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Question 1. (6 marks). Pointers and Parameter Passing. 
	
(a) (2 marks). Assume the definition and implementation of a class Mystery exist. Write the 

prototype of a non-member function called doSomething that takes a pointer to an object of 
type Mystery, called p, passed by reference and returns an object of type Mystery by value. 
Write your answer in the box below. 

 
 
 
 
 (b) (1 marks). Given the following declarations, what is the value of each of the following 

expressions? Write your answer where indicated  
 
         int i=10; 

int *pi=&i; 
double d=12.5; 
double *pd=&d; 

	
(*pi) + 1;       value: 

	
(*pd) + 1;   value: 

. 
 (c) (3 marks). What is the output of the following program? Write your answer in the box below. 
 
 
  

#include <iostream> 
using namespace std; 
 
int main() { 
 
    int i=10; 
    int j=20; 
    int* p; 
    int* q; 
    int** r; 
    p = &i; 
    q = &j; 
    *q = 5; 
    if (*p < j) r = &p; 
    else r = &q; 
    **r = (**r) + (*p) + 1; 
    cout << i << " " << j << endl; 
 
    return (0); 
} 
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Question 2. (5 marks). Pointers and Memory Allocation. 
	

Consider the following classes whose instances respectively represent points in two-dimensional 
space and the line between two points, a and b. 
 
 
 
 
 
 
A non-member function, called create_line, dynamically allocates the memory space needed to 
represent the two end points of a line as well as the line itself. The function takes four parameters, all 
integers. The first two represent the x and y coordinates of point a of a line to be created. The second 
two represent the x and y coordinates of point b of the line. The dynamically allocated memory is 
initialized from the function parameters. The dynamically allocated memory is then de-allocated. 
 
The skeleton of the code is given to you below. The code uses two pointers, line_ptr and pptr, 
as well as the classes defined above.  You need to complete the implementation of the function, with 
the following restrictions. You are not allowed to declare any additional variables other than 
line_ptr and pptr. Further, you cannot use line_ptr in the code you write, i.e., you can only 
use pptr in your code.  
 
You need not worry about any error handling.  
 

void create_line (int x_a, int y_a, int x_b, int y_b) { 
  Line*  line_ptr; 
  Line** pptr = &line_ptr; 
  /* Write your code here. You cannot use line_ptr!! */ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
} 

class Line { 
    public: 
       Point* a; 
       Point* b; 
}; 
 

class Point { 
    public: 
       int* x; 
       int* y; 
}; 
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Question 3. (4 marks). Arrays and Objects. 
 
Consider the following modified and simplified definition/implementation of the class Shape, used 
in your lab assignment 3. You may assume the class is correctly defined/implemented. 
 

 #include <iostream> 
 using namespace std; 
#include <string> 
 
class Shape { 
   private: 
       string name; 
       string type; 
   public: 
              Shape() { } 
       string getName() const {return name;} 
       string getType() const {return type;} 
       void   setName(string n) {name = n;} 
       void   setType(string t) {type = t;} 
}; 

 
A main function dynamically allocates then de-allocates n Shape objects, with other dynamically 
allocated variables, where n is an integer value read from cin. The code to de-allocate the objects 
and the other variables (so that no memory leak exists) is shown below at the end of main.  
 
Give the code to allocate the n objects and to set the type of each of the n Shape objects to the 
string circle. Assume iostream has been included and that the std namespace is used.  
 

int main () { 
   int n; 
   cin >> n; 
 
   // Write code to allocate objects and other variables here 

 
 
 
 
 

 

 
 
   // Write code to set type of each Shape object to circle here 
 

 
 
 
 

// De-allocate all dynamically allocated variables 
   for (int i=0; i < n; ++i) { 
       delete *(p[i]); delete p[i]; 
   } 
   delete [] p; 
   return (0); 
} 
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Question 4. (4 marks). Overloaded Operators. 
 
A programmer writes two classes, X and Y, defined and implemented correctly. The programmer 
now uses them together, along with integers and booleans, to perform the operations shown in main 
below. 
 

int main() { 
   X a(1); 
   Y b(2); 
   bool isIt = false; 
 

   isIt = (a == b);   
   isIt = (b == a);   
 

   isIt = (a == 3); 
   isIt = (3 == b);   
 

   return (0); 
} 
 

The programmer must have written a set of overloaded operator== functions to make the above code 
work in main.  
 
 (a) (1 mark). How many of these operator== functions must be non-member 

functions? Write your answer in the box across. 
 
 
 (b) (1 mark). How many of these operator== functions may be member methods of 

class X? Write your answer in the box across. 
 
 
 (c) (1 mark). How many of these operator== functions may be member methods of 

class Y? Write your answer in the box across. 
 
 
(d) (1 mark). Is it possible to have none of the operator== functions as members of  
       classes X or Y? Write Yes or No in the box across. 
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Question 5. (9 marks). Objects with Pointers. 
 
Consider the following class definition and implementation. 
  
#include <iostream> 
using namespace std; 
 
class Duo { 
   private: 
      int* p; 
      int* q; 
   public: 
      Duo(int a, int b) { 
         p = new int; 
         *p = a; 
         q = new int; 
         *q = b; 
      } 
 
      int get_a() {return *p;} 
      int get_b() {return *q;} 
 
      void set_a(int a) {*p = a;} 
      void set_b(int b) {*q = b;} 
 
      Duo funnyMultiply(Duo & rhs) { 
          Duo temp(0,0); 
          *(temp.p) = (*p) * *(rhs.p); 
          *(temp.q) = (*q) * *(rhs.q); 
          *(rhs.p) = *(rhs.p) - 1; 
          *(rhs.q) = *(rhs.q) - 1; 
          return (temp); 
      } 
 
      Duo print() { 
          cout << *p << " " << *q << endl;  
          return (*this); 
      } 
}; 
 
 
 
The following main program uses class Duo. 
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int main() { 
    Duo X(3,5); 
    Duo Y(8,9); 
    Duo Z(2,4); 
 

    Z = X.funnyMultiply(Y); 
    Z.print();                             // Statement 1 
    Z.set_a(1); 
    Z.set_b(2); 
    Z.print();                             // Statement 2 
    X.print();                             // Statement 3 
    Y.print();                             // Statement 4 
 

    Duo W(6,12); 
    Duo V(2,3); 
    W.print().funnyMultiply(V).print();    // Statement 5 
    W.print();                             // Statement 6 
 

    // Point A 
 

    cout << "Program is done" << endl; 
 

    return (0); 
} 
  
 

(a) (7 marks). Write the output produced by each of the labeled statement (Statement 1 to 
Statement 6) in main.  Write your answer in the table below. 

 

Statement 1 
 
 
 

 
Statement 2 
 

 

 
Statement 3 
 

 

 
Statement 4 
 

 

 
Statement 5 
 

 

 
Statement 6 
 

 

 
(b) (2 marks). How many integers exist in memory in the form of a memory leak when execution 

reaches Point A in the main function above? Write your answer in the box below. 
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Question 6. (10 marks). Linked Lists. 
 
Circular linked lists are a variation on linked lists described in class. In a circular linked list, the 
next field in the last node in the list is not set to NULL (or nullptr). Rather, the field is made to 
point to the first node in the list, hence the name “circular”.  An example of a circular linked list is 
shown below. 
 

 
 
Consider the class ListNode shown below. It represents a node in a circular linked list. It is similar 
to the one described in class and that you implemented in the labs, but all members are public for 
simplicity. The declaration of a head pointer, which points to the head of the list, is also shown. 
 

class ListNode { 
   public: 
     int id; 
     ListNode* next; 
};  
 
ListNode* head; 

 
 
(a) (3 marks). Write a non-member function traverse (ListNode* h) that traverses the 

linked list. The function is invoked as traverse (head) to start the traversal at the head of 
the list. In the traversal, visiting a node is simply printing its id field to cout.  

 
   void traverse (ListNode* h) { 
 

 
 
 
 
 
 
 
 
 
 
 
  } 
 
 
 

1 	 7 	2 	 9 	

head 
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(b) (4 marks). Write a non-member function delete (ListNode*& h, ListNode* p) 
that deletes the node after the one pointed to by p  from the circular list pointed to by h. The 
function is invoked as delete (head, ptr), where ptr is guaranteed to point to one of 
the nodes on the list.  

 
   void delete (ListNode*& h, ListNode* p) { 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
} 
 
(c) (3 marks). It is sometimes not known if the linked list pointed to by head is circular or just a 

regular linked list with the next field in the last node set to NULL. Write a non-member function 
isCircular(ListNode* h) that returns true if the list is circular and false otherwise. The 
function is invoked as isCircular(head).  

 
   bool isCircular (ListNode* h) { 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
} 
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Question 7. (4 marks). Recursion. 
 
Write the output produced by the program below. Write your answer in the box below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

#include <iostream> 
using namespace std; 
 
void	printSequence(int	n, int	m, bool	flag) { 	
    cout << m << " "; 	
    if	(flag == false	&& n == m) return;   	
    if	(flag) { 	
      if	(m-5 > 0) printSequence (n, m-5, true); 	
      else	printSequence (n, m-5, false); 	
    } 	
    else	printSequence (n, m+5, false); 	
} 
 
int main() { 
   printSequence(16, 16, true); 
   cout << endl; 
   return (0); 
} 	
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Question 8. (3 marks). Recursion.  
 
Write a recursive function called reverseArray that reverses an n-element array in-place, i.e., 
without using an additional array. For example, given the array a below: 
 
 
                    a                                 1    2   3  4 5 6 7   
 
the function changes the array to: 
 
 
                    a                               7    6   5  4 3 2 1   
 
 
That is, the reverseArray function swaps elements a[i] with element a[n-i-1]. 
 
Write your answer below. You are not allowed to use any loops in your solution. 
 
 
void reverseArray ( int* array, int left, int right ) { 
 
    
 
 
 
 
 
 
 
 
 
 
} 
 
// Here is how the function is called for an n-element a 
reverseArray(a, 0, n-1); 
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Question 9. (4 marks). Trees. 
 
A k-ary tree (also known as a k-way tree) is a structure that is either empty or has one node that is 
connected to k disjoint structures, each of which is a k-ary tree. Thus, a binary tree is a special 
case of a k-ary tree for which k = 2. An example of a 3-ary tree is shown below. 
 

                              
                                 
The class below gives one possible representation of a k-ary tree, where k is no more than 5. The 
array child is an array of pointers, where element i of the array points to sub-tree i of a node. 
The root of the tree is also declared. 
 
#define K 5 
class kAryTree { 
   public: 
      int key; 
      kAryTree* child[K]; 
}; 
 
kAryTree* root; 
 
Write a recursive non-member function preorder that performs the preorder traversal of a k-
ary tree. The function should print the key of a node, then print the keys of its children starting 
with the left-most child (i.e., the one pointed to by child[0]) to the right-most child. As an 
example, the preorder traversal of the 3-ary tree shown above is: 20 10 13 15 17 9 23.  
 
Your code will be also marked for simplicity. 

 
void preorder (kAryTree* myroot) { 
         
 
 
 
 
 
 
 

 
} 
// This is how preorder is called 
preorder(root); 

	20 

	10 	9 	13 

	23 	15 	17 
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Question 10. (4 marks). Tree Traversals. 
 
A binary tree T has the following traversals: 
 
Pre-order traversal: 10 16 17  6 14 12 18 
In-order traversal: 17 16 10 14 12  6 18 
Post-order traversal: 17 16 12 14 18  6 10   
 
Draw the binary tree T below. Keep in mind that there is only a single binary tree that has the three 
traversals shown above. You are to draw one tree. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Question 11. (3 marks). Binary Search Trees. 
 
A binary search tree (BST) T has 7 nodes. The nodes have the following keys: 6, 9, 22, 14, 8, 1 and 
13. The tree is shown below. 
 

                                          
 
Label each node in the tree above with its key (by writing the key inside the node), keeping in mind 
that the tree is a binary search tree.  
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Question 12. (7 marks). Binary Trees. 
 
Consider the class TreeNode defined below. The root of the tree is pointed to by root.  
 

class TreeNode { 
   public: 
     int key; 
     TreeNode* left; 
     TreeNode* right; 
};  
 
TreeNode* root; 

 
A mistake that occurs when coding binary trees is to forget to make the left or right pointers NULL 
in leaf nodes in the tree. Should one of these pointers end up pointing to another node in the tree, a 
cycle is effectively created. This is shown in the example below. 
 

                                                      
 
You wish to write a non-member function bool cycle(TreeNode* root) that returns true if 
the tree has cycles, otherwise returns false. 
 
Your solution requires an additional private data member in TreeNode. Show the declaration of 
this variable and indicate how it should be initialized in the constructors.  
 
(a) (1 mark). Declare the additional private member you wish to add to TreeNode here: 
 
 

 
Answer: 
 

 

 
 
(b) (1 mark). Show how these members should be initialized in the constructors of TreeNode:  
 
 

 
Answer: 
 

 

G 

A K 

D 

root 
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 (c) (5 marks). Write the body of your function below. 
 
   bool cycle(TreeNode* root) { 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   }  
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Question 13. (8 marks). Binary Search Trees. [Caution: Difficult] 
 
Consider the class TreeNode defined below. It represents a node in a binary search tree. The root of 
the tree is pointed to by root. 
 

class TreeNode { 
   public: 
     int key; 
     TreeNode* left; 
     TreeNode* right; 
};  
 
TreeNode* root; 

 
Write a recursive non-member function secondSmallest that prints to cout the second smallest 
key value in a given binary search tree. Your code must not use any variables other than the function 
parameters and the members of TreeNode objects.  If you use any other variables, you will receive 
a mark of 0. 
 
The function takes two parameters. The first is a pointer to the root of a tree. The second is an integer 
variable, which you may use as you please. Your code will be marked for simplicity and efficiency. 
 
#include <iostream> 
using namespace std; 
 
void secondSmallest(TreeNode* myroot, int& c) { 
 
 
 
 
 
 
 
 
 
 
} 
 
// The function is called as follows, where root points  
// to the root of the tree 
int c = 0; 
secondSmallest(root, c); 
 
  



Page 17 of 29	

Question 14. (6 marks). Inheritance.  
 
Consider the following class definitions and implementations of classes, Shape and Circle. They 
are followed by a main function that utilizes these classes. 
 

#include <iostream> 
using namespace std; 
 
class Shape { 
   protected: 
    int shapeID; 
 
   public: 
     int getID() {return shapeID;} 
     void setID(int k) {shapeID = k;} 
     virtual void draw()=0; 
     virtual void print()=0; 
}; 
 
class Circle : public Shape { 
   protected: 
     float radius; 
 
   public: 
      float getRadius() {return radius;} 
      void setRadius(float r) {radius = r;} 
      virtual void draw() { 
          // code to draw 
      } 
}; 
 
class Rectangle : public Shape { 
   protected: 
     float length; 
     float width; 
 
   public: 
      float getLength() {return length;} 
      void setLength(float x) {length = x;} 
      float getWidth() {return width;} 
      void setWidth(float x) {width = x;} 
      virtual void draw(){ 
          // code to draw 
      } 
      virtual void print(){ 
          // Code to print 
      } 
}; 
 
int main() { 
   // Statements in the main function 
   return 0; 
} 
 

Indicate which of the following statements that appear in the main function compile with no errors 
or produce a compile time error.  Indicate your answer in the table below. 
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Statement Answer 

Shape s; 

Compile time error?   Yes         No    (Circle one answer) 

If your answer above is Yes, give the reason in one sentence: 
 
 
 

Circle c; 

 
Compile time error?   Yes         No    (Circle one answer) 
 
If your answer above is Yes, give the reason in one sentence: 
 
 
 

Rectangle r; 
r.setID(9); 

 
Compile time error?   Yes         No    (Circle one answer) 
 
If your answer above is Yes, give the reason in one sentence: 
 
 
 

Rectangle d; 
d.length=3.0; 

 
Compile time error?   Yes         No    (Circle one answer) 
 
If your answer above is Yes, give the reason in one sentence: 
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Question 15. (2 marks). Inheritance. 
 
Consider the following class definitions. 
 
	
 
 
 
 
 
 
 
 
 
 
 
 
 

The following declaration appears in the nohelp member function of the class DerivedC.  
	

DerivedC derived; 
	

Indicate by placing an X in the appropriate column whether each of the following statements is 
correct code (i.e., compiles with no errors), or incorrect code (i.e., generates a compile time 
error). Assume the statements in the rows of the table also appear in the nohelp member 
function of the class DerivedC. 
 

 Correct? Incorrect?    
  derived.a = 8;                               	  	

  derived.b = 10;                         	 	

  derived.x = 12;                    	 	

  derived.w = 4;  	 	

 

class DerivedC : public BaseC { 
    private: 
         int x; 
         void nohelp(); 
    public: 
         int w; 
         int z; 
         void noprint(); 
}; 

	

class BaseC { 
    private: 
         int a; 
         void help(); 
    protected: 
         int b; 
    public: 
         int c; 
         int d; 
         void print(); 
}; 
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Question 16. (12 marks). Inheritance. 
 
Consider the following base and derived classes. They compile with no errors. 
 
#include <iostream> 
#include <string> 
using namespace std; 
 
class CircuitElement { 
   protected: 
     int code; 
   public: 
     CircuitElement () {cout << "circuit element\n";} 
     CircuitElement (int c) {code = c;  
                             cout << "circuit element with code\n";} 
     ~CircuitElement () {cout << "no circuit element\n";} 
     float getPower() {return 0.0;} 
     virtual void print() {cout << "error\n";} 
}; 
 
class Resistor : public CircuitElement { 
   protected: 
      int resistance; 
   public: 
      Resistor(int r) { 
           code = 1; 
           resistance = r; 
           cout << "resistor\n"; 
      } 
      ~Resistor() {cout << "no resistor\n";} 
      float getPower() {return 0.0;} 
      void print() { 
           cout << "Resistor: " << resistance << endl; 
      } 
}; 
 
class Capacitor : public CircuitElement { 
   protected: 
      int capacitance; 
    public: 
      Capacitor(int c):CircuitElement(2) { 
           capacitance = c; 
           cout << "capacitor\n"; 
      } 
      float getPower() {return 0.0;} 
      ~Capacitor() {cout << "no capacitor\n";} 
      void print() { 
           cout << "Capacitor: " << capacitance << endl; 
      } 
}; 
 
 
// Code continued on next page 
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class PowerResistor : public Resistor { 
    protected: 
       float power; 
    public: 
       PowerResistor(int r, float p):Resistor(r) { 
             power = p; 
             cout << "power resistor\n"; 
       } 
       ~PowerResistor() {cout << "no power resistor\n";} 
       float getPower() {return power;} 
       virtual float powerResistance() {return (power*resistance);} 
       void print() { 
             Resistor::print(); 
             cout << "Power resistor: " << power << endl; 
       } 
}; 
 
class PowerCapacitor : public Capacitor { 
    protected: 
       float power; 
    public: 
       PowerCapacitor(int c, float p):Capacitor(c) { 
             power = p; 
             cout << "power capacitor\n"; 
       } 
       ~PowerCapacitor() {cout << "no power capacitor\n";} 
       float getPower() {return power;} 
       virtual float powerCapacitance() {return (power*capacitance);} 
       void print() { 
             Capacitor::print(); 
             cout << "Power capacitor: " << power << endl; 
       } 
}; 
 
Consider each of the following main functions that use the above classes. You may assume that 
each main function includes the code of the classes above, including the #include’s and the 
using namespace std;. 
 
 
For each main function, if the function compiles with no errors (ignore warnings), then write the 
output produced by the function. If the function compiles with errors, then write: “compile errors”. 
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(a)  
 
 
 
 
 
 

If main compiles with no errors, write the output produced by its execution? Otherwise, 
write: “compile errors”. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
(b)  
 
 
 
 
 

 
If main compiles with no errors, write the output produced by its execution? Otherwise, 
write: “compile errors”. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

int main() { 
    Capacitor c(150); 
    PowerResistor p(180,350); 
    return 0; 
} 
	

int main() { 
    CircuitElement* pr; 
    pr = new PowerResistor(200, 250); 
    delete pr; 
    return 0; 
} 
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(c)  
 
 
 
 
 
 

If main compiles with no errors, write the output produced by its execution? Otherwise, 
write: “compile errors”. 

 
 
 
 
 
 
 
 
 
 
 
 
 
(d)  
 
 
 
 
 

 
 
 
If main compiles with no errors, write the output produced by its execution? Otherwise, 
write: “compile errors”. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

int main() { 
    Capacitor* c; 
    c = new CircuitElement(5); 
    delete c; 
    return 0; 
} 

int main() { 
    PowerResistor* pr; 
    Resistor* r; 
    r = new Resistor(450); 
    pr = r; 
    delete pr; 
    return 0; 
} 
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 (e)  
 
 
 
 
 
 

If main compiles with no errors, write the output produced by its execution? Otherwise, 
write: “compile errors”. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(f)  
 
 
 
 
 

If main compiles with no errors, write the output produced by its execution? Otherwise, 
write: “compile errors”. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

int main() { 
    PowerResistor r(250, 1000); 
    CircuitElement e; 
    e = r; 
    return 0; 
} 
	

int main() { 
    CircuitElement* e = new PowerCapacitor(500, 1000); 
    e->print(); 
    return 0; 
} 
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(g)  
 
 
 
 
 

If main compiles with no errors, write the output produced by its execution? Otherwise, 
write: “compile errors”. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(h)  
 
 
 
 
 

 
If main compiles with no errors, write the output produced by its execution? Otherwise, 
write: “compile errors”. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

int main() { 
    PowerResistor pr(20,100); 
    Resistor* r = &pr; 
    cout << r->powerResistance() << endl; 
    return 0; 
} 
	

int main() { 
    Capacitor* c = new PowerCapacitor(300, 100); 
    cout << c->getPower() << endl; 
    return 0; 
} 
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Question 17. (4 marks). Graphs. 
 
Consider the graph described by the adjacency matrix below. The vertices of the graph are numbered 
0 to 4. 
  
 
 

 
 
 
 

 
 

(a)  (2 marks). Give a depth-first traversal of the graph, starting at vertex 0. Assume that visiting a 
vertex means printing its number to the standard output. 
 
 
 
                                  Give the traversal here:  
 
 
 
 

(b) (2 marks). Give a breadth-first traversal of the graph, starting at vertex 0. Assume that visiting a 
vertex means printing its number to the standard output. 
 
 
 
                                  Give the traversal here:  
 
 
 

0 1 1 0 0 
0 0 0 1 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 1 0 
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Question 18. (5 marks). Complexity Analysis.  
 

Determine the worst-case time complexity (expressed in big-O notation) for each of the program 
segments below as a function of the size of the input n. Show the details of your analysis and clearly 
indicate your final result. 

 
(a)  (2 marks) The size of the input is n.   

 
for (int i=0; i < n; ++i) { 
    for (int j=0; j*j < n; ++j) { 
         // Some code with O(1) 
    } 
} 
 
 
 
 
 
 
 
 
 
 
T(n) =  
      
 
 
 
 

(b) (3 marks). The size of the input is n. Write the recurrence equation and then solve it to obtain an 
expression of the execution time. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

	

int recursive(int n) { 
   int x,y,w; 
    
   if (n <= 1) return (0); 
   x = recursive (n/3); 
   y = recursive (n/3); 
   w = recursive (n/3); 
   return (x+y+w); 
} 
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Write the recurrence equation for T(n). 
 
 
 
 

 
 
 
 

 
Solve the recurrence equation (by expansion) to obtain an expression of T(n) in terms of n. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Express T(n) using the big-O notation.  
 
 
 
T(n) =  
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