University of Toronto
Faculty of Applied Science and Engineering

Midterm – November, 2010
ECE244 --- Programming Fundamentals

Examiners: Tarek Abdelrahman, Michael Gentili, and Michael Stumm

Instructions: Please read carefully --- marks are deducted if not followed.

- Write you last name, first name, and student number in the fields below
- Write your name and student number at the top of every page of this exam.
- This exam has thirteen (13) pages.
- No additional sheets are permitted.
- Do not remove any sheets from this exam.
- There are a total of 9 questions and the weight of each question is the same.
- All questions must be answered on these sheets.
- The use of calculators or computers is not permitted.

Last Name: ________________________________
First Name: ________________________________
Student Number: ____________________________

Do not write below this line:
1. Warmup questions
Answer the following questions either by circling Yes or No, or by providing a very brief and direct answer when indicated.

a. Yes or No? If a program has passed all inputs you test it with, it has no bugs.

b. Yes or No? If a program has a bug, it will always show when running the program through the debugger.

c. Yes or No? The statement: delete p; de-allocates the pointer p.

d. Yes or No? The exercise command determines if your program is correct or not by comparing your source files to reference source files. If the files do not match, it issues an error message.

e. Yes or No? If the programmer does not write his or her own copy constructor, the compiler’s copy constructor will be invoked during a call-by-value?

f. What is the UNIX command needed to make a directory mydir accessible only to the owner of the directory?

g. Give a name of your home directory on ECF.

h. What is the name of the software tool you use in the lab to convert your C++ code into an executable program?

i. Place an X to the left of each statement causing a compiler error and to the right say why

```cpp
// in Circle.h
class Circle {
    public:
        Circle( Circle c );
        Circle( int radius );
        void area( const Circle& c );
        ~Circle( int i );
    private:
        int x, nr ;
};
// in main.cpp...
Circle c1;
```
2. **Makefiles**

Consider the following makefile:

```make
kernel: main.o Process.o Scheduler.o IO.o
    g++ main.o Process.o Scheduler.o IO.o -o kernel

Process.o: Process.h Process.cpp
    g++ -c Process.cpp

Scheduler.o: Scheduler.h Scheduler.cpp Process.h
    g++ -c Scheduler.cpp

IO.o: IO.h IO.cpp
    g++ -c IO.cpp
```

And consider the directory in which the makefile resides, which contains the following files with the indicated modification times:

- 19:44 IO.cpp
- 19:48 IO.h
- 19:46 IO.o
- 19:45 kernel
- 19:35 main.cpp
- 19:43 main.o
- 19:36 Makefile
- 19:43 Process.cpp
- 19:49 Process.h
- 19:47 Process.o
- 19:31 Scheduler.cpp
- 19:41 Scheduler.h
- 9:45 Scheduler.o

What commands are executed and in which order when “make” is run?

Answer:
3. Memory and Pointers
Assume that the following code will compile and run properly:

```
1 int a = 6;
2 int *b = &a;
3
4 int *
5 foo( int **c )
6 {
7   (**c)++;    // Point #1
8   *c = b;
9   int *d = new int;
10  *d = 10;
11  return d;
12 }
13
14 int
15 main()
16 {
17   int e = 7;
18   int *f = &e;
19
20  f = foo( &f );
21  (*f)++;     // Point #2
22  return 0;
23 }
```

a. Complete the following diagram by showing the values of variables and/or pointers when execution reaches the point labeled “Point #1”. For an integer variable, simply show the integer value inside the corresponding box. For a pointer, indicate the value of the pointer by drawing an arrow from the box corresponding to the pointer to the box corresponding to the variable the pointer points to.

```
   a
 b

d
  e

f

newint
```
b. Complete the following diagram by showing the values of variables or pointers when execution reaches the point labeled “Point #2”. For an integer variable, simply show the integer value inside the corresponding box. For a pointer, indicate the value of the pointer by drawing an arrow from the box corresponding to the pointer to the box corresponding to the variable the pointer points to. Cross out any variables, pointers or memory allocations that no longer exist.

```
  a

  b

  c

  d

  e

  f

newint
```

c. While the program will run correctly as written, it contains a non-fatal memory allocation problem. Write the single line of code that will fix the error. Specify the line number in the program after which the line of code should be inserted.

Answer:
4. Arrays and Linked Lists

a. Given the following class and array declaration, how would you print out the age of the 10th person in the array?

```cpp
class personClass 
{
    public:
        void setAge( int newAge ) ;
        void setGender( char newGender ) ;
        void setSalary( float newSalary ) ;
        int getAge() ;
        char getGender() ;
    private:
        int age ;
        char gender ;
        float salary ;
};

personClass people[100] ;

A: cout<< people[10] ;
B: cout<< people[9] ;
C: cout<< people[9].age ;
D: cout<< people[9].getAge() ;
E: cout<< people[10].getAge() ;
```

b. Given the following declarations, how would you know if head is pointing to an empty list?

```cpp
class Node  
{
    public:
        int value ;
        Node *next ;
    ... 
}

Node *head ;
// other code here...

A: if( head->next == NULL )
B: if( head == null )
C: if( head == NULL )
D: if( head->next = null )
E: A and D
F: B and C
```
c. What is the output of the following code?

```cpp
int* p1;
int* p2;
p1 = new int;
p2 = new int;
*p1 = 11;
*p2 = 0;
p2 = p1;
cout << *p1 " " << *p2 << endl;
```

A. 11 0
B. 0 11
C. 11 11
D. 0 0
E. 23 0

Answer:

```


c. What is the output of the following code?

```cpp
int* p1;
int* p2;
p1 = new int;
p2 = new int;
*p1 = 11;
*p2 = 0;
p2 = p1;
cout << *p1 " " << *p2 << endl;
```

A. nothing
B. p1 and p2 both have the same value, so the delete p2 will cause an error
C. you have a memory leak.
D. B and C

```

Answer:
5. Classes
What does the following program print when running:

class mT {
 private:
 static int created;
 public:
 mT();
 ~mT();
 }

int mT::created = 0;

mT::mT() {
 mT::created++;
 cout << mT::created
 << "created" << endl;
}

mT::~mT() {
 mT::created--;
 cout << mT::created
 << "remaining" << endl;
}

mT g[2];
mT h;

void testFunction() {
 mT t;
 mT *p NULL;
 cout << "testFunction"
 << endl;
 p = new mT;
 cout << "leaving" << endl;
}

int main() {
 mT m;
 mT*p = new mT;
 cout << "main" << endl;
 testFunction();
 cout << "back" << endl;
 delete p;
 cout << "exiting" << endl;
 return(0);
}
6. Scope

Show the output of the following program in the box provided below. Show your work for partial credit.

```cpp
#include<iostream>
using namespace std;

char confuse(char c1);
void mixup(char &c1, char c2, char c3);

char c4 = 'F';

int main() {
    char c1 = 'H';
    char c2 = 'C';
    char c3 = 'E';

    mixup( c2, c1, c3 );
    {
        char c3 = 'G';
        cout << c1 << c2 << c3 << c4 << endl;
    }
    cout << confuse(c4) << c1 << c2 << c3 << c4 << endl;
    return 0;
}

char confuse(char c1) {
    const char c2 = 'O';
    char c3 = c1;
    if ( c1 >= 'N' ) return c3;
    else return c2;
}

void mixup(char &c1, char c2, char c3) {
    cout << c1 << c2 << c3 << c4 << endl;
    c1 = confuse(c3);
    c2 = 'S';
    c3 = 'I';
    c4 = confuse(c2);
}
```

Output line 1:
Output line 2:
Output line 3:
Output line 4:
7. Functions and Parameters
 a. Identify all errors in the code below and give a very brief explanation of the error:

   ```cpp
   int f( int i, int& j ) {
       ... 
       return( j ) ;
   }
   ...
   
   int y ;
   int x = f( 1, y ) ;
   int z = f( 1, 2 ) ;
   ```

 b. Consider the start of the following class declaration:

   ```cpp
   class Foo { 
   public:
       void x( Foo f ) ;
       void y( const Foo f ) ;
       void z( Foo f ) const ;
   }
   ```

 Which of the three member functions can alter the PRIVATE member variables of the Foo object which the function is being invoked on:

 A: only x
 B: only y
 C: only z
 D: two of the functions can alter the private member variables
 E: all of the functions can alter the private member variables

 c. When should you use a `const` reference parameter?

 A: whenever the data type might be many bytes large
 B: whenever the data type might be many bytes large, the function changes the parameter within its body, and you do NOT want these changes to modify the actual argument
 C: whenever the data type might be many bytes large, the function changes the parameter within its body, and you DO want these changes to modify the actual argument
 D: whenever the data type might be many bytes large, and the function does not change the parameter within its body.

 Answer:
d. When should a pointer parameter \(p \) be a reference parameter?

A: When the function changes \(p \) and you want the change to modify the actual pointer argument.
B: When the function changes \(p \), and you do NOT want the change to modify the actual pointer argument.
C: When the function changes \(*p \) and you want the change to modify the object that is being pointed at.
D: When the function changes \(*p \) and you do NOT want the change to affect the object that is pointed at.
E: When the pointer points to a large object.

Answer:

e. Suppose you have the following function and variable declaration:

```c
void goop( int z[] ) ;
void x[10] ;
```

which is the correct way to call the goop function with \(x \) as the argument?

A: \texttt{goop(x) ;}
B: \texttt{goop(x[]) ;}
C: \texttt{goop(x[10]) ;}
D: \texttt{goop(&x) ;}
E: \texttt{goop(&x[]) ;}

Answer:
8. Dynamic memory allocation

Given the following program, how many instances of MyClass exist in memory when the program execution reaches POINT X?

```cpp
MyClass *func1( MyClass a ) {  
    MyClass b ;  
    MyClass* c = new MyClass() ;  
    return c;  
}

void func2( MyClass d ) {  
    MyClass e ;  
    MyClass* f = new MyClass() ;  
    MyClass *g = func1( e ) ;  
    // POINT X  
    return ;  
}

int main() {  
    MyClass h ;  
    MyClass* i = new MyClass() ;  
    func2( h ) ;  
    return 0 ;  
}
```

Answer: __ objects exist(s) in memory when the program reaches POINT X.
9. I/O
Write a program that reads integers from the command shell (input) until either the word “end” is inputted or the end-of-file is encountered. Assume that each integer, or the word “end”, appears on a line by itself, and that no erroneous integers are inputted. When an integer is read, it is simply printed to the output followed by a new line. The main function is provided to you below, and you must complete the code in this function as indicated. Rely on
\texttt{cin} and do not use the \texttt{getline()} function.

\begin{verbatim}
int main () {
 int x ;

 // complete code here

 return (0);
}
\end{verbatim}