
 Page 1 of 14

University of Toronto
Faculty of Applied Science and Engineering

ECE 244F

PROGRAMMING FUNDAMENTALS

Fall 2009

Final Examination

Examiner: C. Gibson, M. Stumm, and W. Aboelsaadat

Duration: Two and a Half Hours

No aids allowed. No books. No notes. No calculators. No computers. No communicating
devices.

Do not remove any sheets from this test book. Answer all questions in the space provided.
No additional sheets are permitted.

There are 15 questions. The weight of each question is the same. Work independently.

Write your name and student number in the space below. Do the same on the top of each
sheet of this exam book.

Last Name: ___________________ First Name: _________________________

Student Number: ______________________

Q1. __________ Q9. __________

Q2. __________

Q10. _________

Q3. __________

Q11. _________

Q4. __________

Q12. _________

Q5. __________

Q13. _________

Q6. __________

Q14. _________

Q7. __________

Q15. _________

Q8. __________

Total

Name: _______________________________ Student Number: ___________________

Page 2 of 14

1. Warmup Questions
a. What is the output of the following code segment:

for (int i =1; i <10; i++)
{

cout << i;
if (i >=5)

break;
cout << i;

}
A: 112233445566778899
B: 12345
C: 11223344
D: 112233445

b. The order of adding 1 to each element in a one dimensional array of N integers is

A: O(1)
B: O(logN)
C: O(N)
D: O(NlogN)
E: O(N2)

c. Which of the following C++ class member functions should be provided if class objects

point to dynamic data ?
A: a destructor
B: a constructor
C: a copy-constructor
D: A and B
E: A, B, and C

d. Given the function definition

void Twist(int& a, int b) {
int c;
c = a + 2;
a = a * 3;
b = c + a;

}
what is the output of the following code fragment that invokes Twist ?

r = 1;
s = 2;
t = 3;
Twist(t, s);
cout << r << ’ ’ << s << ’ ’ << t << endl;

A: 1 14 9
B: 5 14 3
C: 1 10 3
D: 1 14 3
E: none of the above

Answer:

Answer:

Answer:

Answer:

Name: _______________________________ Student Number: ___________________

Page 3 of 14

2. True or False Questions

Identify whether the following statements are true or false by circling the correct answer:

a) The running time of the program fragment shown below is O(N): true or false?

 sum = 0 ;
 for(i=0; i<N; i++)
 if(i>j)
 sum += 1 ;
 else
 for(k=0; k<N; k++)
 sum -= 1 ;

b) The parameter to a copy constructor must be passed by reference: true or false?

c) An O(logN) algorithm is generally slower than an O(N) algorithm: true or false?

d) An O(logN) algorithm is always slower than an O(N) algorithm: true or false?

e) Given the declarations int x=5; and int *ptr; then the statement *ptr = &x;
will cause an error: true or false?

f) The maximum number of nodes in a tree that has L levels is 2L: true or false?

g) The largest value of a binary search tree is always stored at the root of the tree:
true or false?

h) In a binary tree, every node has exactly two children: true or false?

i) Inserting an element into an unsorted list takes O(1) time: true or false?

j) Tree operations typically run in O(d) time where d is the number of nodes in the tree: true
or false?

Name: _______________________________ Student Number: ___________________

Page 4 of 14

3. Value and reference parameters

a. Identify all errors in the code below:

 int f(int i, int& j) {
 …
 …
 return(j) ;
 }

 …
 int y ;
 int x = f(1, y) ;
 int z = f(1, 2) ;

b. Consider the following code fragment:

 int a = 2 ;

 class A
 {
 private:
 int a ;
 int b ;
 public:
 A() { a = 5 ; b = 10 ; }
 void f(int&) ;
 };
 A* ap = new A ;

 A::f(int& c) {
 int a = b + c ;
 a += 5 ;
 c = a + b + c ;
 }
 …
 int c = 15 ;
 ap->f(c) ;
 cout << c << endl ;

What is the output?

Answer:

Name: _______________________________ Student Number: ___________________

Page 5 of 14

4. Recursion

You are to write a function that takes in a pointer to a character array and uses recursion to
print the null-terminated string out to the screen in reverse order, starting with the first
character of the string but skipping every second character. For example, a call to:

 print_reverse (“This is a sample string: 123456789.”);

should print:

 .8642 git lmsas iT

You can assume that any strings are properly-terminated C-style strings, but you are
responsible for all other error handling. You are not to use any string manipulation functions
(i.e., strlen(), etc.), or loops of any kind.

void print_reverse (char * array)
{

}

Name: _______________________________ Student Number: ___________________

Page 6 of 14

5. Inheritance

You are given the following class definition:

 class myDerivedClass : public myBaseClass
 {
 private:
 char * derivedArray;

 public:
 myDerivedClass();
 ~myDerivedClass();
 // ...
 };

Write a complete copy constructor function for this class that provides a deep copy for all
variables in the class (including any inherited member variables):

Name: _______________________________ Student Number: ___________________

Page 7 of 14

6. Tracing

What will this program print?
class A {
public:
 A()
 { cout << "A ctor" << endl; }
 A(const A& a)
 { cout << "A copy ctor" << endl; }
 virtual ~A()
 { cout << "A dtor" << endl; }
 virtual void foo()
 { cout << "A foo()" << endl; }
 virtual A& operator=(const A& rhs)
 { cout << "A op=" << endl; }
};

class B : public A {
public:
 B()
 { cout << "B ctor" << endl; }
 virtual ~B()
 { cout << "B dtor" << endl; }
 virtual void foo()
 { cout << "B foo()" << endl; }
protected:
 A mInstanceOfA; // don't forgetme!
};

A foo(A& input) {
 input.foo();
 return input;
}

int main() {
 B myB;
 B myOtherB;
 A myA;
 myOtherB = myB;
 myA = foo(myOtherB);
}

Answer:

Name: _______________________________ Student Number: ___________________

Page 8 of 14

7. Trees
a. Given the tree shown below, show the order in which nodes in the tree are processed by

preorder traversal.

b. Label the following binary tree with the numbers from the set {6,22,9,14,13,1,8} so that
it is a legal binary search tree. You can select the numbers from this set in any order.

c. If one is provided with the inorder and postorder traversals of a given binary tree, it is
always possible to construct the tree. Draw the tree (i.e., only one tree) that has the
following inorder and postorder traversals:
 Inorder: C B A E D F H I G K J
 Postorder: A B C D E F I K J G H

Answer:

Name: _______________________________ Student Number: ___________________

Page 9 of 14

8. Class Design and Data Encapsulation

Complex numbers occur in many engineering applications. A complex number c consists of
an ordered pair of real (floating point) numbers (x,y). The first number is called the real
part of the complex number. The second number of called the imaginary part. The
addition/subtraction of two complex numbers c1 = (x1,y1) and c2 = (x2,y2) is defined
as
 c1 + c2 = ((x1+x2),(y1+y2)), and
 c1 - c2 = ((x1-x2),(y1-y2)).

Design and write the header file for a C++ class for representing complex numbers and their
arithmetic. Call your class Complex. Your class should allow for the declaration of complex
numbers only with initialization of both real and imaginary parts. It should allow for the
accessing (read & write) of the real and imaginary parts. It should also overload the + and –
operators to perform the addition and subtraction of complex numbers. Finally, your class
should contain a function print() which prints the complex number as (x,y) to the
standard output.

Most importantly, your class should enforce data encapsulation, allowing its designer to
change its implementation without affecting its use.

d.

Name: _______________________________ Student Number: ___________________

Page 10 of 14

9. Complexity Analysis

Determine the worst-case time complexity (expressed in big-O notation) for each of the
program segments below as a function of the size of the input n. Show the details of your
analysis and clearly indicate your final result.

a. The size of the input is n.

 w=0;

 for (int i=0; i < n; ++i) {
 for (int j=0; j < n*n*n; ++j) {
 for (int k=0; k < n*n*n*n; ++k) {
 w = w + 1;
 }
 }
 }

b. The size of the input is n.

for (int i=0; i < n; ++i) {
 for (int j=0; j < i*n ; ++j) {

 O(1)
 }
 }

c. The size of the input is n, which is a power of 2.

int mystery (int k, int n) {

 int x;
 int y;
 if (n <= 1) {
 return(0);
 } else {
 for (int i=0 ; i < n ; ++i) {
 O(1) // to determine the value of k
 }
 x = mystery (k, n/2); // integer division
 y = mystery (n-k, n/2); // integer division
 return (x+y);
 }
 }

Answer:

Answer:

Answer:

Name: _______________________________ Student Number: ___________________

Page 11 of 14

2. Scope and parameters

Show the output of the following program in the box provided below. Show your work for partial credit.

#include <iostream>
using namespace std;

char confuse (char c1);
void mixup (char &c1, char c2, char c3);

char c4 = 'F';

int main () {
 char c1 = 'H', c2 = 'C', c3 = 'E';
 mixup(c2, c1, c3);
 {
 char c3 = 'G';
 cout << c1 << c2 << c3 << c4 << endl;
 }
 cout << confuse(c4) << c1 << c2 << c3 << c4 << endl;
 return 0;
}

char confuse (char c1) {
 const char c2 = 'O';
 char c3 = c1;
 if (c1 >= 'N') return c3;
 else return c2;
}

void mixup (char &c1, char c2, char c3) {
 cout << c1 << c2 << c3 << c4 << endl;
 c1 = confuse(c3);
 c2 = 'S';
 c3 = 'I';
 c4 = confuse(c2);
}

Output line 1:

Output line 2:

Output line 3:

Output line 4:

Name: _______________________________ Student Number: ___________________

Page 12 of 14

Name: _______________________________ Student Number: ___________________

Page 13 of 14

10. Binary Trees II

Assume that binary trees are implemented using the following declarations.

struct TreeNode
{
 int info; // data stored
 int size; // size of subtree (root included)
 TreeNode * left; // left subtree
 TreeNode * right; // right subtree

 TreeNode(int val, TreeNode * lptr, TreeNode * rptr)
 : info(val), size(1), left(lptr), right(rptr) { }
};

a. Write a function SetSize() in the space provided on the next page where its header is given.
SetSize() should set the size field of every node in its tree parameter to the number of nodes in that
node's sub-tree (including itself). The number of nodes in a tree is equal to the number of nodes in its left
sub-tree plus the number of nodes in its right sub-tree plus one. For example, the following picture shows
the result of the call SetSize(root):

14. Hash Tables

Assume you are given a hash table with size M = 11, and the following hash function:

 h(key) = (key % M) (Note: the “%” is the modulus operator in C++)

Assume that quadratic probing is used to resolve key collisions, and that the hash table is initially empty. If i
is the initial hash index generated by the hash function above, quadratic probing examines locations i + (k)2,
where k =0, 1, 2, 3, ... until an empty location is found.

Name: _______________________________ Student Number: ___________________

Page 14 of 14

Show the final contents of the hash table after all of the following operations have been performed, in the
sequence shown. Next to each operation, indicate the number of probes performed when inserting that value.

 insert 7

 insert 3

 insert 18

 insert 29

 insert 14

 insert 40

0

1

2

3

4

5

6

7

8

9

10

