
Page 1 of 29

University of Toronto
Faculty of Applied Science and Engineering

ECE 244F

PROGRAMMING FUNDAMENTALS

Fall 2017

Final Examination

Examiners: T.S. Abdelrahman and D. Yuan

Duration: Two and a Half Hours

This exam is OPEN Textbook and CLOSED notes. The use of computing and/or
communicating devices is NOT permitted.

Do not remove any sheets from this test book. Answer all questions in the space provided. No
additional sheets are permitted.

Work independently. The value of each part of each question is indicated. The total value of all
questions is 100.

Write your name and student number in the space below. Do the same on the top of each sheet
of this exam book.

Name: ___________________________________

Student Number: ___________________________________

Q1. __________ Q11. _________

Q2. __________

Q12. _________

Q3. __________

Q13. _________

Q4. __________

Q14. _________

Q5. __________

Q15. _________

Q6. __________

Q16. _________

Q7. __________

Q17. _________

Q8. __________

Q18. _________

Q9. __________ Q19. _________

Q10. _________

Total

Page 2 of 29

Question 1. (9 marks). General.

Answer the following questions as indicated. No justification of your answer is required.

(a) (1 mark). What is the name of the programming language used in this course?

 Write your answer here:

(b) (1 mark). Stream variables (e.g. types istream, ostream, and sstream) must be passed by
reference in function calls.

Circle one answer: Yes No

(c) (1 mark). An abstract class is one that has no data member.

 Circle one answer: Yes No

(d) (1 mark). A derived	class	can	remove	data	member	variables	from	the	base	class.

 Circle one answer: Yes No

(e) (1 mark). Circle one answer. Algorithm A has an average time complexity of O(n2). Algorithm

B has an average time complexity of O(n log n).

1. Algorithm B is always faster than algorithm A.

2. Algorithm A is always faster than algorithm B.

3. Algorithm A can be faster than algorithm B.

4. None of the above.

(f) (1 mark). True or False? The	worst	case	complexity	for	quicksort	is	O(n2).

 Circle one answer: Yes No

(g) (1 mark). The	complexity	of	inserting	an	element	into	an	unsorted	linked	list	can	be	O(1).

 Circle one answer: Yes No

Page 3 of 29

(h) (2 mark). What is the output generated by the program listed below? Write the output in the box.

#include <iostream>
using namespace std;

class One {
public:
 One() {cout << "created\n";}
 One(const One& rhs) {cout << "copied\n";}
 ~One() {cout << "destroyed\n";}
};

One first;

int main () {
 One second(first);
 cout << "starting\n";
 One third[2];
 cout << "finishing\n";
 return (0);
}

Page 4 of 29

Question 2. (5 marks). Objects with pointers.

The following partial definition and implementation are for a class webAddress, which is intended
to store the sequence of characters representing the address of a web site (e.g., www.google.com
or www.utoronto.ca).

// Definition
class webAddress {
 private:
 char* _address;
 int _length;
 public:
 webAddress(const char* addr);
 ~webAddress();
 webAddress& operator=(webAddress& rhs);
 : // Other members not relevant to the question
};

// Implementation

 webAddress::webAddress(const char* addr) {
 _length = strlen(addr);
 _address = new char[_length];
 strcpy(_address, addr);
 }

 webAddress::~webAddress() {
 _address = NULL;
 }

 webAddress& webAddress::operator=(webAddress& rhs) {
 _length = rhs._length;
 _address = rhs._address;
 }

However, the implementation part of this class has problems. Identify these problems and re-write
the implementation of the three member functions above to eliminate these problems. If a method
needs no modification, write “the same” inside the box.

webAddress::webAddress(const char* addr) {

}

Page 5 of 29

webAddress::~webAddress() {

}

webAddress& webAddress::operator=(webAddress& rhs) {

}

Page 6 of 29

Question 3. (3 marks). Memory Management.

Consider the three classes Strange, Weird, and Bizarre. The data members of each class are
shown.

A program constructs an object of type Strange on the heap with the following statement:

 Stange* p = new Strange(); // Assume the default constructor exists

Later in the program, the object is deleted with the following statement:

 delete p;

Write the destructor for each of the three classes so that the delete statement causes no memory leaks.
If a destructor has no code in it, write “// No Code” in the box.

class Strange {
 int a;
 int b;
 int c[10];
 Weird* w;
 :
 :
};

class Weird {
 int x;
 Bizzare b;
 :
 :
};

class Bizzare {
 float y;
 char * name;//char array
 :
 :
};

Strange::~Strange() {

}

Weird::~Weird() {

}

Bizzare::~Bizzare() {

}

Page 7 of 29

Question 4. (4 marks). Overloaded Operators.

Consider the following class definition:

#include “Wheel.h” // Contains the declaration of class Wheel

class Car {
 private:
 int v;
 Wheel* p;
 public:
 :
}

Assume that the class Wheel is properly implemented. Write an overloaded assignment operator as
a member of the class Car. This operator must do a deep assignment. Write both the operator’s
header and its body below.

Page 8 of 29

Question 5. (4 marks). I/O.

We wish to write a program that prompts the user to enter her first and last names at the standard
input and then print her initials to the standard output.

#include <iostream>
using namespace std;

int main () {
 char firstInitial;
 char lastInitial;

 cout << "Enter your first name followed by your last name: ";

 cout << "Your initials are: " << firstInitial
 << lastInitial << endl;

 return (0);
}

Complete the program by writing code in the box shown above. You are not to declare/use any other
variables than the ones shown in the program. However, you may use any of the functions of
iostream (e.g., cin.peek(), cin.ignore() or cin.fail()). You may also assume that the
user will always enter her first name followed by her last name.

Your answer should be at most 3 lines of code. You will lose marks for additional lines.

Here are example inputs and outputs for the program (user input is shown in italics):

Enter your first name followed by your last name: Patricia Williams
Your initials are PW

Enter your first name followed by your last name: Sandy Smith
Your initials are SS

Enter your first name followed by your last name: Rachel McDonalds
Your initials are RM

Page 9 of 29

Question 6. (3 marks). Recursion.

Write a recursive function called printReverse(int* array, int start, int end)
that prints the elements of an integer array in reverse. For example, given the following 4-element
array a:

The function invoked as printReverse(a,0,3) prints to the standard output (using cout):

 2 1 9 0

Write your answer below.

void printReverse(int* array, int start, int, end){

}

Your code should be no more than 3-4 lines. Longer answers will be penalized.

0

0 1 2 3

1 9 2 a

Page 10 of 29

Question 7. (4 marks). Recursion.

Consider the following recursive function, int mystery(int n, int depth):

#include <iostream>
using namespace std;

int mystery(int n, int depth) {
 for (int i=0; i < n-depth+1; ++i) cout << “+”;
 cout << endl;
 if (n <= 1) {cout << “*” << endl; return 0;}
 return (mystery(n-2, depth+1) + mystery(n-3, depth+1));
}

int main() {
 mystery(4,0);
 return (0);
}

What is the output produced when mystery(4,0) is called?

Write the output below. Enter one line of the output per row in the order in which the output is
produced. You may or may not need all rows in the table.

Page 11 of 29

Question 8. (4 marks). Binary Trees.

An expression tree is a binary tree whose leaf nodes represent integer values and whose non-leaf
nodes represent arithmetic operators. An example of a simple expression tree that represents the
expression 10 + 18 is shown below.

Draw the expression tree whose pre-order traversal is: + - * 6 / 8 4 + 3 5 10

All operators are binary operators, i.e., they take two operands.

Draw the tree here. It should represent a valid expression.

 +

10 18

Page 12 of 29

Question 9. (6 marks). Binary Search Trees.

The tree T shown here is a Binary Search Tree (BST).

(a) (2 marks). Insert a node with the key “6” onto the tree T and show the resulting tree. You must

use the insertion algorithm developed in the lectures.

(b) (2 marks). Starting with the tree in part (a) after the insertion of “6”, delete the node with the key

“10” and show the resulting tree.

(c) (2 marks). Starting with the tree in part (b) after the removal of “10”, re-insert the node with they

key “10” onto the tree and show the resulting tree. Again, use the insertion algorithm developed
in the lectures.

15

10

7

5

 18

20

Page 13 of 29

Question 10. (5 marks). Tree Traversals.

Write a recursive function to perform the odd-even-order traversal of a binary tree, meaning that for
each node of the tree, the function always visits the node first. Then if the key of the node is odd, the
function traverses the left subtree (in odd-even-order) followed by the right subtree (also in odd-
even-order). However, if the key of the node is even, the function traverses the right subtree (in odd-
even-order) followed by the left subtree (also in odd-even-order).

Hint: The % operator can be used to determine if the integer key is odd or even.

Assume that visiting a node simply prints its key to cout. Your code should be less than 10 lines
of code! Long code will be penalized!

You may assume the following declarations:

class treenode {
 public:
 int data;
 treenode *left;
 treenode *right;
};

treenode *Root; // root of the tree

void oddevenorder (treenode *rt) {

}

// This is how oddevenorder is called
oddevenorder(Root);

Page 14 of 29

Question 11. (5 marks). 3-Way Trees (Caution: Difficult).

A 3-way tree is a tree in which each node has up to 2 keys, named key0 and key1, and up to 3
children, named child0, child1 and child2. A 3-way tree is 3-way search-tree (TWST) if for
every node in the tree, the following properties hold:

• The keys in each node are in increasing order, i.e., key0 < key1
• The keys in the subtree rooted at child0 are smaller than key0
• key0 is smaller than the keys in the subtrees rooted at child1 and child2
• The keys in the subtrees rooted at child0 and child1 are smaller than key1
• key1 is smaller than the keys in the subtree rooted at child2

The code below shows one possible definition of a node in a TWST tree.

class TWSTnode {
 public:
 int key0; // Initialized to -1 if no key value
 int key1; // Initialized to -1 if no key value
 TWSTnode* child0; // Initialized to NULL if no child
 TWSTnode* child1; // Initialized to NULL if no child
 TWSTnode* child2; // Initialized to NULL if no child
};

// The root of a TWST
TWSTnode* root;

Write a recursive non-member function that searches a TWST for a node that has a key k as one of
its two keys and returns a pointer to it. It returns NULL if such a node does not exist.

TWSTnode* TWSTsearch(TSWTnode* r, int k) {

}
// Example use
TWSTsearch(root, 10);

Your code should be really short. Long answers will be penalized.

Page 15 of 29

Question 12. (7 marks). Inheritance.

Consider the following definitions of base and derived classes.

class person {
 private:
 int ID;
 public:
 person();
 ~person();
 int getID();
 virtual void print() const = 0;
};

class employee : public person {
 private:
 string company;
 public:
 employee();
 ~employee();
 string getCompany() const;
 void setCompany(string comp);
 virtual void print() const;
};

class developer : public employee {
 private:
 string prog_language;
 public:
 developer();
 ~developer();
 string getLanguage() const;
 void setLanguage(string lang);
 virtual void print() const;
};

Assume the implementation of these classes is correct even though the implementation code is not
shown here.

In the table below, indicate whether each group of statements (i.e., a row in the table) generate a
compiler error or not by placing an X in the appropriate column. All statements appear in the main
function of a program. Consider each group of statements (i.e., row in the table) by itself.

Page 16 of 29

Statement Error Not
Error

person p;

employee e;
developer d;
d = e;

employee e;
developer d;
e = d;

person* pp;

employee* pe;
pe = new employee();

person* pp = new employee();

developer* pd;
employee* pe = new employee();
pd = pe;

developer* pd = new developer();
employee* pe;
pe = pd;
pe->getLanguage();

Page 17 of 29

Question 13. (4 marks). Inheritance.

Consider the code shown below. The implementation of the various functions is included in the class
definition.

#include <iostream>
using namespace std;

class Base {
public:
 Base(int b) {cout << "Construct Base: " << b << endl;}
 ~Base() {cout << "Destruct Base" << endl;}
 void print() {cout << "Print Base" << endl;}
};

class D1 : public Base {
public:
 D1(int b, int d1) : Base(b) {
 cout << "Construct D1: " << d1 << endl;
 }
 ~D1() {cout << "Destruct D1" << endl;}
};

class D2 : public D1 {
public:
 D2(int b, int d1, int d2) : D1(b, d1) {
 cout << "Construct D2: " << d2 << endl;
 }
 ~D2() {cout << "Destruct D2" << endl;}
 void print() {cout << "Print D2" << endl;}
};

int main() {

 Base *ptr = new Base(0);
 Base *ptr1 = new D1(1, 2);
 Base *ptr2 = new D2(2, 3, 4);

 ptr->print();
 ptr1->print();
 ptr2->print();

 delete ptr;
 return 0;
}

Page 18 of 29

What does the code in main() print to the output when the code is executed?

Write the output below

Page 19 of 29

Question 14. (6 marks). Inheritance.

Consider the following code segment that defines a base class Base and a derived class Derived.
The implementation of the various member methods is given insider the class definition.

#include <iostream>
using namespace std;

// This is the base class
class Base {
 protected:
 int* pa;
 public:
 Base() { pa = NULL; }

 Base (const Base & original) {
 pa = new int;
 *pa = *(original.pa);
 }

 Base (const int v) {
 pa = new int;
 *pa = v;
 }

 ~Base() { delete pa; }

 Base & operator= (Base & rhs) {
 cout << “Base operator=” << endl;
 if (pa == NULL) pa = new int;
 *pa = *(rhs.pa);
 return (*this);
 }
};

Page 20 of 29

// This is the derived class
class Derived : public Base{
private:
 int* pb;
public:
 Derived() { pb = NULL; }

 Derived (const int _base, const int _derived) : Base(_base) {
 pb = new int;
 *pb = _derived;
 }

 Derived (const Derived & original) {
 pb = new int;
 *pb = *(original.pb);
 }

 Derived (const int _derived) {
 pb = new int;
 *pb = _derived;
 }

 ~Derived () { delete pb; }

 Derived & operator= (Derived & rhs) {
 cout << "Derived operator=" << endl;
 if (pb == NULL) pb = new int;
 *pb = *(rhs.pb);
 return (*this);
 }

 void print () {
 if (pa != NULL) cout << "Base::pa -> " << *pa << endl;
 if (pb != NULL) cout << "Derived::pb -> " << *pb << endl;
 }
};

Page 21 of 29

(a) (3 marks). What is the output produced by the following main function?

int main() {
 Derived p(100,101);
 Derived q(p);
 p.print();
 q.print();
 return 0;
}

Write the output here.

(a) (3 marks). What is the output produced by the following main function?

int main() {
 Derived p(100,101);
 Derived q;
 q = p;
 p.print();
 q.print();
 return 0;
}

Write the output here.

Page 22 of 29

Question 15. (7 marks). Complexity Analysis.

Determine the worst-case time complexity (expressed in big-O notation) for each of the program
segments below as a function of the size of the input n. Show the details of your analysis and clearly
indicate your final result.

(a) (2 marks) The size of the input is n.

 w=0;
 for (int i=0; i < n; ++i) {
 for (int j=0; j < 10; ++j) {
 for (int k=0; k < j; ++k) {
 w = w + 1;
 }
 }
 }

(b) (2 marks). The size of the input is n.

for (int i=0; i < n; ++i) {
 for (int j=0; j < 5*n ; ++j) {
 O(1)
 }
}

(c) (3 marks). Assume for simplicity that n is a power of two.

 int mystery (int k, int n) {
 if (n <= 1) return(0);
 return (mystery (n/2)+ 2*mystery (n/2)); // integer division
 }

T(n) = O ()

T(n) = O ()

Page 23 of 29

Write the recurrence equation for T(n).

Solve the recurrence equation to obtain an expression of T(n) in terms of n.

Express T(n) using the big-O notation.

T(n) = O ()

Page 24 of 29

Question 16. (4 marks). Complexity Analysis.

Consider the recursive code below.

void split (int a[], int begin, int end) {
 if (begin >= end) return;
 int middle = (begin + end)/2;
 split(a, begin, middle);
 split(a, middle + 1, end);
 scan(a, begin, middle, end);
}

void scan(int a[], int begin, int middle, int end) {
 int l1 = begin;
 int l2 = middle + 1;
 int i;
 int b[MAX]; // MAX is a large enough number

 for (i = begin; l1 <= middle && l2 <= end; i++) {
 if (a[l1] <= a[l2]) {
 b[i] = a[l1];
 l1 = l1 + 1;
 }
 else {
 b[i] = a[l2];
 l2 = l2 + 1;
 }
 }
 while (l1 <= middle) {
 b[i] = a[l1];
 i = i + 1;
 l1 = l1 + 1;
 }
 while (l2 <= end) {
 b[i] = a[l2];
 i = i + 1;
 l2 = l2 + 1;
 }
 for (i = begin, i <= end; i++) a[i] = b[i];
}

Determine the worst-case time complexity of code, given the size of the input array, n. You can
assume the function split to be invoked as split(a, 0, n-1).

Page 25 of 29

Write the recurrence equation for T(n), the execution time of the code.

Solve the recurrence equation to obtain an expression of T(n) in terms of n.

Express T(n) using the big-O notation.

T(n) = O ()

Page 26 of 29

Question 17. (4 marks). Graphs.

Consider the graph shown below.

(a) (2 marks). Show the adjacency matrix representation of the graph.

(b) (2 marks). Give a depth-first traversal of the graph. Assume that visiting a node means printing

its number to the standard output.

Give the traversal here:

0

1

2

3

4

5

Page 27 of 29

Question 18. (8 marks). Binary Search Trees (Caution: Difficult).

The following is a definition of a node in a binary search tree. The member function
secondLargest() returns the key of the second largest key in the binary search tree rooted at the
node.

class TreeNode {
private:
 int value;
 TreeNode *left;
 TreeNode *right;
public:
 int secondLargest();
};

// Pointer to root of the tree
TreeNode* root;

Write the function body of TreeNode::secondLargest() in the box below. The function is
invoked as root->secondLargest() and returns the second largest element of the binary
search tree rooted at root. You may assume that you are always given a tree with at least two
nodes.

Your program will be marked by correctness and simplicity.

int TreeNode::secondLargest() {

}

Page 28 of 29

Question 19. (8 marks). Linked Lists (Caution: Difficult).

Consider the following class definitions of a node in a linked list and a linked list. The function
List::reverse() reverses the linked list pointed to be List::head. Thus, in the example
below, the invocation of the function as mylist.reverse() reverses the list as shown.

Before invocation:

After invocation:

class Node {
private:
 int data;
 Node *next;
public:
 int getData() const { return data; }
 Node *getNext() const { return next; }
};
class List {
private:
 Node *head;
public:
 void reverse(); // You write this function
};

Here are the requirements for your List::reverse() function:

• After the invocation, the entire linked list is reversed with the head properly pointing to the
new head (i.e., the last node in the old linked list).

• The linked list can be traversed only once.
• No variables, in addition to what is already provided in the code skeleton below, can be used.

Similarly, no additional nodes may be allocated.

5 2 1 7 18 3 head

5 2 1 7 18 3 head

mylist

mylist

Page 29 of 29

Write the function body of List::reverse() in the box below. Your program will be marked by
correctness and simplicity.

	

void List::reverse() {
 Node *p = NULL;

}

