Lab 7

Recall that the Record class in Lab 7 had fields to represent the number (key) of an individual, and it had the
following member functions associated with it:
• Record (). This is the default constructor. It creates an empty record.
• virtual ~Record(). This is the destructor. It deletes all dynamic components of the record.
• void setNumber(unsigned int Num). This function sets the number in the record to Num.
• unsigned int getNumber(). This function returns the number in the record.
• virtual void print()=0.

You then derived a class studentRecord from the class Record that added data members to store the
marks obtained and the member functions setMark(), getMark(), setFirstName(),
setLastName(), getFirstName(), getLastName(), and print(), all with appropriate arguments.

a. Briefly describe why the print() function in Record was declared to be virtual.

Answer:

Answer:

Name: _______________________________ Student Number: ___________________

Page 16 of 17

b. In the space below, provide the definition (as might be contained in a .h file) of a class
AuditorRecord that is derived from Record for Auditors that do not receive marks.

14. Dynamic memory allocation
Consider the following program fragment that makes use of Suzy class:

Suzy *func1(Suzy a) {
 Suzy b = a ;
 Suzy *c = new Suzy(b) ;
 return c ;
}
void func2(Suzy & d) {
 Suzy e ;
 Suzy *f = new Suzy() ;
 Suzy *g = &d ;
 Suzy *h = func1(*g) ;
 // point X
 return ;
int main() {
 Suzy i ;
 Suzy j = new Suzy(i) ;
 func2(i) ;
 return 0 ;
}

How many objects exist in memory when the program reaches point X?

Answer:

Name: _______________________________ Student Number: ___________________

Page 17 of 17

15. Hash Tables

Assume you are given a hash table with size M = 11, and the following hash function:

 h(key) = (key % M) (Note: the “%” is the modulus operator in C++)

Assume that quadratic probing is used to resolve key collisions, and that the hash table is initially empty. If i
is the initial hash index generated by the hash function above, quadratic probing examines locations i + (k)2,
where k =0, 1, 2, 3, ... until an empty location is found.

Show the final contents of the hash table after all of the following operations have been performed, in the
sequence shown. Next to each operation, indicate the number of probes performed when inserting that value.

 insert 7

 insert 3

 insert 18

 insert 29

 insert 14

 insert 40

0

1

2

3

4

5

6

7

8

9

10

