
Page 1 of 24

University of Toronto
Faculty of Applied Science and Engineering

ECE 244F

PROGRAMMING FUNDAMENTALS

Fall 2011

Final Examination

Examiner: T.S. Abdelrahman, V. Betz, and M. Stumm

Duration: Two and a Half Hours

This exam is OPEN Textbook and CLOSED notes. The use of computing and/or
communicating devices is NOT permitted.

Do not remove any sheets from this test book. Answer all questions in the space provided.
No additional sheets are permitted.

Work independently. The value of each part of each question is indicated. The total value
of all questions is 100.

Write your name and student number in the space below. Do the same on the top of each
sheet of this exam book.

Name: ___________________________________
(Underline last name)

Student Number: ___________________________________

 Q1. __________ Q10. _________

Q2. __________

Q11. _________

Q3. __________

Q12. _________

Q4. __________

Q13. _________

Q5. __________

Q14. _________

Q6. __________

Q15. _________

Q7. __________

Q16. _________

Q8. _________

Q17. _________

Q9. _________

Q18. _________

Total

Page 2 of 24

Question 1. (10 marks). General.

Answer the following questions either by circling Yes or No, or by providing a very brief and
direct answer when such answer is required (none is required for Yes or No questions).

(a) Yes or No? A copy constructor is always called when an object is passed by value to a

function.

(b) Yes or No? A static member function is a member function that can be invoked with or
without an object.

(c) Yes or No? The only reason to pass parameters to a function by reference is allow the
function to modify these parameters.

(d) Yes or No? If class C is derived from class B and class B is derived from class A, then if a

class C object is being allocated, the constructors are called in the following order:
constructor of class A first, constructor of class B second, and finally constructor of class C.

(e) Yes or No? If you destroy an object through a pointer to a base class, and the base-class
destructor is not virtual, the derived-class destructors are not executed, and the destruction
might not be complete.

(f) Yes or No? The following C++ statement is incorrect because the function must return an
integer type: void virtual foo(int, float) = 0 ;

(g) Yes or No? An O(log(n)) algorithm is always faster than an O(n) algorithm.

(h) What is the worst-case time complexity for search in any binary search tree that has n nodes?

(i) In one sentence, explain why C++ does not make all member functions by default virtual.

(j) What is the time complexity of Quicksort if the n elements of the input array to be sorted are
already sorted?

Page 3 of 24

Question 2. (4 marks). Objects with pointers.

Study the following definitions and implementations of a class ObjectName, which is intended
to store a character string that represents the name of some object.

class ObjectName {
 private:
 char* _thename;
 int length;
 public:
 ObjectName(const char* name);
 ~ObjectName();
 :
 :
};

 ObjectName::ObjectName(const char* name) {
 length = strlen(name);
 _thename = new char[length+1];
 strcpy(_thename, name);
 }

 ObjectName::~ObjectName() {
 length = 0;
 _thename = NULL;
 }

Modify the class functions so as no memory leaks exist. Write your modified code below.

Page 4 of 24

Question 3. (7 marks). Objects with pointers.

Consider the following definitions (left) and partial implementations (right) of the classes
Wrapper, WrappedA and WrappedB.

class Wrapper {
 private:
 WrappedA* a;
 WrappedB* b;
 int count;
 public:
 Wrapper();
 ~Wrapper();
 :
 :
};

Wrapper::Wrapper() {
 a = new WrappedA;
 b = new WrappedB[5];
 count = 6;
}

:
:

class WrappedA {
 private:
 WrappedB** x;
 int count;
 public:
 WrappedA();
 ~WrappedA();
 :
 :
};

WrappedA::WrappedA() {
 x = new WrappedB* [10];
 for (int i=0; i < 10; ++i)
 x[i] = new WrappedB;
 count = 10;
}

:
:

class WrappedB {
 private:
 int count;
 public:
 WrappedB();
 ~WrappedB();
 :
 :
};

WrappedB::WrappedB() {
 count = 1;
}

:
:

Page 5 of 24

Write the destructor for each of the three classes so as no memory leaks exist. Provide your
answer in the space below.

Wrapper::~Wrapper() {

}

WrappedA::~WrappedA() {

}

WrappedB::~WrappedB() {

}

Page 6 of 24

Question 4. (9 marks). Operator Overloading.

Consider the definitions below for classes Point and PointVector.

#include <iostream>
using namespace std;

class Point {
private:
 float x;
 float y;
public:
 Point (float _x, float _y) {x = _x; y = _y;}
 Point () {x = 0; y = 0; }
 float get_x () const { return x; }
 float get_y () const { return y; }
};

class PointVector {
private:
 int length;
 Point *points;
public:
 PointVector (int _length);
 Point operator [] (int index);
 friend void operator << (ostream & out,
 const PointVector & rhs);
};

PointVector::PointVector (int _length)
{
 length = _length;
 points = new Point[length];
}

int main () {
 PointVector pvec(3);
 Point p1 (3, 2);
 pvec[1] = p1;
 cout << pvec << endl;
}

(a) (1 mark). Examine the prototype for the PointVector overloaded [] operator, and the

use of the operator in main. There is a problem with the declaration – what is it? Write the
corrected declaration.

Page 7 of 24

(b) (1 mark). Examine the declaration of the PointVector overloaded << operator, and the
use of this operator in main. There is a problem with the declaration – what is it? Write the
corrected declaration.

(c) (3 marks). Write the implementation of PointVector::operator []

(d) (3 marks). Write the implementation of PointVector::operator << such that the last

line of main outputs: (0,0) (3,2) (0,0)

(e) (1 mark). Is it necessary to write a destructor for class Point? Is it necessary to write a

destructor for class PointVector? Write the prototype for any destructor(s) needed.

Page 8 of 24

Question 5. (6 marks). Linked Lists.

Consider the following definitions of the two classes listNode (on left) and linkedList (on
right) that are used to implement linked lists.

class listNode {
 private:
 int key;
 listNode* next;
 public:
 listNode();
 listNode(int k);

 int getKey();
 listNode* getNext();

 void setKey(int k);
 void setNext(listNode* n);

 };

class linkedList {
 private:
 listNode* head;

 public:
 linkedList();
 linkedList(const linkedList& src);
 ~linkedList();
 :
 :
 bool operator==(const linkedList& rhs);

};

Write the overloaded operator== of the class linkedList so that it returns true if the linked lists of
its operands are identical, otherwise returns false. That is, given two variables of type linkedList,
firstList and secondList, then (firstList == secondList) returns true if the two lists
have the same number of nodes, and the nodes in firstList have exactly the same values of key as the
nodes in secondList and in exactly the same order. Assume two empty lists to be equal by definition.

bool linkedList::operator==(const linkedList& rhs) {

}

Page 9 of 24

Question 6. (5 marks). Recursion.

Consider the following modified function that calculates Fibonacci numbers recursively:

int fib(int n, int depth) {
 cout << setw(depth*3) << right << “ “
 << “fib(“ << n << ”,” << depth << ”)”
 << endl ;
 if(n==0) return 0 ;
 if(n==1) return 1 ;
 int r1 = fib(n-1, depth+1) ;
 int r2 = fib(n-2, depth+1) ;
 return r1 + r2 ;
}

where “setw(6)” formats the next (and only the next) output to 6 characters and “right” right-
adjusts the next output.

What is the output that is generated when the function fib(3,0) is called?

Page 10 of 24

Question 7. (5 marks). Tree Traversals.

A tree T has the following inorder and preorder traversals:

 Inorder traversal: 1 8 12 14 16 20 26 28 30 40
 Preorder traversal: 26 12 8 1 16 14 20 30 28 40

Draw the tree T. Please note that there is only one tree T that has the inorder and preorder
traversals show above. Do NOT draw two trees; only one tree whose inorder and preorder
traversal are shown above.

Page 11 of 24

Question 8. (9 marks). Binary Search Trees.

The tree T shown here is a Binary Search Tree (BST).

(a) (3 marks). Insert a node with the key “C” onto the tree T and show the resulting tree.

(b) (3 marks). Starting with the tree in part (a) after the insertion of “C”, delete the node with the

key “F” and show the resulting tree.

(c) (3 marks). Starting with the tree in part (b) after the removal of “F”, re-insert the node with

they key “F” onto the tree and show the resulting tree.

 P

K

 F

 B H

M

 R

 Z

Page 12 of 24

Question 9. (5 marks). Trees.

Consider the general tree structure illustrated below, and the corresponding class definition. This
tree is a general tree where a node can have any number of children (0, 1, 2, or any integer, as
stored in the member variable num_children), not just 2 as in a binary tree.

class GenTreeNode {
 public:
 // Key of the node
 int key;
 // The number of children
 int num_children;
 // Array [0..num_children-1] with pointers to children.
 // No NULL entries in the array.
 GenTreeNode *children;
 :
};

Write a recursive (non-member) function preorder to perform the preorder traversal of a
general tree. The function is defined as: void preorder (GenTreeNode* r);

The function should print the key of each node and then traverse the child sub-trees staring with
the leftmost (i.e. children[0]) child. For example, the preorder traversal of the above tree is:
8 4 9 3 7 2 5 6 1

void preorder (GenTreeNode* r) {

}
// This is how preorder is called
preorder(root);

8

4 3 7

9

5 6

2

1

num_children = 4

num_children = 1

num_children = 3

num_children = 0

num_children = 0

num_children = 0 num_children = 0 num_children = 0

GenTreeNode *root

Page 13 of 24

Question 10. (3 marks). Inheritance. [TSA]

Consider the following definitions of the classes Generic and Specific.

class Generic {
 private:
 int _id;
 pubic:
 Generic(int id);
 ~Generic();
};

 Class Specific : public Generic {
 private:
 float _data;
 public:
 Specific(float d);
 ~Specific();
 };

How many data members do objects of type Specific have?

Page 14 of 24

Question 11. (7 marks). Inheritance.

Consider the following definition and implementation for the Shape and the Rectangle classes.
#include <iostream>
#include <cstring>
using namespace std;

class Shape {
 private:
 int _id;
 char* _name;
 public:
 Shape(int id, char* name);
 virtual ~Shape();
 int get_id();
 char* get_name();
 virtual void echo();
};

Shape::Shape(int id, char* name) {
 _id = id;
 _name = new char [strlen(name) + 1];
 strcpy(_name, name);
 cout << "Shape: constructor: " << _id << " " << _name << endl;
}

Shape::~Shape() {
 cout << "Shape: destructor: " << _id << " " << _name << endl;
 _name = NULL;
}

int Shape::get_id() {
 return _id;
}

char* Shape::get_name() {
 return (_name);
}

void Shape::echo() {
 cout << "Shape: echo: " << _id << " " << _name << endl;
}

Page 15 of 24

class Rectangle : public Shape {
 private:
 float _width;
 float _length;
 public:
 Rectangle(int id, float width, float length, char *name);
 virtual ~Rectangle();
 int get_id();
 virtual void echo();
};

Rectangle::Rectangle(int id, float width, float length, char* name) :
Shape(id, name) {
 _width = width;
 _length = length;
 cout << “Rectangle: constructor: “ << get_id() << “ “
 << get_name() << endl;
}

Rectangle::~Rectangle() {
 cout << “Rectangle: destructor: “ << get_id() << “ “
 << get_name() << endl;
}

int Rectangle::get_id() {
 return Shape::get_id();
}

void Rectangle::echo() {
 cout << "Rectangle: echo: “ << get_id() << “ “
 << get_name() << endl;
 Shape::echo();
}

// main program
int main() {
 Shape shap1(0,”Unknown”); /* 1 */
 Shape* shape_ptr = &shap1; /* 2 */
 Rectangle rect1(10, 3.0, 6.3, "small"); /* 3 */
 Rectangle* rect_ptr = &rect1; /* 4 */
 /* 5 */
 cout << shape_ptr->get_id() << endl; /* 6 */
 shape_ptr->echo(); /* 7 */
 rect_ptr->echo(); /* 8 */
 *shape_ptr = *rect_ptr; /* 9 */
 rect_ptr->echo(); /* 10 */
 shap1 = rect1; /* 11 */
 cout << shape_ptr->get_id() << endl; /* 12 */
 rect_ptr->echo(); /* 13 */
} /* 14 */

Page 16 of 24

Show the output produced by each line of the program in the table below. If a line has no output,
write N/A (i.e., do NOT leave blank).

Line #Line #Line #Line # OutputOutputOutputOutput

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Page 17 of 24

Question 12. (4 marks). Inheritance.

Assume you are given the definition of class A below and assume that this code compiles
correctly. Moreover, assume that an implementation of class A exists in the form of an A.o file,
but you do not have access to the source files.

class A {
 private:
 Boodle *bp ;
 public:
 A() ;
 virtual ~A() ;
 A(const A& a) ;
 A& operator=(const A& rhs) ;
} ;

Further, assume you are given the definition of class B below as well as an implementation of the
copy constructor for B that works correctly:

class B: public A {
 private:
 Poodle *pp ;
 public:
 B() ;
 virtual ~B() ;
 B(const B& b) ;
 B& operator=(const B& rhs) ;
} ;

B::B(const B& b):A(b) {
 pp = new Poodle(*b.pp) ;
}

Based on the code you have available, provide the implementation of B& operator=(const B& rhs) {

 }

Page 18 of 24

Question 13. (4 marks). Template Functions.

The following function searches for a value in an integer array and returns true if found along
with the index of the location of the found value through the index parameter. This function
works correctly for integers. Re-write the function to make it into a template function so that
search may also be used for doubles, characters, unsigned integers, etc.

bool search(int *a, int from, int to,
 int value, int& index)
{
 if(from > to) return false ;
 int mid = (from + to) / 2 ;
 if(value == a[mid]) {
 index = mid ;
 return true ;
 }
 if(value < a[mid])
 return search(a, from, mid-1, value, index) ;
 else
 return search(a, mid+1, to, value, index) ;
}

Write your answer here.

Page 19 of 24

Question 14. (6 marks). Template Classes.

Consider the following definitions of the class Strange.

template<class T>
class Strange {
 private:
 T a;
 T b;
 pubic:
 Strange();
 ~Strange();
 :
};

(a) (1 mark). Write a statement that declares myStrangeObject as an object of type
Strange such that the private data members a and b are of the type int.

(b) (1 mark). Write the function prototype of the overloaded operator== function as a
member function of the class Strange.

(c) (2 marks). Assuming that two objects of type Strange are equal if their corresponding
members a and b are equal, write the implementation of the function operator== for
the class Strange.

(d) (2 marks). Will your implementation of operator== in part (c) above work for any
type of the private members a and b? Justify your answer with a one-sentence
explanation.

Page 20 of 24

Question 15. (6 marks). Complexity Analysis.

Determine the worst-case time complexity (expressed in big-O notation) for each of the program
segments below as a function of the size of the input n. Show the details of your analysis and
clearly indicate your final result.

(a) (3 marks). The size of the input is n.

int a = 0;
for (int i = 0; i < n; ++i) {
 for (int j = 0; j < i*i; ++j) {
 for (int k = 0; k < 1000000; ++k) {
 a = a + 1;
 }
}

(b) (3 marks). The size of the input is n. Assume for simplicity that n is a power of four. Write

the recurrence equation and then solve it.

int recursive(int n) {
 int x,y,w,z;

 if (n <= 1) return 0;
 else {
 x = recursive (n/4);
 y = recursive (n/4);
 w = recursive (n/4);
 z = recursive (n/4);
 return (x+y+w+z);
 }
}

Page 21 of 24

Question 16. (5 marks). Efficient Algorithms

The image below shows an n by n grid that is stored in memory as a two dimensional array. The
element at row i column j can be indexed in constant time using grid[i][j]. Each cell in the
grid contains either a 1 or a 0 (indicated in the figure with black and white blocks). In any
column, all the one's appear below any of the zeros. Given such a grid, design an O(n) algorithm
for finding any column with the most ones (tallest black tower). Note there are O(n2) cells, so
you cannot check every cell in the grid.

Then implement your algorithm as a function tallest() that returns the column with the most
ones:

int tallest(int **a, int n /* matrix size */) {

}

Page 22 of 24

Question 17. (3 marks). Hash Tables.

Assume a hash table with size T = 11 with the following hash function:

h: index = (key mod T) (note: mod is the modulus operator, % in C++)

Show the contents of the hash table after the following operations have been performed. Indicate
next to each operation the number of probes performed. Assume that linear probing is used to
resolve collisions and that the hash table is initially empty.

1. insert 14

2. insert 26

3. insert 4

4. delete 26

5. search 4

6. insert 37

0

1

2

3

4

5

6

7

8

9

10

Page 23 of 24

Question 18. (2 marks). Crossword Puzzle. [TSA]

This question is dedicated to the student who sat at the back of the class solving crossword puzzles. Have a blast!

Solve the crossword puzzle below.

Page 24 of 24

THIS PAGE IS INTENTIONALLY BLANK FOR ANSWER OVERFLOWS

