
Page 1 of 24

University of Toronto

Faculty of Applied Science and Engineering

ECE 244F

PROGRAMMING FUNDAMENTALS

Fall 2011

Midterm Test

Examiner: T.S. Abdelrahman, V. Betz, and M. Stumm

Duration: 110 minutes

This test is OPEN books and OPEN notes. The use of computing and/or communicating

devices is NOT permitted.

Do not remove any sheets from this test book. Answer all questions in the space provided.

No additional sheets are permitted.

Work independently. The value of each part of each question is indicated. The total value

of all questions is 100.

Write your name and student number in the space below. Do the same on the top of each

sheet of this exam book.

Name: ___________________________________
(Underline last name)

Student Number: ___________________________________

Q1. __________ Q9. _________

Q2. __________

Q10. _________

Q3. __________

Q11. _________

Q4. __________

Q12. _________

Q5. __________

Q13. _________

Q6. __________

Q14. _________

Q7. __________

Q15. _________

Q8. __________

Total

Page 2 of 24

Question 1. (8 marks). General.

Answer the following questions by circling either Yes or No, or by providing a very brief and

direct answer when indicated.

(a) What is the name of the software tool you use in the lab to convert your C++ code into an

executable program?

(b) What Unix command would you type to create a new directory called ece244?

(c) What is the Unix command needed to make a directory lab4 accessible only to the owner of

the directory?

(d) Yes or No? An object file (e.g., main.o) can be executed by changing its name to

main.exe and typing the command ./main.exe at the Linux command prompt.

(e) Yes or No? The chksubmit command determines if your program is correct or not by

comparing your source files to reference source files. If the files do not match, it issues an

error message.

(f) Yes or No? It is safe for a function to return a pointer to a local variable declared and used

inside the function.

(g) Yes or No? One should always use delete to destroy memory allocated with new before

returning from a function?

(h) Yes or No? The statement: delete p; de-allocates the pointer p.

Page 3 of 24

Question 2. (4 marks). Compilation.

Suppose you design two classes: MyFirstClass and MySecondClass. For each of these

classes, you have a definition file and an implementation file. Thus, you have four files:

MyFirstClass.h, MyFirstClass.cpp, MySecondClass.h and

MySecondClass.cpp. Also you write a program main.cpp that uses the two classes. The

files are compiled into a single executable main.exe.

Suppose you edit MyFirstClass.cpp to change its functionality. Write two different ways in

which you can reflect the changes made to MyFirstClass.cpp in the executable main.exe.

Assume you are using the g++ compiler.

First way:

Second way:

Page 4 of 24

Question 3. (10 marks). The Make Utility.

Consider the Makefile below.

The following table shows several invocations of the Make utility using the above correct

Makefile. For each invocation, indicate the commands that are executed as a result of the

invocation, in the order in which they are invoked. To simplify providing an answer, the lines of

the Makefile are numbered as shown above; just indicate the line number corresponding to a

command in the table provided below. The invocations of Make are in the order shown in the

table.

Assume that the Makefile exists in the same directory as the files: add.cc, add_fcns.cc,

subtract.cc, subtract_fcns.cc, add_fcns.h, and subtract_fcns.h.

Recall that the touch command simply updates the timestamp of its argument to the current

time.

targets: add subtract

add: add.o add_fcns.o
 g++ add.o add_fcns.o –o add

subtract: subtract.o subtract_fcns.o add_fcns.o
 g++ subtract.o subtract_fcns.o add_fcns.o –o subtract

add.o: add.cc add_fcns.h
 g++ -c add.cc

subtract.o: subtract.cc subtract_fcns.h
 g++ -c subtract.cc

add_fcns.o: add_fcns.cc add_fcns.h
 g++ -c add_fcns.cc

subtract_fcns.o: subtract_fcns.cc subtract_fcns.h
 g++ -c subtract_fcns.cc

clean:
 rm *.o add subtract

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Page 5 of 24

Make Invocation Commands Executed (indicate line number)
make clean

make

touch subtract_fcns.h
make

make subtract

touch add_fcns.h
make

Page 6 of 24

Question 4. (4 marks). Function Arguments and Pointers.

Provide two possible ways in which a function update_ptr may change the value of a pointer

of type int*. The pointer is defined outside the function (e.g., int* ptr;) and is passed to it

as an argument. Assume the formal argument of update_ptr is a variable called p and that

the function is called with an actual argument called ptr. Thus, the function changes the value

of ptr. For each way, show the function prototype and how the function should be invoked.

Write your answer below.

First way:

 function prototype: void update_ptr();

 invocation (i.e., function use): update_ptr();

Second way:

 function prototype: void update_ptr();

 invocation (function use): update_ptr();

Page 7 of 24

Question 5. (10 marks). Pointers

Your task is to examine the code fragments, contained in the table below. If any of the

statements in the code fragment are invalid, place a checkmark in the appropriate column. (For a

statement to be “valid”, it must be both syntactically and semantically correct.) Otherwise,

indicate the value that is printed to the screen. (You can assume that all calls to “cout” succeed.)

Fragment Invalid? Value Printed?

int* y;
*y = 6;
cout << *y;

int x = 1;
int* y = &x;
int* z = y;
*z = 2;
cout << x;

int a[2];
a[0] = 1;
a[1] = 2;
int* c = a;
c[1] = 3;
a[1] = a[1] + 1;
cout << a[1];

int a[2];
a[0] = 1;
a[1] = 2;
int b = 1;
int* c = &a[b];
b = 0;
*c = *c + 1;
cout << *c;

int a = 0;
int* x = &a;
int** y = &x;
*x = 1;
cout << **y;

int a = 0;
int* x = NULL;
int** y = &x;
x = &a;
**y = 3;
cout << a;

int a = 1;
int b = 2;
int* w = &a;
int* x = &b;
int** y = &w;
int** z = &x;
*y = x;
*w = 3;
cout << b;

Page 8 of 24

Fragment Invalid? Value Printed?

int a = 1;
int* x = &a;
{

int a = 2;
int* y = x;
*x = 3;
*y = 4;

}
cout << a;

int foo (const int &x)
{
 x = x+1;
 return (x+2);
}

int main ()
{
 int z = 1;
 int y = foo (z);
 cout << y;
}

int my_func (int &a, int b)
{
 a = a + b;
 b = a + b;
 return (a + b);
}

int main ()
{
 int i1 = 1, i2 = 2, i3;
 i3 = my_func (i1, i2);
 i3 += i1 + i2;
 cout << i3;
}

Page 9 of 24

Question 6. (4 marks). Arrays.

Identify what is wrong with the following code and then indicate how to fix the error.

#include <iostream>
using namespace std;

int MAX = 10;

int list[MAX];

int main() {
 int sum = 0;

 for (int i =0; i <= MAX; ++i)
 list[i] = i;

 for (int i = 0 ; i <= MAX; ++i)
 sum = sum + list[i];

 cout << sum << endl;
}

Page 10 of 24

Question 7. (5 marks). C++ I/O.

Your task is to extend the command parser you wrote in Lab 3 to add a command,

printmultiple, which accepts multiple employee numbers and prints out data for each

employee. The command format is:

 printmultiple N emplnum1 emplnum2 ... emplnumN

The first parameter, N, indicates the number of employee numbers that follow on the line. The

following examples are both valid commands:

 printmultiple 0
 Done.
 printmultiple 2 547654321 317654320
 OUTPUT FOR EMPLOYEE 547654321 APPEARS HERE
 OUTPUT FOR EMPLOYEE 317654320 APPEARS HERE
 Done.

If any of the numbers are invalid (e.g., “xyz”), you should skip processing the remainder of

the line without printing an error message. You may assume there will be no negative

employee numbers; only valid positive integers or invalid non-integer input. All inputs are

separated by white space (i.e., no “123f”). You may assume that you have access to the

following function, which handles the printing of the employee data:

 void printEmployee (int emplnum);

When you are finished processing the printmultiple command (whether there were errors or

not) you should print “Done.”. You are not expected to handle any other errors, or produce any

additional output.

Using only the cin operator for input, write a code fragment for recognizing and processing the

printmultiple command:

Page 11 of 24

Question 8. (4 marks). Memory Allocation and De-allocation.

Consider the program fragment below.

Assume no dynamic data exists on the heap at POINT X. Indicate below what the programmer

must write at POINT Y to ensure that no dynamic data exists on the heap at POINT Z.

struct amazing {
 int x;
 int y;
};

// POINT X
{
 struct amazing X;
 int* p;
 struct amazing* another;
 struct amazing* pt = new struct amazing;
 struct amazing* yetanother;

 if (1) {
 struct amazing Y;
 another = pt;
 struct amazing* pt = new struct amazing;
 yetanother = another;
 }

 p = new int [100];

 int i = 0;
 for (i=0 ; i < 100; ++i) p[i]=0;

 // POINT Y
}
// POINT Z

Page 12 of 24

Question 9. (4 marks). Constructors/Member Methods.

Consider the following class definition. The numbers listed on the left are not part of the code; they

are there for reference.

 1: class Golfer {
 2: private:
 3: char* fullname;
 4: int games;
 5: int* scores;
 6: public:
 7: Golfer ();
 8: Golfer (char * name);
 9: Golfer (char * name, int g);
10: ~Golfer ();
11: };

What class methods (if any) would be invoked by each of the following statements?

Statement

 Class Method

(write the method’s prototype)

Golfer nancy;

Golfer lulu (“little lulu”);

Golfer roy (“Roy Hobbs”, 12);

Golfer *par = new Golfer ();

Page 13 of 24

Question 10. (10 marks). Classes and Objects.

Consider the following class definition.

class BaseC {
 private:
 int a, b;
 void help();
 public:
 int c, d;
 void print();
};

The following declarations are made in the main function of a program.

BaseC base;
BaseC * baseptr = new BaseC();

Indicate by placing an XXXX in the appropriate column whether each of the following statements is

correct code, or incorrect code. The statements are also in the main function.

 Correct Incorrect

 base.a = 0;

 base.c = 0;

 base.print();

 base.BaseC();

 baseptr->nohelp();

 BaseC A(0);

 this->print();

 delete base;

 &base = baseptr;

 (*baseptr).c = 5;

Page 14 of 24

Question 11. (4 marks). Classes and Objects.

Write what the program fragment outputs when it is run.

class Point {
 int x;
 int y;
 public:
 Point(int i, int j);
 Point increment_x();
 Point increment_y();
 void print();
};

Point::Point(int i, int j) {
 x = i;
 y = j;
}

Point Point::increment_x() {
 ++x;
 return (*this);
}

Point Point::increment_y() {
 ++y;
 return (*this);
}

void Point::print(){

 cout << “(“ << x << “,” << y << “)” << endl;
}

int main() {
 Point a(2,3);
 a.increment_x().increment_y().print();
 a.print();
 return (0);
}

Page 15 of 24

Question 12. (12 marks). Dynamic Memory Allocation.

We wish to allocate the dynamic data structure shown below. Given the input n from the user,

where n is a positive integer greater than 1, we wish to dynamically allocate an n-element array.

Each element points to a dynamically allocated object of type DayOfYear.

The definition of the class DayOfYear is given below.

class DayOfYear {
 private:
 int day;
 int month;
 public:
 void setDay(int d);
 void setMonth(int m);
 void print();
};

(a) Give the declaration of the variable thearray.

(b) Write code to dynamically allocate the array thearray.

(c) Write code to allocate n objects of type DayOfYear and have each element of

thearray point to one object.

Page 16 of 24

(d) Write code to de-allocate the object pointed to by the nth element of the array.

(e) Write code to invoke the setMonth() method on the 5
th

 element of thearray.

(f) Write code to swap the 4
th

 and 5
th

 elements of thearray.

Page 17 of 24

Question 13. (8 marks). Classes/Constructors

Consider the following partial definition of a C++ class, which is used to store a complex

number (i.e., a number with both a real and an imaginary component):

class Complex
{
 private:
 double real;
 double imaginary;

 public:
 Complex::Complex()
 { real = 0.0; imaginary = 0.0; }

 Complex::Complex(double _r, double _i)
 { real = _r; imaginary = _i; }
 ...
 ...
};

Complex numbers can also be expressed as a radius (“r”) and an angle (“theta”). Assume that

you have access to the following functions which convert between “real/imaginary” and “r/theta”

representations of a complex number:

double rTheta_to_real (double r, double theta);
double rTheta_to_imaginary (double r, double theta);

double realImaginary_to_r (double real, double imaginary);
double realImaginary_to_theta (double real, double
imaginary);

Your task is to extend the Complex class to support both forms of imaginary numbers. Write the

following new member functions for the Complex class:

(a) (2 marks). A constructor which accepts an r and a theta value, and properly initializes

real and imaginary:

Complex::Complex(double r, double theta)
{

}

(b) (2 marks). Is it possible to have both the constructor you have just defined, and the

Complex::Complex (double _r, double _i) constructor in the same class? Why or

why not?

Page 18 of 24

(c) (2 marks). Accessor functions which return the r and theta values which correspond to the

stored values real and imaginary:

double Complex::getR() const
{

}

double Complex::getTheta() const
{

}

(c) (2 marks). Recall that, when multiplying two imaginary numbers:

 N1 = (x1 + y1 i) and N2 = (x2 + y2 i)

the resulting product, N3 = N1 * N2, is calculated as follows:

 N3 = [(x1*x2 – y1*y2) + (x1*y2 + x2*y1) i]

Your task is to write a member function for Complex which implements the multiplication of

two Complex numbers:

Complex Complex::multiply (Complex & lhs, Complex & rhs)
{

}

Page 19 of 24

Question 14. (8 marks). Scopes.

The following class definition describes a simple C++ class called sampleClass.

 #include <iostream>
 using namespace std;

 class sampleClass {
 private:
 int val;
 public:
 sampleClass();
 sampleClass(int v);
 ~sampleClass();
 };

 sampleClass::sampleClass()
 {
 val = 0;
 cout << "Constructing " << val << endl;
 }

 sampleClass::sampleClass(int v)
 {
 val = v;
 cout << "Constructing " << val << endl;
 }

 sampleClass::~sampleClass()
 {
 cout << "Destructing " << val << endl;
 }

Page 20 of 24

Consider the following code, which uses sampleClass:

sampleClass a(1);

 void f1()
 {
 sampleClass a[2];
 cout << "Leaving f1()" << endl;
 return;
 }

 sampleClass *f2()
 {
 sampleClass *a = new sampleClass(2);
 cout << "Calling f1()" << endl;
 f1();
 cout << "Leaving f2()" << endl;
 return a;
 }

 int main()
 {
 sampleClass a(3);

 if ((2 + 2) == 4) {
 cout << "Calling f2" << endl;
 sampleClass *a = f2();
 cout << "Back from f2" << endl;
 delete a;
 }
 cout << "Leaving main" << endl;
 return 0;
 }

Page 21 of 24

In the space provided below, write the output that an execution of the above program would

produce in the order in which it is produced. Use one entry in the table for each line of output

produced.

Page 22 of 24

Question 15. (5 marks). Programming.

(a) (3 marks). The code below describes a class to store and manipulate a square matrix of

double-precision numbers. Create the definition for the non-member function transpose

whose declaration is:

void transpose (Matrix& my_matrix);

Recall that transposing a matrix interchanges its rows and columns. For example, given an

initial 3x3 matrix A:

A =

Its transpose is:

A
T
 =

Your transpose function should transpose the matrix “in place” – that is, it should modify

the passed in matrix object to be the transposed matrix. No additional storage (beyond a

few local variables) should be allocated during the transpose operation.

#include <iostream>
#include <iomanip>
using namespace std;

class Matrix {
 private:
 double **the_matrix;
 int num_rows; // Square matrix, so num_cols = num_rows
 public:
 Matrix (int num_rows);
 double get_element (int irow, int icol);
 void set_element (int irow, int icol, double value);
 int get_num_rows () {return (num_rows); }
};

void transpose (Matrix &my_matrix);

Matrix::Matrix (int _num_rows) {
 int irow, icol, num_cols, k;

 num_rows = _num_rows;
 num_cols = num_rows; // Square matrix

 the_matrix = new double *[num_rows];
 for (irow = 0; irow < num_rows; irow++)
 the_matrix[irow] = new double [num_cols];

 k = 0;
 for (irow = 0; irow < num_rows; irow++)
 for (icol = 0; icol < num_cols; icol++)
 the_matrix[irow][icol] = k++;
}

Page 23 of 24

double Matrix::get_element (int irow, int icol)
{
 return (the_matrix[irow][icol]);
}

void Matrix::set_element (int irow, int icol, double value)
{
 the_matrix[irow][icol] = value;
}

(b) (2 marks). Write out the output generated by the main () function listed below.

int main () {
 int i, j;
 int N = 5;
 Matrix my_matrix(N);
 transpose(my_matrix);
 for (i = 0; i < N; i++)
 {
 cout << endl;
 for (j = 0; j < N; j++)
 cout << setw(5) << my_matrix.get_element(i, j);
 }
}

Page 24 of 24

THIS PAGE IS INTENTIONALLY BLANK FOR ANSWER OVERFLOWS

