
Page 1 of 28	

University of Toronto
Faculty of Applied Science and Engineering

ECE 244F

PROGRAMMING FUNDAMENTALS

Fall 2018

Midterm Test

Examiners: T.S. Abdelrahman and M. Mansour

Duration: 110 minutes

This test is OPEN Textbook and CLOSED notes. The use of computing and/or communicating
devices is NOT permitted.

Do not remove any sheets from this test book. Answer all questions in the space provided. No
additional sheets are permitted.

Work independently. The value of each question is indicated. The total value of all questions is
100.

Write your name and student number in the space below. Do the same on the top of each sheet
of this exam book.

Name: ___________________________________
(Underline last name)

Student Number: ___________________________________

	 	Q1. __________ Q8. _________

Q2. __________

Q9. _________

Q3. __________

Q10. _________

Q4. __________

Q11. _________

Q5. __________

Q12. _________

Q6. __________

Q13. _________

Q7. __________

Q14. _________

Total

Page 2 of 28	

Question 1. (9 marks). General.

Answer the following questions by circling either TRUE or FALSE.

(a) TRUE or FALSE. Two different class definitions may have the same member names.

(b) TRUE or FALSE. An object can only be passed to a function as a call-by-reference parameter.

(c) TRUE or FALSE. A class member function may be private.

(d) TRUE or FALSE. All constructors for a class must be public.

(e) TRUE or FALSE. It is possible to have multiple private labels in a class definition.

(f) TRUE or FALSE. When memory is allocated using the following statement:

 int** p = new int*[10];

then it can be de-allocated or freed using:

 delete [] *p;

(g) TRUE or FALSE. You must write a copy constructor function for every class you create if you
wish to initialize an object from another of the same type.

Answer the following questions by circling the most appropriate answer.

(h) In a class, all members are ____________ by default

a. public
b. private
c. global
d. None of the above

(i) Operators can be overloaded as

a. Friends of a class
b. Members of a class
c. Non-friends, non-members of a class
d. All of the above

(j) If we have accessor and mutator members of a class, why would we have friend functions?

a. We should not have them
b. For more efficient access to the private data members.
c. Friend functions must call the accessor or mutator functions anyway.
d. None of the above

Page 3 of 28	

Question 2. (8 marks). Separate Compilation.

You are given a program that has a main function and 3 classes: First, Second and Third. For
each of these classes, you have a definition file and an implementation file. Thus, you have seven
files in total: First.h, First.cpp, Second.h, Second.cpp, Third.h, Third.cpp and
main.cpp. All the files exist in the same directory. The first few lines of each file are shown below.
The rest of the contents of each file is irrelevant to the question and is shown as “:”. You may
assume the definition/implementation files are error-free.

First.h	 Second.h	

#ifndef FIRST_H
#define FIRST_H

class First {
 :
};

#endif

#ifndef SECOND_H
#define SECOND_H

class Second {
 :
};

#endif

#include “First.h”

First::First () {
 :
}
 :

First.cpp	

#include “First.h”
#include “Second.h”

Second::Second ()
{
 :
}
 :

Second.cpp	

#include “First.h”
#include “Second.h”
#include “Third.h”

int main () {
 :
 :
}

main.cpp	

Third.h	

#ifndef THIRD_H
#define THIRD_H

class Third {
 :
};

#endif

#include “Second.h”

Third::Third ()
{
 :
}
 :

Third.cpp	

Page 4 of 28	

The files are to be separately compiled and then linked into a single executable called main.exe.

(a) (3 marks). Write down the Unix commands necessary to separately compile the above files and
generate the executable.

(b) (2 marks). You modify the file Second.cpp. Write down the Unix commands necessary to
regenerate the executable by compiling the smallest number of files possible.

(c) (3 marks). You modify the file First.h. Write down the Unix commands necessary to
regenerate the executable by compiling the smallest number of files possible.

	
	
	
	
	
	
	

Write your answer here

Write your answer here

Write your answer here

Page 5 of 28	

Question 3. (9 marks). C++ I/O.

Consider the following program that uses stringstreams to read a command. The command has
the following format:

 count intArg

The command word is count and intArg is an integer argument. The command must have only
one integer argument.

#include <iostream>
using namespace std;

#include <sstream>
#include <string>

// function prototype

bool handle_count();

int main() {
 string line;
 string command;
 int intArg;

 getline(cin, line);
 stringstream lineStream(line);

 lineStream >> command;
 if (command == “count”) {

 if (handle_count()) {

 cout << “Integer argument is “ << intArg << endl;
 return (0);
 }
 else {
 cout << “Invalid arguments” << endl;
 return (-1);
 }
 }
 else {
 cout << “Invalid command” << endl;
 return (-1);
 }
}

The function handle_count performs the reading of the integer value. If the integer is valid, it
returns true and updates the value of intArg. Otherwise, it returns false.

Write	your	answers	here		

	

	

Page 6 of 28	

(a) (4 marks). Determine the number of arguments and the type of each argument and indicate

them in the code above in the prototype of the function. Further, indicate what parameters are
passed to the function when it is invoked. Write your answers where indicated in the code
above.

You may not modify main by adding or removing line, other than by indicating the formal
arguments in the function prototype and actual arguments of the function invocation.

(b) (5 marks). Write the header and body of the handle_count function below so it performs
as indicated above. Write your answer in the box below.

bool handle_count() {

}	

Page 7 of 28	

Question 4. (4 marks). Pointers.

Consider the following main function. The line numbers to the left are for reference and are not part
of the code.

#include <iostream>
using namespace std;

01 int main () {
02 int* first_ptr;
03 int* second_ptr;
04 int** p_ptr;
05 first_ptr = new int;
06 second_ptr = new int;
07 p_ptr = &first_ptr;
08 *first_ptr = 4 ;
09 *second_ptr = 8 ;
10 second_ptr = *p_ptr;
11 cout << *first_ptr << “ “ << *second_ptr << endl ;
12 delete first_ptr;
13 delete second_ptr;
14 delete *p_ptr;
15 return (0);
16 }

(a) (2 marks). What is the output produced by by cout on line 11 of the code.

Answer:

(b) (2 marks). The program may have a problem with it. What is the problem, if any? Circle only

one answer.

 A. The program has no problem with it.
 B. The program has a memory leak.
 C. The delete on line 14 should not dereference p_ptr, but use it directly.
 D. The program deletes the same region of memory more than once.
 E. B and C.
 F. B and D.
 G. B, C and D.

 

Page 8 of 28	

Question 5. (7 marks). Pointers and Classes.

Consider the following class declaration.

class node {
 public:
 int ID;
 Data* myD;
 node* next;
};

node* head;

The definition of the class Data is not shown here, but you may assume it to exist and to be correct.
Dynamic data is allocated in the main function of a program. This dynamic data is depicted in the
figure below.

(a) (3 marks). Using only one integer variable called temp, write lines of code to swap the ID

members of the first and third nodes shown in the figure above. No other variables are allowed.

Write your answer here.

ID myD next ID myD next ID myD next

head
first	node second	node third	node

int temp;
	

Page 9 of 28	

(b) (4 marks). Using only one pointer variable called temp_ptr, write lines of code to swap the
second and third nodes shown in the figure. You are not to use any other variables and you must
swap the nodes not the members of the nodes.

Write your answer here.

node* temp_ptr;	

Page 10 of 28	

Question 6. (5 marks). Dynamic Memory Allocation.

Study the following program and answer the questions below. You may assume that the class
Mystery is correctly defined an implemented.

#include “Mystery.h”
void level_B (Mystery obj) {
 Mystery* ptr = new Mystery();
 Mystery x[2];
 // Point Z
 return;
}

void level_A (Mystery* x) {
 Mystery a;
 Mystery b;
 // Point Y
 Mystery* ptr = new Mystery[10];
 delete [] x;
 // Point W
 return;
}

int main() {
 Mystery a;
 Mystery* b;
 // Point X
 b = new Mystery[2];
 level_A(b);
 level_B(a);
 // Point Q
 return (0);
}

(a) Indicate the number of objects of type Mystery that exist in memory when the program
execution reaches Point X.

Answer:

(b) Indicate the change in the number of objects of type Mystery that exist in memory and that

occurs during program execution between Point X and Point Y. For example, if 5 more
objects exist, write +5. If two fewer objects exist, write -2.

Answer:

Page 11 of 28	

(c) Indicate the change in the number of objects of type Mystery that exist in memory and that
occurs during program execution between Point Y and Point W. For example, if 5 more
objects exist, write +5. If two fewer objects exist, write -2.

Answer:

(d) Indicate the change in the number of objects of type Mystery that exist in memory and that
occurs during program execution between Point W and Point Z. For example, if 5 more
objects exist, write +5. If two fewer objects exist, write -2.

Answer:

(e) Indicate the change in the number of objects of type Mystery that exist in memory and that
occurs during program execution between Point Z and Point Q. For example, if 5 more
objects exist, write +5. If two fewer objects exist, write -2.

Answer:

Hint: Draw a picture!

Page 12 of 28	

Question 7. (6 marks). Classes.

The following is the definition/implementation of a class called Foo.

class Foo {
 private:
 int priv;

 public:
 Foo (int pv) {priv = pv;}

 Foo (const Foo src) {priv = src.priv;}

 Foo& operator=(Foo& rhs) const {
 priv = rhs.priv;
 return this;
 }

 int getPriv() const { return priv; }
 void setPriv(int pv) { priv = pv; }
};

Compiling the above definition/implementation results in one or more errors. Re-write the class so it
is error-free. Write your answer (the entire definition/implementation) in the box below. You may
want to underline in your answer below the changes you made.

	

Page 13 of 28	

Question 8. (10 marks). Classes and Objects.

Consider the following class definition and implementation.

#include <iostream>
using namespace std;

class Shape {
 int x_pos;
 int y_pos;
 public:
 Shape (int x, int y); // Method 1
 Shape (const Shape& source); // Method 2
 ~Shape (); // Method 3
 Shape& operator= (Shape rhs); // Method 4
 void print() const; // Method 5
};

Shape::Shape(int x, int y) {
 x_pos = x;
 y_pos = y;
}

Shape::Shape(const Shape& source) {
 x_pos = source.x_pos;
 y_pos = source.y_pos;
}

Shape & Shape::operator=(Shape rhs) {
 x_pos = rhs.x_pos;
 y_pos = rhs.y_pos;
 return (*this);
}

void Shape::print() const {
 cout << “(“ << x_pos << “,” << y_pos << “)” << endl;
}

For each of the following snippets of code, assumed to be in the main function of the program,
indicate which methods are invoked. Circle all correct answers.

Note: while correct answers get full marks, some incorrect answers get part marks (and some get
none).

Page 14 of 28	

1. Shape circle (5,10);

a. None
b. Method 1
c. Methods 1 and 2
d. Methods 1 and 3
e. Methods 1 and 4
f. Methods 2, 3 and 4
g. The code snippet results in a compile time error

2. Shape rectangle;

a. None
b. Method 1
c. Methods 1 and 2
d. Methods 1 and 3
e. Methods 1 and 4
f. Methods 2, 3 and 4
g. The code snippet results in a compile time error

3. Shape* triangle;

a. None
b. Method 1
c. Methods 1 and 2
d. Methods 1 and 3
e. Methods 1 and 4
f. Methods 2, 3 and 4
g. The code snippet results in a compile time error

4. Shape* hexagon = new Shape[100];

a. None
b. Method 1
c. Methods 1 and 2
d. Methods 1 and 3
e. Methods 1 and 4
f. Methods 2, 3 and 4
g. The code snippet results in a compile time error

Page 15 of 28	

5. Shape circle1 (3,4);
Shape circle2 (circle1);

a. None
b. Method 1
c. Methods 1 and 2
d. Methods 1 and 3
e. Methods 1 and 4
f. Methods 2, 3 and 4
g. The code snippet results in a compile time error

6. Shape circle3 (3,4);
Shape circle4 = circle1;

a. None
b. Method 1
c. Methods 1 and 2
d. Methods 1 and 3
e. Methods 1 and 4
f. Methods 2, 3 and 4
g. The code snippet results in a compile time error

7. Shape circle5 (3,4);
Shape circle6 (6,8);
circle5 = circle6;

a. None
b. Method 1
c. Methods 1 and 2
d. Methods 1 and 3
e. Methods 1, 2 and 4
f. Methods 1, 2, 3 and 4
g. The code snippet results in a compile time error

Page 16 of 28	

Question 9. (8 marks). Constructors and Destructor.

Consider the following definition/implementation of a class called Shape that appears in the file:
Shape.h.

#include <iostream>
using namespace std;

class Shape {
 private:
 int ID;

 public:
 Shape () {
 ID = 0;
 cout << "Constructor 1 " << ID << endl;
 }

 Shape (int id) {
 ID = id;
 cout << "Constructor 2 " << ID << endl;
 }

 Shape (const Shape& s) {
 ID = s.ID;
 cout << "Constructor 3 " << ID << endl;
 }

 ~Shape() { cout << "Destructor " << endl;}

 Shape& operator=(Shape rhs) {
 cout << "Operator= " << ID << endl;
 ID = rhs.ID;
 return *this;
 }

 int getID() const { return ID; }
 void setID(int id) { ID = id; }
};

Page 17 of 28	

The following is a main program that uses the above class.

#include <iostream>
using namespace std;

#include “Shape.h”

int getID (Shape s) {return s.getID();}
int getShapeID(Shape& s) {return s.getID();}

int main () {
 Shape circle(5);
 Shape* line1[2];
 Shape* polygon = new Shape(circle);
 line1[0] = polygon;
 line1[1] = polygon;
 *polygon = circle;
 Shape line2[2];
 line2[0] = *polygon;
 cout << *(line1[0]).getID() << endl;
 cout << getID(*line1[1]) << endl;
 cout << getShapeID(*line1[0]) << endl;
 return 0;
}

What is the output of the program? Select one of the answers from the table below.

Write one of A, B, C, D, E, F or G here:

Note: There is only one correct answer that receives the full mark. However, incorrect answers do
get part marks (some get more than others and some get none).

Page 18 of 28	

A

Constructor 2 5
Constructor 3 5
Constructor 3 5
Operator= 5
Destructor
Constructor 1 0
Constructor 1 0
Constructor 3 5
Operator= 0
Destructor
5
5
5
Destructor
Destructor
Destructor

D

Constructor 2 5
Destructor
Constructor 1 0
Constructor 1 0
Destructor
5
5
Destructor
5
Destructor
Destructor
Destructor

B

Constructor 2 5
Constructor 3 5
Constructor 3 5
Operator= 5
Destructor
Constructor 1 0
Constructor 1 0
Constructor 3 5
Operator= 0
Destructor
5
Constructor 3 5
5
Destructor
5
Destructor
Destructor
Destructor

E

Constructor 2 5
Constructor 3 5
Constructor 3 5
Operator= 5
Destructor
Constructor 1 0
Constructor 1 0
Constructor 3 5
Operator= 0
Destructor
5
Constructor 3 5
5
Destructor
Constructor 3 5
5
Destructor
Destructor
Destructor
Destructor

Page 19 of 28	

C

Constructor 2 5
Constructor 1 0
Constructor 1 0
Constructor 3 5
Constructor 3 5
Operator= 0
Destructor
Constructor 3 5
Operator= 0
Destructor
Constructor 3 5
Operator= 5
Destructor
Constructor 1 0
Constructor 1 0
Constructor 3 5
Operator= 0
Destructor
5
Constructor 3 5
5
Destructor
5
Destructor
Destructor
Destructor
Destructor
Destructor

F

Constructor 2 5
Constructor 3 5
Constructor 3 5
Destructor
Constructor 1 0
Constructor 1 0
Constructor 3 5
Destructor
5
Constructor 3 5
5
Destructor
5
Destructor
Destructor
Destructor

G

None of the above

Page 20 of 28	

Question 10. (8 marks). Class Definition.

Consider the following definition and implementation of a class aVector that represents vectors of
integers. Consider also the short main function that makes use of the class. You may assume they
are all correctly defined and implemented.
	

#define max_size 64
class aVector {
 private:
 int size; // Size of vector
 int theVector[max_size]; // Vector elements from 0 to size-1
 public:
 int getSize() const {return size;}
 void setSize(int sz) {size = sz;} // Should be used only once
 int getElement(int i) {return theVector[i];}
 void setElement(int i, int v) {theVector[i]=v;}
};

int main() {
 aVector v1;
 v1.setSize(10); // Used once to set size of vector

 aVector v2(v1);
 aVector v3;

 v3 = v1;

 return (0);
}

The creator of the class decides to change its definition to allow for exact-sized vectors. Thus, the
definition of the class is changed to:

class aVector {
 private:
 int size; // Size of vector
 // pointer to dynamically allocated elements from 0 to size-1
 int* theVector;
 public:
 int getSize() const {return size;}
 void setSize(int sz) {size = sz;} // Should be used only once
 int getElement(int i) {return theVector[i];}
 void setElement(int i, int v) {theVector[i]=v;}
};

Note the absence of max_size. The intent of the programmer is to have theVector pointer
private member to point to a dynamically allocated the array of exactly size integers, containing
vector elements of the vector.

Answer the following questions, keeping in mind that marks will be subtracted for incorrect answers.

Page 21 of 28	

(a) (2 marks). What additional (i.e., new) class member functions must be defined for the class to

remain correct? Write only the prototypes of these functions. If no new members must be added,
write NONE.

(b) (2 marks). What existing member functions must be removed for the class to remain correct?
Write only the prototypes of these functions. If no members must be removed, write NONE.

(c) (2 marks). Which of the functions that were not removed (in part (b)) from the original class
definition must be re-implemented to reflect the new definition of the class? Again, write only the
prototypes of these functions. If none must be re-implemented, write NONE.

(2 marks). Identify the lines in main must be changed for main to continue to work correctly with
the changes made to the class Complex. For each line that must change, write down the original line
and what it should be changed into. If no lines must change, write down NONE.

Page 22 of 28	

Question 11. (2 marks). Classes and Objects.

Once upon a time, in a land far away, there was a very good C++ programmer. Her name was Amy.
She spent a few days designing and implementing a C++ class called Mystery. The following is the
class definition that appears in Mystery.h:

#include “YetAnotherMystery.h”
class Mystery {
 private:
 YetAnotherMystery* mystery_variable;

 public:
 Mystery();
 Mystery(const Mystery & other);
 ~Mystery();
 Mystery & operator=(const Mystery & rhs);
 void operateOnMystery();
 void print () const;
};

Amy is so proud of her class that she does not want objects of type Mystery to ever be deleted. In
other words, so wants code that looks like this:

{
 Mystery a;
}

in a main function to not compile since the object a will be deleted when it goes out of scope. The
same for code that looks like this since “delete p” will delete the dynamically-allocated object:

Mystery * p;
p = new Mystery ();
:
delete p;

In one short sentence, describe what Amy can do to her class definition shown above to accomplish
her goal of preventing objects of type Mystery from getting deleted.

	 	

Page 23 of 28	

Question 12. (8 marks). Arrays and Objects.

Consider the following definition/implementation of the class DayOfYear. You may assume the
class is correctly defined/implemented.

class DayOfYear {
 private:
 int day;
 int month;
 public:
 DayOfYear(int d, int m) {day = d; month = m;}
 ~DayOfYear() {}
 int getDay() const {return day;}
 int getMonth() const {return month;}
 void setDay(int d) {day = d;}
 void setMonth(int m) {month = m;}
};

The following main function dynamically allocates then de-allocates n DayOfYear objects, along
with other variables, where n is an integer value read from cin. Complete the code of the function
to delete all dynamically allocated data, so that there is no memory leak at the end of the function.
Assume iostream has been included and that the std namespace is used.

int main () {
 DayOfYear*** p;
 int n;
 cin >> n;
 p = new DayOfYear** [n];

 for (int i=0; i < n; ++i) {
 p[i] = new DayOfYear*;
 *(p[i]) = new DayOfYear(i%30, i%12);
 }

 DayOfYear* q = *p[0];
 q->setDay(1);
 q->setMonth(1);

 // ADD YOUR CODE HERE

	
	
	
	
	
	
	
	
	
	
return	(0);	

}

Page 24 of 28	

Question 13. (8 marks). Operator Overloading.

Consider the following definition and implementation of a class myVector that represents vectors
of integers. You may assume they are correctly defined and implemented.
	
#define max_size 256

class myVector {
 private:
 int size; // Actual size of myVector
 int theVector[max_size]; // myVector elements from 0 to size-1
 public:
 myVector(int sz);
 ~myVector();
 int getSize() const {return size;}
 void setSize(int sz) {size = sz;} // No error checking, but OK
 int getElement(int i) {return theVector[i];}
 void setElement(int i, int v) {theVector[i]=v;}
};

(a) (4 marks). Overload the plus operator (+) as a member of the class myVector to perform the
addition of two vectors. The addition of a vector A to a vector B produces a new vector whose
elements are the element-wise addition of A and B. For example, if A = (1 4) and B = (2 3),
then the result of A + B is the vector (3 7). For simplicity, you may assume that the two
vectors added will always have the same size.

Write your answer in the box below. Be sure to indicate both the header and the body of the
method.

	
	
	

	

{

}

Write	function	
header	here	

Write	function	
body	here	

Page 25 of 28	

(b) (4 marks). Re-write the above overloaded operator so it is not a member function of the class
Vector. You may not change the definition of the class in any way.

Write your answer in the box below. Be sure to indicate both the header and the body of the
method.

	
	
	

{

}

Write	function	
header	here	

Write	function	
body	here	

Page 26 of 28	

Question 14. (8 marks). Objects with Pointers.

Consider the following definition and implementation of a class Mystery. The definition and
implementation of the classes Left and Right are not available but you may assume they are
correctly defined and implemented.

#include “Left.h”
#include “Right.h”

class Mystery {
 private:
 Left* leftside;
 Right* rightside;

 public:
 Mystery ();
 ~Mystery ();
 Left* getLeft() const;
 Right* getRight() const;
};

Mystery::Mystery() {
 leftside = new Left();
 rightside = new Right();
}

Mystery::~Mystery() {
 delete leftside;
 delete rightside;
}

Left* Mystery::getLeft() const {return leftside;}

Right* Mystery::getRight() const {return rightside;}

Now consider the following segment of code in the main function.

#include “Mystery.h”

int main() {
 Mystery x;
 Mystery y;

 // point A
 x = y;
 // point B

 return (0);
}

Page 27 of 28	

(a) (2 marks). The figure below shows the two objects x and y at point A in the code. Adjust the
diagram to show the two objects at point B in the code.

(b) (6 marks). There are one or more problems with the code that result from the execution in

main. What single member method would you add to the class Mystery to address these
problem(s)? Write below the implementation of the method you add.

	

leftside
rightside

x

	

	

leftside
rightside

y

	

	

Page 28 of 28	

This Page is Intentionally Left Blank – Use for Rough Work

