
Page 1 of 28

University of Toronto
Faculty of Applied Science and Engineering

ECE 244F

PROGRAMMING FUNDAMENTALS

Fall 2016

Final Examination

Examiners: T.S. Abdelrahman and D. Yuan

Duration: Two and a Half Hours

This exam is OPEN Textbook and CLOSED notes. The use of computing and/or
communicating devices is NOT permitted.

Do not remove any sheets from this test book. Answer all questions in the space provided. No
additional sheets are permitted.

Work independently. The value of each part of each question is indicated. The total value of all
questions is 100.

Write your name and student number in the space below. Do the same on the top of each sheet
of this exam book.

Name: ___________________________________
(Underline last name)

Student Number: ___________________________________

Q1. __________ Q9. __________

Q2. __________

Q10. _________

Q3. __________

Q11. _________

Q4. __________

Q12. _________

Q5. __________

Q13. _________

Q6. __________

Q14. _________

Q7. __________

Q15. _________

Q8. __________

Q16. _________

Total:

Page 2 of 28

Question 1. (10 marks). General.

(a) Consider the following recursive function:

int Fun (int n) {
 if (n == 4) return (2);
 else return (2* Fun(n+1));
}

What is the value returned by the function call Fun(2)?

(b) Yes or No? Every class has at least one constructor function, even when none is declared.

(c) Yes or No? Calling a virtual function is slower than calling a non-virtual function.

(d) Yes or No? A derived class constructor always calls the default base class constructor to initialize
and allocate memory for the base object.

(e) Yes or No? You must write an overloaded “operator=” function for every class you create, if you
wish to use the assignment operator with your objects (i.e., “a = b;”).

(f) Yes or No? The following C++ statement is incorrect because the function returns an integer but
has a void return type: virtual void foo(int, float) = 0 ;

(g) Yes or No? The worst-case complexity of quick sort is O(n2).

(h) Yes or No? Each non-leaf node in a binary search tree always has exactly 2 children.

(i) Yes or No? The worst-case complexity of search in any binary search tree is O(log(n)).

(j) Yes or No? A node in a binary tree has at most one parent node.

(k) Yes or No? A derived class inherits a private member variable in the base class.

Page 3 of 28

Question 2. (4 marks). Pointers and Parameter Passing.

A function updatePointer takes one argument, of type int*, and changes the value of this
argument. Assume the formal argument of updatePointer is a variable called ptr and that the
function is called with an actual argument called my_ptr. Thus, the function changes the value of
my_ptr. Which of the following are the correct prototype and invocation of the function?

Circle A, B, C, etc. to indicate which are correct. Circle all that are correct.

A:
 function prototype: void updatePointer (int* ptr);
 invocation (i.e., function use): updatePointer (my_ptr);

B:
 function prototype: void updatePointer (int&* ptr);
 invocation (function use): updatePointer (&my_ptr);

C:
 function prototype: void updatePointer (int*& ptr);
 invocation (i.e., function use): updatePointer (my_ptr);

D:
 function prototype: void updatePointer (int*& ptr);
 invocation (function use): updatePointer (&my_ptr);

E:
 function prototype: void updatePointer (int*& ptr);
 invocation (i.e., function use): updatePointer (*my_ptr);

F:
 function prototype: void updatePointer (int** ptr);
 invocation (function use): updatePointer (&my_ptr);

Page 4 of 28

Question 3. (4 marks). Functions.

Consider the following code of a class Pair. You may assume that the code is error free.

class Pair {
 private:
 int x;
 int y;
 public:
 Pair(int x_value, int y_value);
 int getX() const;
 int getY() const;
 void setX(int x_value);
 void setY(int y_value);

};

Pair::Pair(int x_value, int y_value) {
 x = x_value;
 y = y_value;
}

int Pair::getX() const {return x;}

void Pair::setX(int x_value) {x = x_value;}

int Pair::getY() const {return y;}

void Pair::setY(int y_value) {y = y_value;}

We wish to be able to do the following in a non-member function, like main:

 Pair mypair(10,20);
 cout << mypair << endl;

to print: (10,20).

(a) (1 mark). What operator must be overloaded to make the above operation correct? Only write

the name of the operator.

(b) (3 marks). Write the implementation of this operator. Note that you cannot change the definition

or implementation to the class Pair, except possibly to add function prototypes to it.

Page 5 of 28

Question 4. (12 marks). Pointers and Linked Lists.

In this question, you need to complete the implementation of an ordered linked list using struct.
The skeleton of the code is provided for you below. You need to implement the “insert” function. It
should insert a new node pointed by the parameter new_node. Assume that the memory space for
the new node has already been allocated by the caller (so that insert does not need to allocate
memory space for the new node). In addition, you should keep the linked list sorted from the smallest
value to the largest. For example, if the user inserts three nodes: "3", "187", "5" in this order, your
insert function should make sure the linked list be in the order: 3 -> 5 -> 187. Assume that there will
be no duplicate values.

An example of main function is provided to showcase how one uses the insert function. You do not
need to worry about freeing unused memory blocks in this question.

struct	node	{	
		int	data;	
		struct	node	*next;	
};	
	
	
struct	node	*head	=	NULL;	

	
void	insert(struct	node	*new_node)	{	
		/*	This	first	line	is	correct	and	is	given	to	you	
		struct	node	**link	=	&head;	
	
		/*	The	code	snippet	of	your	choice	goes	here.	*/	
}	
	
int	main()	{	
		struct	node	*p	=	new	node;	
		p->data	=	3;	
		insert(p);	
		p	=	new	node;	
		p->data	=	187;	
		insert(p);	
		p	=	new	node;	
		p->data	=	5;	
		insert(p);	
		return	0;	
}	

The insert function body consists of only 5 lines of code. The first line is already given to you. For
each of the remaining four lines, you are to choose from the list below of possible code lines so that
they form the correct implementation for insert. For example, if you choose A, C, I, J, your insert
function will look like:

Page 6 of 28

void	insert(struct	node	*new_node)	{	
		struct	node	**link	=	&head;	
		/*	The	code	snippet	of	your	choice	goes	here.	*/	
		while	(link	!=	NULL	&&	link->data	<	new_node->data)	//	A	
								link	=	&((*link)->next);	//	C	
		new_node->next	=	***link;	//	I	
		*link	=	&new_node;	//	J	
}	

Please write down your choice. Note that there is one correct combination. If you feel there is more
than one, only choose one combination.

Line 1: (write one choice, from A to J)

(A)		while	(link	!=	NULL	&&	link->data	<	new_node->data)	
(B)		while	(link	!=	NULL	&&	(*link)->data	<	new_node->data)	
(C)		while	(*link	!=	NULL	&&	(*link)->data	<	new_node->data)	
(D)		while	(*link	!=	NULL	&&	(*link).data	<	new_node->data)	
(E)		while	(**link	!=	NULL	&&	(**link)->data	<	new_node->data)	
(F)		while	(link	!=	NULL	&&	link->data	>	new_node->data)	
(G)		while	(link	!=	NULL	&&	(*link)->data	>	new_node->data)	
(H)		while	(*link	!=	NULL	&&	(*link)->data	>	new_node->data)	
(I)		while	(*link	!=	NULL	&&	(*link).data	>	new_node->data)	
(J)		while	(**link	!=	NULL	&&	(**link)->data	>	new_node->data)	
	

Line 2 : (write one choice, from A to E)

(A)				link	=	link->next;	
(B)				link	=	(*link)->next;	
(C)				link	=	&((*link)->next);	
(D)				link	=	(**link)->next;	
(E)				*link	=	(*link)->next;	

Line 3: (write one choice, from A to J)

(A)		*link	=	new_node;	
(B)		link	=	new_node;	
(C)		link	=	&new_node;	
(D)		**link	=	*new_node;	
(E)		*link	=	&new_node;	
(F)		new_node->next	=	*link;	
(G)		new_node->next	=	&link;	
(H)		new_node->next	=	**link;	
(I)		new_node->next	=	***link;	
(J)		*(new_node->next)	=	**link;	

Page 7 of 28

Line 4: (write one choice, from A to J)

(A)		new_node->next	=	*link;	
(B)		new_node->next	=	&link;	
(C)		new_node->next	=	**link;	
(D)		new_node->next	=	***link;	
(E)		*(new_node->next)	=	**link;	
(F)		*link	=	new_node;	
(G)		link	=	new_node;	
(H)		link	=	&new_node;	
(I)		**link	=	*new_node;	
(J)		*link	=	&new_node;	

Hint: You should use the space below to draw a picture of the linked list and what the various
pointers are pointing to.

Page 8 of 28

Question 5. (6 marks). Class Definition.

Consider the following definition of the class Complex and its use in the main function:

class Complex {
 private:
 float real;
 float imag;
 public:
 float getReal();
 float getImag();
 void setReal(float r);
 void setImag(float i);
 void print();
};

int main() {

 Complex a;

 a.setReal(1.0);
 a.setImag(-9.6);

 Complex b(a);
 Complex c;

 c = a;
 a.print();
 b.print();
 c.print();
 return(0);
}

A programmer decides to change the class definition into the following:

struct _complex {float real; float imag;};

class Complex {
 private:
 struct _complex* number;
 public:
 // May need to add new function members or delete some
 float getReal();
 float getImag();
 void setReal(float r);
 void setImag(float i);
 void print();
};

However, the programmer must ensure that nothing needs to change in the main function, so users of
the Complex class are unaware of the change. With this in mind, answer the following questions.

Page 9 of 28

 (a) (2 marks). What additional (i.e., new) class member functions must be defined and
implemented for the class to remain correct? Write only the prototypes of these functions. If no
new members must be added, write NONE.

(b) (2 marks). What existing member functions must be removed for the class to remain correct?

Write only the prototypes of these functions. If no members must be removed, write NONE.

(c) (2 marks). Which of the functions that were not removed (in part (b)) from the original class

definition must be re-implemented to reflect the new definition of the class? Again, write only
the prototypes of these functions. If none must be re-implemented, write NONE.

Page 10 of 28

Question 6. (6 marks). Objects.

Study the following class definition (point.h) and implementation (point.cc).

struct coord {
 int x;
 int y;
};

class point {
 private:
 bool set;
 struct coord* thepoint;

 public:
 point();
 point(int xv, int yv);
 ~point();
 void setX(int xv);
 void setY (int yv);
 point operator+ (point rhs);
 void print();
};

 #include "point.h"
 #include "iostream"
 using namespace std;

point::point() {
 set = true;
 thepoint = new struct coord;
 thepoint->x = 0;
 thepoint->y = 0;
}

point::point(int xv, int yv) {
 set = true;
 thepoint = new struct coord;
 thepoint->x = xv;
 thepoint->y = yv;
}

point::~point() {
}

void point::setX(int xv) {
 thepoint->x = xv;
}

void point::setY(int yv) {
 thepoint->y = yv;
}

Page 11 of 28

point point::operator+ (point other) {
 point sum;
 sum.thepoint->x = thepoint->x + other.thepoint->x;
 sum.thepoint->y = thepoint->y + other.thepoint->y;
 return (sum);
};

void point::print() {
 cout << “(“ << thepoint->x
 << “,” << thepoint->y
 << “)” << endl;
}

Now consider the following main function, which uses the above class.

#include “iostream”
#include “point.h”
using namespace std;

int main () {
 point a(1,1);
 point b(5,12);
 point c(b);
 point d;

 a.print(); // Statement # 1
 b.print(); // Statement # 2
 c.print(); // Statement # 3
 d.print(); // Statement # 4

 a.setX(0);
 b.setX(8);
 c.setY(20);
 d.setX(5);
 d.setY(10);

 a.print(); // Statement # 5
 b.print(); // Statement # 6
 c.print(); // Statement # 7
 d.print(); // Statement # 8

 c=a;
 d=a+b;

 a.print(); // Statement # 9
 b.print(); // Statement # 10
 c.print(); // Statement # 11
 d.print(); // Statement # 12

 return (0);

}

Indicate what each statement in the above main function prints. For simplicity, each statement that
produces output has been given a number, and you can write the output of each statement in the table
below.

Page 12 of 28

Statement #

Output

1

2

3

4

5

6

7

8

9

10

11

12

Hint: Draw a picture!

Page 13 of 28

Question 7. (2 marks). Lab Assignments.

In lab assignment 5, you were asked to implement a binary search tree consisting of objects of type
treeNode. The class treeNode has pointers to the left and right subtrees, such as:

class treeNode {
 public:
 treeNode* left;
 treeNode* right;
 :
};

Assume that your program creates a binary search tree. A global variable called myroot points to the
root of this tree. We wish that when the following code is executed, the entire tree is deleted, i.e., all
its nodes are deleted:

 delete myroot;

Write the destructor of treeNode so that the above statement deletes all the nodes in the tree.

Provide your answer below. You answer should be very short. Long answers will be penalized!

treeNode::~treeNode() {

}

Page 14 of 28

Question 8. (2 marks). Inheritance.

What output does the following program print?

 class Base {
 public:
 virtual void display();
 };

 void Base::display() {
 cout << "In base class \n";
 }

 class Derived : public Base {
 public:
 Derived(int v);
 virtual void display();
 private:
 int value;
 };

 Derived::Derived(int v) {
 value = v;
 }

 void Derived::display() {
 cout << "In derived class, value is " << value << "\n";
 }

 int main()
 {
 Base b;
 Derived d(4);
 b = d;
 b.display();
 Base* bp = new Derived(7);
 bp->display();
 return(0);
 }

 Output:

Page 15 of 28

Question 9. (7 marks). Inheritance.

Consider the following definitions for the Vehicle and the Car classes.

#include <iostream>
using namespace std;

class Vehicle {
 private:
 int v_id;
 char *model;
 public:
 Vehicle();
 Vehicle(int id, char *m);
 ~Vehicle();
 int get_id();
 virtual void move(int _x, int _y);
};

Vehicle::Vehicle() {
 v_id = 0;
 model = new char [8];
 strcpy(model, “unknown”);
 cout << "Vehicle: constructor: " << v_id << endl;
}

Vehicle::Vehicle(int id, char *m) {
 v_id = id;
 model = new char [strlen(m) + 1];
 strcpy(model, m);
 cout << "Vehicle: constructor: " << v_id << endl;
}

Vehicle::~Vehicle() {
 move(0, 0);
 model = NULL;
}

int Vehicle::get_id() {
 move(0, 0);
 return v_id;
}

void Vehicle::move(int _x, int _y) {
 cout << "Vehicle: move: " << v_id << " " << model << endl;
}

Page 16 of 28

class Car : public Vehicle {
 private:
 int x, y;
 void print_position(void);
 public:
 Car(int id, char *m, int _x, int _y);
 ~Car();
 int get_id();
 virtual void move(int _x, int _y);
};

Car::Car(int id, char *m, int _x, int _y) : Vehicle(id, m) {
 x = _x; y = _y;
}

Car::~Car() {
 print_position();
}

int Car::get_id() {
 print_position();
 return Vehicle::get_id();
}

void Car::move(int _x, int _y) {
 x += _x; y += _y;
 cout << "Car: move: x = " << x << ", y = " << y << endl;
 Vehicle::move(_x, _y);
}

void Car::print_position(void) {
 cout << "Car: position: x = " << x << ", y = " << y << endl;
}

 // main program
 // Line numbers are to facilitate answers, not part of code
 int main() {
 1 Vehicle v;
 2 Vehicle *vp = &v;
 3 Car c(10, "Zip", 2, 6);
 4 Car *cp = &c;
 5 cout << vp->get_id() << endl;
 6 vp->move(1, 3);
 7 cp->move(2, 1);
 8 *vp = *cp;
 9 vp->move(1, 1);
10 vp = cp;
11 cout << vp->get_id() << endl;
12 cp->move(1, 1);
13 cout << “Done ..” << endl;
14 }

Page 17 of 28

Show the output produced by each line of the program in the table below. If a line has no output,
write N/A. Refer to the line numbers in main() above.

Line #

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Page 18 of 28

Question 10. (4 marks). Operator Overloading.

Assume you are given the definition of class A below and assume that this code compiles correctly.
Moreover, assume that an implementation of class A exists in the form of an A.o file, but you do not
have access to the source files.

class A {
 private:
 Poodle *bp ;
 public:
 A();
 ~A();
 A(const A& a) ;
 A& operator=(const A& rhs) ;
} ;

Further, assume you are given the definition of class B below as well as an implementation of the
copy constructor for B that works correctly:

class B: public A {
 private:
 Poodle *pp ;
 public:
 B();
 ~B();
 B(const B& b) ;
 B& operator=(const B& rhs) ;
} ;

B::B(const B& b):A(b) {
 pp = new Poodle(*(b.pp)) ;
}

Based on the code you have available, provide the implementation of the overloaded assignment
operator for the class B.

 B& operator=(const B& rhs) {

 }

Page 19 of 28

Question 11. (6 marks). Inheritance.

Consider the C++ code shown below for a base class onePoint. The implementation is correct.

class onePoint {
 private:
 int x;
 public:
 bool valid;
 onePoint(int xv);
 ~onePoint();
 void scale();
 virtual void reflect();
 virtual void print()=0;
};

onePoint::onePoint(int xv) {
 valid = true;
 x = xv;
}

onePoint::~onePoint() {
 // Nothing to do
}

void onePoint::scale() {
 x = 2*x;
}

void onePoint::reflect() {
 x = -1*x;
}

void onePoint::print(){
 cout << “x = “ << x << “ “;
}

Now consider the following class, towPoints, which derives from onePoint.

class towPoints : public onePoint {
 private:
 int y;
 public:
 towPoints(int xv, int yv);
 ~towPoints();
 void scale();
 virtual void reflect();
 virtual void print();
};

towPoints::towPoints(int xv, int yv):onePoint(xv) {
 y = yv;
}

Page 20 of 28

towPoints::~towPoints() {
 // Nothing to do
}

void towPoints::scale() {
 /* Deliberately left empty */
}

void towPoints::reflect() {
 /* Deliberately left empty */
}

void towPoints::print(){
 onePoint::print();
 cout << “, y = “ << y << endl;
}

Based on the above definitions and implementations of the two classes, indicate by placing an X in
the appropriate column whether each of the following code segments is correct code or incorrect
code. A segment of code is correct if it produces no compile-time error. You should assume each part
of the questions to be independent of the others.

Code Segment Correct Incorrect

// In main()

onePoint p0;

// In main()

onePoint p1(2);

// In main()

towPoints p2(3,5);

void towPoints::reflect() {
 x = -1*x;
 y = -1*y;
}

towPoints p3(10,10);
p3.valid = false;

towPoints p4(5,7);
p4.x = 4;

Page 21 of 28

Question 12. (3 marks). Tree Traversals.

Give the inorder, preorder, and postorder traversals of the tree shown below.

Inorder Traversal:

Preorder Traversal:

Postorder Traversal:

 F

 D

 C

 E S

Q

A

V

X

Page 22 of 28

Question 13. (8 marks). Tree Traversals.

(a) (4 marks). In the reverse inorder traversal of a tree, the right subtree of each node is first

traversed (recursively in reverse inorder), the node then is visited, and finally the left subtree of
the node is traversed (recursively in reverse inorder). That is, the order of the traversal is RNL.
For example, the reverse inorder traversal of the tree shown below is C B A.

Write a recursive function to perform the reverse-inorder traversal of a binary tree. Assume that
visiting a node simply prints its key to cout. Your code should be very short (4-6 lines)!
Long code will be penalized!

You may assume the following declarations:

class treenode {
 public:
 int data;
 treenode *left;
 treenode *right;
};
treenode *Root; // root of the tree

void reverseorder (treenode *rt) {

}

// This is how reverseorder is called
reverseorder(Root);

 B

 A C

Page 23 of 28

(b) (4 marks). A tree T has the following inorder and preorder traversals:

Preorder traversal: 1 8 12 25 13 7 9
Inorder traversal: 8 1 25 12 7 13 9

Draw the tree T. Please note that there is only one tree T that has the inorder and preorder
traversals shown above. Do NOT draw two trees; draw only one tree whose inorder and preorder
traversal are as shown above.

Page 24 of 28

Question 14. (6 marks). Binary Search Trees.

The following is the code for the insert function for a binary search tree (BST), similar to what you
have written for lab assignment 5.
	
	
	

class	TreeNode	{	
private:	
		int	value;	
		TreeNode	*left;	
		TreeNode	*right;	
public:	
							TreeNode(int	v);	
		void	insert	(int	v);	
		:		
};	

	
	
void	TreeNode::insert	(int	v)	{	
		if	(value	==	v)	
				return;	
		if	(v	<	value)	{	
					if	(left	==	NULL)	
								left	=	new	TreeNode(v);	
					else	
								left->insert(v);	//	recursion	
		}		else	{	
					if	(right	==	NULL)	
								right	=	new	TreeNode(v);	
				else	
								right->insert(v);	//	recursion	
		}	
		return;	
}	

Page 25 of 28

Draw the BST that results from inserting nodes with the values 1 to 7 in the following order (from
left to right):

						5			3			7			6			2			1			4	

	

	

	

	

	

	

					1			2			3			4			5			6			7	

	

	

	

	

	

	

					4			3			5			2			6			1			7	

Page 26 of 28

Question 15. (12 marks). Complexity Analysis.

Determine the worst-case time complexity (expressed in big-O notation) for each of the program
segments below as a function of the size of the input n. Show the details of your analysis and clearly
indicate your final result.

(a) (2 marks) The size of the input is n.

 w=0;
 for (int i=0; i < n; ++i) {
 for (int j=0; j < n*n; ++j) {
 for (int k=0; k < n*n*n; ++k) {
 w = w + 1;
 }
 }
 }

(b) (2 marks). The size of the input is n.

for (int i=0; i < n; ++i) {
 for (int j=0; j < i*n ; ++j) {
 O(1)
 }
}

 (c) (2 marks). Give the time complexity of the following segment of code.

 for(int i=0; i<10; i++)
 for(int j=0; j<n; j++)
 for(int k=n-2; k<n+2; k++)
 cout << i << " " << j << endl;

T(n) = O ()

T(n) = O ()

T(n) = O ()

Page 27 of 28

(d) (6 marks). Assume for simplicity that n is a power of two.

 int mystery (int k, int n) {
 int x;
 int y;

 if (n <= 1) return(0);
 for (int i=0 ; i < n ; ++i) {
 O(1) // to determine the value of k
 }
 x = mystery (k, n/2); // integer division
 y = mystery (n-k, n/2); // integer division
 return (x+y);
 }

Write the recurrence equation for T(n).

Solve the recurrence equation to obtain an expression of T(n) in terms of n.

Express T(n) using the big-O notation.

T(n) = O ()

Page 28 of 28

Question 16. (8 marks). Complexity Analysis.

Bubble sort is a basic sorting algorithm, which we did not cover in class, but its code is shown below.

void	swap	(int	&	x,	int	&	y)	{	
		int	tmp	=	x;	x	=	y;	y	=	tmp;	
}	
	

void	bubbleSort(int*	a,	int	length)	{	
		bool	flag	=	true;	
	

		for(int	i	=	0;	(i	<	length)	&&	flag;	i++)	{	
					flag	=	false;	
					for	(int	j	=	0;	j	<	(length	-	i	-	1);	j++)	{	
								if	(a[j]	>	a[j	+	1])	{	
										swap	(a[j],	a[j+1]);	
										flag	=	true;	
								}	
				}	
		}	
		return;	
}	

(a) (2 marks). What is the best-case complexity of bubbleSort, expressed in big-O notation?

T(n) = O()

(b) (1 marks). Can you give an example of input array of length 5 that will result in this best-case
scenario?

(c) (2 marks). What is the worst-case complexity of bubbleSort, expressed in big-O notation?

T(n) = O()

(d) (1 marks). Can you give an example of input array of length 5 that will result in this worst-case
scenario?

(e) (2 marks). What is the average-case complexity of bubbleSort, expressed in big-O notation?

T(n) = O()

