University of Toronto
Faculty of Applied Science and Engineering

ECE 244F
PROGRAMMING FUNDAMENTALS
Fall 2014
Final Examination
Examiners: T.S. Abdelrahman and M. Stumm

Duration: Two and a Half Hours

This exam is OPEN Textbook and CLOSED notes. The use of computing and/or
communicating devices is NOT permitted.

Do not remove any sheets from this test book. Answer all questions in the space provided. No
additional sheets are permitted.

Work independently. The value of each part of each question is indicated. The total value of all
questions is 100. .

Write your name and student number in the space below. Do the same on the top of each sheet
of this exam book.

Name:

(Underline last name) v v v v v v v v v
Student Number:

A\ 4 v
QI1: Qs:
Q2: | Q9:
_ﬂ__—‘é —
Q3: o Q10:
% _—g
Q4: Q11:
¥ ————
Qs: Q12: _
—a Y ——
Q6: o Q13:
—— == ~—
Q7: Q14: Total:
A v - A py

Page 1 of 25

Question 1. (12 marks). General.
Answer the following questions as indicated. No justification of your answer is required.
(a) (1 mark). Circle the best answer. The main purpose of inheritance in C++ is to:

1. enable modular programming.

2. facilitate code reuse.

3. facilitate conversion of data types.

4. modify the capabilities of a class

(b) (1 mark). Circle one or more answers. An object of a class can be treated as an object
of its corresponding class.

1. base, derived
2. derived, base
3. Both 1 and 2
4. lNone of these
(¢) (1 mark). True or False? A programmer, who wishes to use inheritance to make a derived class

from the class called Base, does not need access to the source code for the implementation of
Base (i.e., Base.cpp).

(d) (1 mark). True or False? An abstract class is one that has no data member, only function
members.

(e) (2 marks). Circle all correct answers. The purpose of using a “visited” flag in the code f:or
traversing a graph is to:

1. : Ensure that every node in the graph is visited.

2. To prevent a node from being visited more than once.

3. To ensure that the nodes are visited in the correct order of the traversal.
4. To facilitate the use of recursion to traverse the graph.

5. All of the above.

6. None of the above.

Page 2 of 25

(f) (1 mark). Circle one answer. Algorithm A has a time complexity of O(n). Algorithm B has a
time complexity of O(log n).

1. Algorithm B is always more efficient then algorithm A.
2. Algorithm B is never more efficient than algorithm A.
3. Algorithm A can sometimes be faster than algorithm B.

4. None of the above.

(g) (1 mark). Circle all correct answers. A collision in a hash table can occur when?
1. two entries are identical except for their keys. |
2. ' 't:wo entries with different data have the exact same key.
3. two entries with different keys hgve th_g same exact hash value.
4. two entries with the exact same key have different hash values.
(h) (2 njarks). Write your answer next to each part. What is the complexity using big-Oh notation
of algorithms that have the following run times, where n is the size of the input:
1. T(n)=logn+ 1000
2. Tm)=nlogn+35n+4n
3. T(n)=2n+nlogn?) + 5000 log n
4. T@)=n+@m-1)+0-2)+@3)+...+2+1
(i) (2 marks). Mark each of the following statements as True or False (circle one). Consider the

order in which the leaves of a binary tree are visited by the three traversals: pre-order, in-order,
and post-order.

1. ' The _thy_ee traversals visit the leaveg 1n different orders.’ ' | True False
2. The three traversals visit the leaves in the same order. True False
3. Only pre-order and post-order visit the leaves in the same order. ~ True False
4. Only in-order and post-order visit the leaves in the same order. True False

Page 3 of 25

Consider the following declaration and implementation of the class Name contained in the file
Name.h.

class Name {
private:
string* firstName;
string* lastName;

public:
Name(string fname, string lname);
Name(const Name & src);
~Name() ;
) void print() const;

Now consider the implementation of the class in Name . cpp.

#include “Name.h”
#include <iostream>
using namespace std;

Name: :Name(string fname, string Iname) {
firstName = new string(fname);
TastName = new string(Iname);

Name: :Name(const Name & src) {)
firstName = new string(*(src.firstName));
lTastName = new string(*(src.lastName));

Name::~Name() {
delete firstName;

Question 2. (6 marks). Objects with Pointers. : '
|
|

delete lastName; |

void Name::print() const { |
// This prints the first name, followed by a space, followed
// by the last name |
cout << *firstName << “ " << *lastName << endl;

Page 4 of 25

Now consider the program below that uses the above Name class.

#include <iostream>
#include <string>
#include “Name.h”
using namespace std;

int main() {

string Tom = “Tom"”;

string Johns = “Johns”;
string Michael = “Michael”;
string Jackson = “Jackson”;
string Sarah = “Sarah”;
string Johnson = “Johnson”;

Name first(Tom, Johns);
Name second(Michael, Jackson);
Name third(sarah, 3Johnson);

first.printQ;
second.print(Q);
third.printQ;

first = second;
second = third;
third = first;
first.printQ);
second.print();
third.print(Q);
// Point A

) return (0);

(a) (1 mark). What is the output produced by the program above when it reaches Point A?

(b) (1 mark). Does the program above suffer from any memory leaks by the time it reaches point

A? If so, then how many variables (ints, strings, or objects of type Name) end up being
memory leaks?

Page 5 of 25

(¢) (1 mark). The program above also suffers another problem after continues past Point A.
Describe this problem in one sentence.

(d) (3 marks). The problems with the above implementation of Name that can be fixed by the
addition of one member function. In the space below, write the implementation of this function.
Make sure to include the function header and the function body.

Page 6 of 25

Question 3. (6 marks). Memory Leaks.

Assume the size of an integer is 4 bytes, the size of an integer pointer is 8 bytes and the size of a
Node pointer is also 8 bytes. Now consider the following code:

#include<iostream>
using namespace std;

class Node {
private:
int* value;
Node* next;
public:
Node(int a) { value = new int; *value = a; next = NULL;}
void setvalue(int a){ *value = a; }
int getvalue(){ return *value; }
void setNext(Node* n){ next = n; }
Node* getNext(){ return next; }
void print(){
cout << *value << endl;
if(next != NULL) next->print();

int main(){
int i = 0;
Node* p;
Node tl1(i);
p = &tl;
T++;

for(; i < 100; i++) {
Node t2(i);
p->setNext(&t2);
p = &t2;

}

// Point A

tl.print(Q);

return 0;

}

(a) (2 marks). How much memory (in bytes) has been leaked at Point A in the program?

(b) (2 marks). How much memory (in bytes) has been leaked upon returning from main()?

(c) (2 marks). What happens when print() in the above program is executed?

Page 7 of 25

Question 4. (5 marks). Functions.

Consider the following code of a class Foo. You may assume that the code is error free.

class Foo {
private:
int x;
public:
Foo(int 1i); |
int getx() const; |
void setX(int 1i);

};

Foo::Foo(int i) {
X = 1;
}

int Foo::getX() const {
return x; _

void- Foo::setx(int i) {
X '=1;
}

Consider the following non-member function printNegative:

#include <iostream>
using namespace std;

void printNegative(const Foo & source) {
cout << -l1l*source.x << endl;

(a) (1 mark). This function, as written, has a problem with it. Describe what the problem is (one
short sentence).

(b) (2 marks). If we do not wish to change the function nor make it a member function of Foo, what
change must be made to the class Foo to make printNegative correct? You may write your
answer in the code of Foo above.

(¢) (2 marks). If we can change the function but still not make it a member function of Foo, re-
write the body of the function to make it correct? Write your answer below. :

Page 8 of 25

Question 5. (4 marks). Operator Overloading.

One of the disadvantages of C and C++ arrays is that they have no bounds checking. This results in
erroneous program behavior and crashes when the program contains off-by-one errors when indexing
into the array. For this reason, you intend to implement a “smart array™ of pointers to objects of type
T. The intent is to automatically check the bounds of the array when indexing into the array. The
declaration of your smart array starts as follows:

class SmartTarray {
private:
T **array;
int size;
public:
SmartTarray(int arraySize) ;

1

You may assume that the class T and the constructors/destructor of the class SmartTarray are
properly implemented. Write the operator[] function that is used to index into the array and
returns the indexed pointer to the T object if successful. If the array is accessed with an index out of
bounds, it should output the error message “out of bound access” and return a NULL pointer.

Write your answer in the box below.

Page 9 of 25

Question 6. (7 marks). Recursion and Linked Lists.

Consider the following class definition of nodes of a linked list.

class listNode {
private:
int key;
TistNode* next;
public:
// Constructors & Destructor

// Accessors

int getkey(); // Returns key of node
TistNode* getNext(); // Returns pointer to next node
// Mutators

void setKey(int k);

void setNext(listNode* n);

};

Write a recursive non-member function 1istNode* ReverseList(listNode* head) that
reverses the linked list in place, i.e., without using an array or creating another linked list, and returns
a pointer that is the new head of the list. Thus, in the example below, the invocation of the function
as newhead = ReverseList(listhead) reverses the list as shown.

listhead—— 5

\ 4
w
[}

18

A 4
[y
\ 4
jury
\ 4
~

y

newhead ——p} 3 » 18

\ 4
N
\ 4
sy
A 4
&N
Y
w
L]

Write your answer in the box below.

T1stNode* ReverseList(l1stNode* head) {

Page 10 of 25

Question 7. (6 marks). Tree Traversals

Consider the following class definition of a tree node.

class treenode {
public:
int key;
treenode* left;
treenode* right;

};

Write a non-member function to perform the 2-leff pre-order traversal of a binary tree, meaning that
for each node of the tree, the function always first visits the node, traverses the left subtree (in 2-left
pre-order), traverses the right subtree (in 2-left pre-order), then traverses the left subtree again (also
in 2-left pre-order). Visiting a node simply prints its key to cout.

(a) (2 marks). Give the 2-left pre-order traversal of the following tree.

Give the traversal here:

(b) (4 marks). Write the function here. Your code should be very short.

void tl_preorder(treenode* root) {

Page 11 of 25

Question 8. (5 marks). Binary Trees.

Assume that binary trees are implemented using the following declarations:

class TreeNode{
private:
int value;
TreeNode * left;
TreeNode * right;

public:
TreeNode() ;
TreeNode(int v) ;
~TreeNode() ;
void insert(int v
bool search(int v
int count(int v)

~ ~e

e

}i

class Tree({
‘private:
TreeNode * root ;
public:
Tree() ;
~Tree() ;
void insert(int v) {
if(root==NULL) root = new TreeNode(v) ;
else root->insert(v) ;

}

bool search(int v) {
if(root == NULL) return false ;

. return root->search(v) ;

}

int count(int v) {
if(root == NULL) return 0 ;
return root->count(v) ;

}i

Implement the function TreeNode: :count (int v) that returns a count of the number of nodes with

value equal to v:

int TreeNode::count(int v) {

Page 12 of 25

Question 9. (7 marks). Binary Search Trees.

Consider the following definition of a node in a binary tree.

class treeNode {
private:
int key;
treeNode* leftChild;
treeNode* rightchild;
public:
// constructors & Destructor
// Accessors
int getKey(); / Returns key of node
treeNode* getLeft(); // Returns pointer to left subtree
treeNode* getRight(); // Returns pointer to right subtree
treeNode* getMin(); // Returns pointer to node with min key
/ in the tree rooted at this node
treeNode* getMax(); // Returns pointer to node with max key
' / in the tree rooted at this node
// Mutators

}
Implement a non-member function bool isBST(treeNode* root) that takes a pointer to a

binary tree rooted at root and returns true if this binary tree is also a binary search tree or false if
otherwise. Write your answer below.

bool 1sBST(treeNode‘F root) {

Page 13 of 25

Question 10. (5 marks). Graphs.

Given the following group of five people: James, Scott, Steve, Linda and Sara. The following pairs
of people are acquainted with each other.

James and Steve
James and Linda
Scott and Steve
Steve and Linda
Steve and Sara
Linda and Sara

(a) (2 marks). Draw a graph that represents the five people and their acquaintance.

(d) (3 marks). Write a traversal of the graph in part (a) above that (i) starts at the node “James”, (ii)
visits children before siblings.

Page 14 of 25

Question 11. (12 marks). Inheritance.

Consider the following three classes, Base, Intr and Derived.

#1nclude <iostream>
#include <string>

using namespace std;

class Base {
private:
" string* b;
public:
Base();
Base(string n);
Base(const Base & t);
virtual ~Base();
; void print();

Base::Base() { :
b = new string ("B");
cout << "Base 1l: " << *b << endl;

Base::Bése(String n) {
b = new string (n);

cout << "Base 2: " << *b << endl;

Base::Base(cqnst Base & t) {
b = new string (*t.b);
cout << "Base 3: " << *b << endl;

Base::~Base() {
cout << '"Base -1:
delete b;

void Base::print() {

cout << "Base 0:" << *b << endl;

<< *b << endl;

#include <iostream>
#include <string>

using namespace std;

class Intr : public Base {

private: '
string* i;

public:
IntrQ;
Intr(string n, string m);
Intr(const Intr & t);
virtual ~IntrQ;
virtual void print(Q);

1

Intr::Intr() {
i = new string ("I");
cout << "Intr 1: " << *i << endl;

Intr::Intr(string n,
] string m):Base(n) {
i = new string (m);

cout << "Intr 2: " << *i << endl;

Iqtr::Intr(cgnst Intr & t) {
1 = new string (*t.i);

’
cout << "Intr 3: << *i << endl;

Intr::~Intr() {
cout <<_"Intr -1:
delete i;

void Intr::print() {
Base::print();
cout << "Intr O:

<< *i << endl;

<< *j << endl;

|
|
Page 15 of 25

#1nclude <1ostream>
#include <string>

using namespace std;

class Derived : public Intr {
private:
string* q;
public:
Derived();
Derived(string n, string m, string q);
Derived(const Derived & t);
virtual ~Derived();
virtual void print();

1

Derived: :Derived() {
q = new string ("2"):

cout << "Derived " << *q << endl;

Derived: :Derived(string n, string m, string k):Intr(n,m) {
g = new string (k);

cout << "Derived 2: << *q << endl;

Derived: :Derived(const Derived & t) {
g = new string (*t.q);

cout << "Derived 3: " << *q << endl;

Derived: :~Derived() {
cout << "Derived -1:
delete q;

<< *q << endl;

void Derived::print() {
Intr::print();
cout << "Derived O:

<< *q << endl;

These classes will be used to answer the questions on the following page.

Page 16 of 25

(a)

(3 marks). The following is a main function that uses the above three classes. The code is
shown in a table to facilitate writing your answers. Place an X in the second column of the table

next to line in this code that generates a compile-time error.

Code

Compile-Time Error?

using namespace std;

#include <jostream>

#include <string>

int main() {

string one = "one’;
string two = "two ',
string three = "three™;
Base a;

Intr b;

Derived c;

Base™ pbase = &a;

Intr* pinterm = &b;

Derived* pderived = &c;

There are no errors

generated by these lines

b =c;
b = a;
a=c;

pbase = pderived;

pderived = pinterm;

pinterm = pbase;

return (0);

There are no errors

generated by these lines

Page 17 of 25

(b) (5 marks). The following is a main function that uses the above three classes. The code is
shown in a table to facilitate writing your answers. Indicate the output generated when each line
of the code is executed. If no output is generated, leave the entry in the table blank. There are no
compile-time errors in the code.

int main() {

Code Output
using namespace std;
#1nclude <iostream> Provide no answer for these
#1nclude <string> Tines

Base a("one");

Intr b("one", "two");

Intr c(b);

Derived d("one","two",

three");

return (0);

(c) (4 marks). The following is a main function that uses the above three classes. The code is
shown in a table to facilitate writing your answers. Indicate the output generated when each line

Page 18 of 25

of the code is executed. If no output is generated, leave the entry in the table blank. There are no

compile-time errors in the code.

Code

output

using namespace std;

#include <i1ostream>

#include <string>

int main() {

Base* pb =
new Intr("one™, "two");

Intr* pi = new
Derived('one","two", "three");

Provide no answer for these
Tines

pb->print();

pi->print(Q);

delete pb;

delete pi;

return (0);

Provide no answer for these
Tines

Page 19 of 25

Question 12. (9 marks). Virtual operators.

Declaring a function within a class as “virtual” enables polymorphism and late binding, where the
particular function that is invoked depends on the underlying object type. Operators (e.g.,
operator¥) can also be declared as virtual functions, just like other member functions. However,
operators can cause extra complexity because they may operate on two objects, both with unknown

types.

Consider, for example, implementing operator®* in a linear algebra library so that it can be used to
multiply any combination of matrix, vector, and/or scalar objects. The code below shows how this
can be done, even though it may appear to be somewhat convoluted. In the code below, an abstract
class called LAAC (for “Linear Algebra Abstract Class”) is declared, and the Matrix, vector and
Scalar classes are derived from LAAC. You will notice that operator* is declared as virtual, and
each of the subclasses implements their own operator* function. However, the code for each
operator* implementation is exactly the same. In each case, the implementation calls a second
virtual function, multiply(), on operator*’s argument. This second function is used to late-bind
the second argument

class Matrix;
class Scalar;
class Vector;

class LAAC {
public:

virtual LAAC& operator*(LAAC& rhs) = 0;
virtual LAAC& multiply(Matrix*) = 0;
virtual LAAC& multiply(Scalar*) = 0;
virtual LAAC& multiply(vector*) = 0;

) virtual ~LAAC(Q) {} . '

class Matrix : public LAAC {

public: _ _
LAAC& operator*(LAAC& rhs) { return (&rhs)->multiply(this); }
LAAC& multiply(Matrix*) ; '
LAAC& multiply(Scalar*) ;
LAAC& multiply(vector®) ;

class Scalar : public LAAC {
public:
LAAC& operator*(LAAC& rhs) { return (&rhs)->multiply(this); }
LAAC& multiply(Matrix*) ;
LAAC& multiply(Scalar?*) ;
LAAC& multiply(vector®*) ;

class vector : public LAAC {

public: -

LAAC& operator*(LAAC& rhs) { return (&rhs)->multiply(this); }
LAAC& multiply(Matrix*) ;

LAAC& multiply(Scalar®) ;

LAAC& multiply(vector®*) ;

}

Page 20 of 25

In the table below, indicate which specific operation does each of the following functions have to
implement. You can indicate the specific operation by using the following notation: “s*M” for
scalar-by-matrix multlphcatlon “M*v” for matrix-by-vector multiplication, or “v*s” for vector-by-
scalar multiplication.

Function Operation

LAAC& Matrix::multiply(mMatrix *)

LAAC& Matrix::multiply(vector *)

LAAC& Matrix::multiply(Scalar *)

LAAC& vector::multiply(Matrix *)

LAAC& vector::multiply(vector *)

LAAC& vector::multiply(Scalar *)

LAAC& Scalar::multiply(Matrix *)

LAAC& Scalar::multiply(vector *)

LAAC& Scalar::multiply(Scalar *)

Page 21 of 25

Question 13. (9 marks). Complexity Analysis.

(a) (2 marks). Give the time complexity of the following segment of code, where n is the size of the
input. Show your analysis for part marks.

for (int i =0; i < n; ++1)
for (int j = 1; j < n; ++3)
for (int k = 0; k < n; ++k)
o(D

T(n) =0 ()

(b) (2 marks). Give the time complexity of the following segment of code where n is the size of the
input. Show your analysis for part marks.

for(int i=0; i<n; i++)
for(int j=n; j>0; --3)
for(int k=0; k<n*n; k++)
o)

T(n) =0 ()

Page 22 of 25

(c¢) (2 marks). Give fhe time complexity of the following segment of code where n is the size of the
input. Write down the recurrence equation and show your analysis for part marks.

void recursive(int n) {
if (n == 1) return;
recursive (n-1);

}

Recurrence equation: | T(n) =

T =0 ()

(d) (3 marks). Give the time complexity of the following segment of code where n is the size of the
input. Write down the recurrence equation and show your analysis for part marks.

int recursive(int n) {
if (n == 1) return (1);
o(n)

) return (recursive (n/3) + 2*recursive(n/3) + 3*recursive(n/3));

Recurrence equation: | T(n) =

Tm=0¢)

Page 23 of 25

Question 14. (7 marks). Analysis of Algorithms.

A heap is an array-based data structure not covered in class. A heap has two primary operations:
insert(key) and removeMax(). The removeMax function returns the object with the highest valued key.
The following code is a possible implementation, where we only store keys and no other data:

class Heap {
private:
int capacity;
int *A;
int storedElements ;

public:

Heap(int n) {
capacity = n ;
A = new int[capacity] ;
storedElements = 0 ;

}

~Heap() ;

bool insert(int key) ;

bool removeMax(int & max) ;

+
bool Heap::insert(int key) {
if(storedElements == capacity) return false ;
int i = storedElements++ ;
A[i]l = key ;
while((i>0) && (A[(i-1)/2] < Afi])) {
swap(A[(i-1)/2], Ali]l); // Swaps the two array elements in constant
time ‘
i=(i-1)/2 ;
}
return true ;
}
bool Heap::removeMax(int &max) {
if(storedElements == @) return false ;
“max = Afe] ;
storedElements— ;
A[0]) = AlstoredElements] ;
inti=0;
while(ix2+1 < storedElements) {
int ¢ = i*x2+1 ;
if(c < storedElements + 1)
if(Alc] < Alc+l])
CH++ ,
if(A[i] < Alcl) swap(A[il, Alcl) ;
i=¢c¢;
}
return true ;
}

Page 24 of 25

Using big-Oh notation, what is worst-case running time of the heap insert function?

In two or fewer lines, explain your above answer:

Using big-Oh notation, what is worst-case running time of the heap removeMax function?

In two or fewer lines, explain your above answer:
4

In principle, a binary search tree could have been used instead of this heap. Using big-Oh notation,
what would the worst case running time of a removeMax() function implemented for a binary search
tree be?

-Page 25 of 25

