
Page 1 of 25

University of Toronto
Faculty of Applied Science and Engineering

ECE 244F

PROGRAMMING FUNDAMENTALS

Fall 2017

Midterm Test

Examiners: T.S. Abdelrahman and D. Yuan

Duration: 110 minutes

This test is OPEN Textbook and CLOSED notes. The use of computing and/or
communicating devices is NOT permitted.

Do not remove any sheets from this test book. Answer all questions in the space provided.
No additional sheets are permitted.

Work independently. The value of each question is indicated. The total value of all
questions is 100.

Write your name and student number in the space below. Do the same on the top of each
sheet of this exam book.

Name: ___________________________________
(Underline last name)

Student Number: ___________________________________

Q1. __________ Q8. _________

Q2. __________

Q9. _________

Q3. __________

Q10. _________

Q4. __________

Q11. _________

Q5. __________

Q12. _________

Q6. __________

Q13. _________

Q7. __________

Q14. _________

Total

Page 2 of 25

Question 1. (8 marks). General.

Answer each of the following questions by circling either Yes or No.

Yes or No? When you allocate memory using the following statement:

 int *p = new int[5];

then you free the memory using:

 delete p;

Yes or No? If you put the implementation of a function into the header file, the compiler will
give you an error.

Yes or No? It is safe for a function to return a pointer to an object that was created on the stack
inside the function.

Yes or No? One should always use delete to destroy memory allocated with new before returning
from a function?

Yes or No? The statement: delete p; de-allocates the pointer p.

Yes or No? The compiler will generate a copy constructor for each class if you do not provide
one.

Yes or No? You must write an overloaded “operator=” function for every class you create if
you wish to use the assignment operator with your objects (e.g., “a = b;”).

Yes or No? If a program has a bug, it will always show when running the program through the
debugger.

Page 3 of 25

Question 2. (4 marks). Classes and Objects.

Consider the following program.

class Point {
 int x;
 int y;
 public:
 Point(int i, int j);
 Point increment_x();
 Point increment_y();
 void print() const ;
};

 Point::Point(int i, int j){x = i; y = j;}

Point Point::increment_x() {++x; return *this;}

Point Point::increment_y() {++y; return *this;}

void Point::print() const {
 cout << “(“ << x << “,” << y << “)” << endl;
}

int main() {
 Point a(2,3);
 // Evaluation is done left to right
 a.increment_x().increment_y().print();
 a.print();
 return 0;
}

Assuming the C++ compiler does not optimize away copying of objects. Write the output
produced by the program.

Output:

Page 4 of 25

Question 3. (10 marks). Pointers.

(a) A pointer variable cannot point to other pointer variables. Circle on answer.

True False

(b) A pointer can be used to access elements of an array. Circle on answer.

True False

(c) Which of the following statements initializes the pointer ptr to the address of the
variable x? Circle one answer.

int* ptr=x; int* ptr=&x; int& ptr=&x; int* ptr=*x;

(d) What happens in this segment of code? Circle one answer.

int a = 100;
int b = 200;
int* p = &a;
int* q = &b;
p = q;

a. b is assigned to a

b. p now points to b

c. a is assigned to b

d. q now points to a

(e) The correct prototype of a function fun that takes pointer to a float, a pointer to a
pointer to a char and returns a pointer to a pointer to an int is (circle one answer):

int **fun(float**, char**);

int *fun(float*, char*);

int **fun(float*, char**);

int ***fun(*float, **char);

Page 5 of 25

(f) Given the following declarations, what is the value of each of the following expressions?
Write your answer where indicated.

int i=10;
int *pi=&i;
double d=12.5;
double *pd=&d;

i+1; value:

(*pi) + 1; value:

(*pd) + 1; value:

(g) What is the value printed from the following C++ program segment? Write your answer
down, where indicated.

int i=10;
int *p;
int **q;
int ***r;
p=&i;
*p=15;
q=&p;
**q=20;
r=&q;
***r=(*p) + 1;
cout << i;

value:

Page 6 of 25

Question 4. (10 marks). C++ I/O.

Write a C++ function void Parser() that repeatedly reads floating point numbers from the
standard input (using cin) and then immediately outputs the input numbers (using cout), one
number per line. The function is to return when either: (1) a non-floating point number is input;
or, (2) the end-of-file is reached. In the former case, “Invalid input” should be output on a line by
itself before the function returns. In the latter case “End of File reached” should be output on a
line by itself before the function returns.

Write your code in the box below.

#include <iostream>
using namespace std;

void Parser() {

}

Page 7 of 25

Question 5. (4 marks). Parameter Passing.

The main function of a program declares two variables, array_size and array_ptr as
follows:

 int array_size;
 int* array_ptr;

The main function invokes a function called allocate_array that has a return type of
void and takes two arguments. The function allocates an array of integers that has
array_size elements and makes array_ptr point to it. Which of the following are correct
prototype and invocation of this function? Circle all answers that apply.

a. Function prototype: void allocate_array (int n, int*& p);
 Invocation in main: allocate_array(array_size, array_ptr);

b. Function prototype: void allocate_array (int n, int*& p);
 Invocation in main: allocate_array(array_size, *array_ptr);

c. Function prototype: void allocate_array (int n, int*& p);
 Invocation in main: allocate_array(array_size, &array_ptr);

d. Function prototype: void allocate_array (int n, int** p);
 Invocation in main: allocate_array(array_size, &array_ptr);

e. Function prototype: void allocate_array (int n, int* p);
 Invocation in main: allocate_array(array_size, array_ptr);

f. Function prototype: void allocate_array (int n, int** p);
 Invocation in main: allocate_array(array_size, *array_ptr);

Page 8 of 25

Question 6. (4 marks). Parameter Passing and Arrays.

Consider the following function, called max2.

void max2 (int a[], int size, int & m1, int m2) {
 m1 = m2 = -1;
 for (int i = 0; i < size; ++i) {
 if (a[i] > m1) {
 m2 = m1;
 m1 = a[i];
 } else if (a[i] > m2) {
 m2 = a[i];
 }
 }
}

The array a[5] has the following elements: {3,5,4,10,30}. The max2 function is invoked
as follows: max2 (a, 5, em1, em2), where em1 and em2 are integers both assigned to 0
before the invocation. What are the value of em1 and em2 after the function returns? Circle one
answer.

(a) em1 is 0 and em2 is 0

(b) em1 is -1 and em2 is -1

(c) em1 is -1 and em2 is 30

(d) em1 is 30 and em2 is 10

(e) em1 is 10 and em2 is 30

(f) em1 is 30 and em2 is 0

(g) em1 is 3 and em2 is 4

(h) em1 is 4 and em2 is 3

(i) None of the above

Page 9 of 25

Question 7. (9 marks). Class Method Design.

Sets are a common abstraction in mathematics, science and engineering. The following is a class
definition for sets of integers. Assume it is in a file called set.h.

#include <iostream>
using namespace std;

#define MAX_SIZE 10

class set {
 private:
 int size; // number of elements in the set
 int elements[MAX_SIZE]; // elements of the set

 public:
 // creates an empty set
 set();

 // returns true if e is in set
 bool isMember(int e) const;

 // returns the size of the set
 int getSize() const;

 // returns true if the set is empty
 bool isEmpty();

 // adds element e to the set, returns false if element
 // if already exists in set, otherwise returns true
 bool add(int e);

 // returns a new set that is the union of two sets
 set operator+ (const set & rhs) const;

 // more functions that are not relevant to the question
 :
};

(a) (3 marks). Write the implementation of the class member function isMember,

appearing in a file called set.cpp. Use the space below. Your answer should be a few
lines of code.

{

}

Write function
header here

Write function
body here

Page 10 of 25

The overloaded “+” operator for the set class allows code like this to be written:

 set X;
 X.add(4);
 X.add(5);

 set Y;
 Y.add(5);
 Y.add(6);
 :
 set Z;
 Z = X + Y;

The result of X + Y is a new set that is the union of the sets X and Y. That is, the new set has the
elements 4, 5 and 6. Note that the common element 5 appears only once in the resulting set.

(b) (6 marks). Write the implementation of the overloaded operator+ function, as a member

of set. Clearly show the function header and its body. Again, the function is written in the
file set.cpp. Write your answer in the box below. You may want to use the functions
isMember and/or add.

{

}

Write function
header here

Write function
body here

Page 11 of 25

Question 8. (10 marks). Constructors and Destructors.

Consider the following definition of the class Complex.

class complex {
 private:
 float real;
 float imag;
 public:
 complex();
 complex(float r, float i); // Two-floats constructor
 complex& addComplex (complex other);
 complex& operator= (complex rhs);
};

The following is the implementation of the class methods.

complex::complex() {
 real=0.0;
 imag=0.0;
}

complex::complex(float r, float i) {
 real=r;
 imag=i;
}

complex& complex::addComplex (complex other) {
 complex tmp(1.0,1.0);
 real = real + other.real + tmp.real;
 imag = imag + other.imag + tmp.imag;
 return (*this);
}

complex& complex::operator= (complex rhs) {
 real = rhs.real;
 imag = rhs.imag;
 return (*this);
}

Assume the class definition and implementation to be correct.

Page 12 of 25

Consider the execution of the following main function, from the time main is invoked until
(and immediately after) it returns.

int main() {
 complex a;
 complex b(1.0,2.0);
 complex c;
 complex d[2];

 c = a.addComplex(b);

 return (0);
}

Assuming the C++ compiler does not optimize away copying of objects.

(a) (2 marks). How many times is the default constructor invoked? Circle one answer.

1. 2 times
2. 3 times
3. 4 times
4. 5 times
5. None of the above

(b) (2 marks). How many times is the copy constructor invoked? Circle one answer.

1. 0 times
2. 1 time
3. 2 times
4. 3 times
5. None of the above

(c) (2 marks). How many times is the two-floats constructor invoked? Circle one answer.

1. 0 times
2. 1 time
3. 2 times
4. 3 times
5. None of the above

(d) (2 marks). How many times is the destructor invoked? Circle one answer.

1. 0 times
2. 4 times
3. 3 times
4. 8 times
5. None of the above

Page 13 of 25

(e) (1 mark). How many times is the overloaded assignment operator invoked? Circle one

answer.

1. 0 times
2. 1 time
3. 2 times
4. 4 times
5. None of the above

(f) (1 mark). How many times is the overloaded addition operator invoked? Circle one answer.

1. 0 times
2. 2 times
3. 4 time
4. 3 times
5. None of the above

Page 14 of 25

Question 9. (8 marks). Dynamic Memory Allocation.

Given the following program, indicate the number of object of type Foo that exist in memory
when the program execution reaches:

Point X:

Point Y:

Point Z:

Point W:

void do_something_else(Foo obj) {
 Foo* ptr = new Foo();
 // Point Y
 return;
}

void do_something (Foo* arg) {
 Foo a;
 Foo b;
 do_something_else(*arg);
 Foo* ptr = new Foo();
 delete arg;
 // Point Z
 return;
}

int main() {
 Foo a;
 Foo* p;
 // Point X
 p = new Foo();
 do_something(p);
 // Point W
 return (0);
}

Page 15 of 25

Question 10. (9 marks). Arrays and Objects.

Consider the following definition and implementation of the class Foo. Assume it is correct.

#include <iostream>
using namespace std;

class Foo {
 private:
 int value;
 public:
 Foo(int v);
 ~Foo();
 int getValue() const;
 void print() const;
};

Foo::Foo(int v) {value = v;}
Foo::~Foo() { }
int Foo::getValue() const { return v;}
void Foo::print() const {cout << v << endl;}

We wish to allocate the data structure shown below, dynamically at run time. Given the input n
from the user, where n is a positive integer greater than 1, we wish to dynamically allocate an n-
element array, called myArray. Each element of the array points to a dynamically allocated
pointer that can point to object of type Foo. Each of these dynamically allocated pointers points
to a dynamically allocated Foo object.

0 1 2 n-1

myArray

Foo Object

Pointer to Foo Object

Foo Object

Foo Object

Array of pointers to pointers to Foo Objects

v=1 v=0 v=n-1

Page 16 of 25

Assuming an integer variable n whose value is read from the standard input using cin, as shown
below.

 int n;
 cin >> n;

(a) (1 marks). Write the declaration of the variable myArray.

(b) (1 marks). Write a C++ code segment to dynamically allocate the array myArray of size n.

(c) (2 mark). Write a C++ code segment to dynamically allocate the n pointers and assign the

elements of the array myArray, as shown in the figure above.

(d) (3 mark). Write a C++ code segment to dynamically allocate n Foo objects and have their

addresses stored in the n dynamically allocated pointers, as shown in the figure above. The
value of the private data member of each object should be initialized as shown in the figure.

(e) (2 marks). Write a C++ code segment to de-allocate all the dynamically allocated data in
the parts above so that no memory leaks exist.

Page 17 of 25

Question 11. (5 marks). Constructors and Destructor.

Consider the following definition/implementation of a class called Square.

#include <iostream>
using namespace std;

class Square {
 private:
 int length;
 int width;
 public:
 Square() {
 cout << "Constructor 1" << endl;
 length = 0;
 width = 0;
 }

 Square(int _length, int _width) {
 cout << "Constructor 2" << endl;
 length = _length;
 width = _width;
 }

 Square(const Square& s) {
 cout << "Constructor 3" << endl;
 length = s.length;
 width = s.width;
 }

 ~Square() {
 cout << "Destructor" << endl;
 }

 int get_length() const { return length; }

 int get_width() const { return width; }
};

Page 18 of 25

The following is a main program that uses the above class.

#include <iostream>
using namespace std;

Square g(1,2);

int size (Square s) {return s.get_length()*s.get_width();}
int size_r (Square &s) {return s.get_length()*s.get_width();}

int main () {
 Square a;
 Square &r = a;
 Square *p;
 p = new Square(3,4);
 Square *q = p;
 int size1 = size (*q);
 delete q;
 int size2 = size_r (r);
 cout << "size of a: " << size1 << "; size of r: " << size2 << endl;
 return 0;
}

What is the output of the program?

Write one of A, B, C, D, E, F, G or H here:

A

Constructor 2
Constructor 2
Constructor 1
Constructor 3
Destructor
Destructor
size of a: 6; size of r: 2
Destructor
Destructor

E

Constructor 1
Constructor 2
Constructor 2
Constructor 3
Destructor
Destructor
size of a: 12; size of r: 0
Destructor
Destructor

B

Constructor 2
Constructor 1
Constructor 2
Constructor 3
Destructor
Destructor
size of a: 12; size of r: 0
Destructor
Destructor

F

Constructor 2
Constructor 1
Constructor 2
Destructor
size of a: 12; size of r: 0
Destructor
Destructor

Page 19 of 25

C

Constructor 1
Constructor 2
Constructor 3
Destructor
Destructor
size of a: 12; size of r: 0

G

Constructor 2
Constructor 1
Constructor 2
Constructor 3
Destructor
Destructor
size of a: 6; size of r: 0
Destructor
Destructor

D

Constructor 2
Constructor 1
Constructor 2
Constructor 3
Destructor
Destructor
size of a: 2; size of r: 0
Destructor
Destructor

H
None of the above

Page 20 of 25

Question 12. (5 marks). Classes and Objects.

The following class definition describes a simple C++ class called mClass. The definition is in a
file called mClass.h. Assume this definition to be correct.

 #include <iostream>
 using namespace std;

 class mClass {
 private:
 int m;
 public:
 mClass(int v);
 mClass(const mClass& src);
 ~mClass();
 int getM() const;
 void setM(int new_m);
 mClass& addM(const mClass & other);
 };

The implementation of the class is in the file mClass.cpp, shown below. The line number at
the beginning of each line is not part of the code; it is there only to facilitate your answer.

 01: #include “mClass.h”

 02: mClass::mClass(int v) {m = v;}

 03: mClass::mClass(const mClass& src) {m = src.m;}

 04: mClass::~mClass() { }

 05: int mClass::getM() const {
 06: m = m + 1;
 07: return m;
 08: }

 09: void mClass::setM(int new_m){
 10: m = new_m;
 11: }

 12: void mClass::addM(const mClass& other) {
 13: m = other.m;
 14: other.m = m + 1;
 15: }

Page 21 of 25

Now consider the following code, which uses mClass:

 #include <iostream>
 using namespace std;
 #include “mClass.h”
 int main() {
16: mClass a(5);
17: cout << a.m << endl;
18: mClass* p = new mClass(8);
19: a.addM(p);
20: cout << p->getM() << endl;
21: mClass c;
22: return (0);
23: }

The code is compiled using the command: g++ main.cpp mClass.cpp –o main.exe.
However, there are several compiler errors that result. In the table below, indicate for each line
number (shown in the code above) whether an error occurs or not. If there is no error, leave the
error description blank. Otherwise, write a one short sentence description of the error.

Line
Number Error (leave blank or error description)

01

02

03

04

05

06

07

08

Page 22 of 25

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Page 23 of 25

Question 13. (4 marks). Classes and Objects.

The C++ class aClass is shown below. Assume it is correct.

 #include <iostream>
 using namespace std;

 class aClass {
 private:
 int* a;
 public:
 aClass(int v);
 ~aClass();
 void setA(int v);
 void print() const;
 };

 aClass::aClass(int v) {
 a = new int;
 *a = v;
 }

 aClass::~aClass() { delete a; }
 void aClass::setA(int v) {*a = v;}
 void aClass::print() const { cout << *a << endl;}

The following main function uses this class:

int main() {
 aClass x(3);
 aClass y(5);
 x.print(); // First print
 y.print(); // Second print
 x = y;
 y.setA(7);
 x.print(); // Third print
 y.print(); // Fourth print
}

Indicate in the table below the values printed by each of the print function invocations above.

First print
Second print
Third print
Fourth print

Page 24 of 25

Question 14. (10 marks). Compilation.

(a) (3 marks). Consider the following program:

#include <iostream>
#define A 3
#define int_var A

using namespace std;
int main () {
 int_var = int_var + 1;
 cout << int_var << endl;
 return 0;
}

What is the output produced by the program? Circle one answer.

(a) None, the program has compilation error(s)

(b) 3

(c) 4

(d) 0

(e) None of the above

(b) (3 marks). Consider the following program:

#include <iostream>
#define A 3
#define int_var a

using namespace std;
int main () {
 int a = 0;
 a++;
 int_var = int_var + A;
 cout << a << endl;
 return 0;
}

What is the output produce by the program? Circle one answer.

(a) None, it has compilation error(s)

(b) 3

(c) 4

(d) 1

(e) 0

(f) None of the above

Page 25 of 25

(c) (4 marks). Suppose you design two classes: MyFirstClass and MySecondClass. For
each of these classes, you have a definition file and an implementation file. Thus, you have
four files: MyFirstClass.h, MyFirstClass.cpp, MySecondClass.h and
MySecondClass.cpp. Also you write a program main.cpp that uses the two classes.
The files are compiled into a single executable main.exe.

Write down the Unix commands necessary to separately compile the above files and
generate the executable.

 Write your answer here

