
Page 1 of 28	

University of Toronto
Faculty of Applied Science and Engineering

ECE 244F

PROGRAMMING FUNDAMENTALS

Fall 2019

Midterm Test

Examiners: T.S. Abdelrahman and M. Shaghaghi

Duration: 110 minutes

This test is OPEN Textbook and CLOSED notes. The use of computing and/or communicating
devices is NOT permitted.

Do not remove any sheets from this test book. Answer all questions in the space provided. No
additional sheets are permitted.

Work independently. The value of each question is indicated. The total value of all questions is
100.

Write your name and student number in the space below. Do the same on the top of each sheet
of this exam book.

Name: ___________________________________
(Underline last name)

Student Number: ___________________________________

	 	Q1. __________ Q8. _________

Q2. __________

Q9. _________

Q3. __________

Q10. _________

Q4. __________

Q11. _________

Q5. __________

Q12. _________

Q6. __________

Q13. _________

Q7. __________

Q14. _________

Total

Page 2 of 28	

Important Notes

1. In answering the questions, you must assume the C++ 11 standard and the use of the g++

compiler available on the Linux machines in the ECF labs.

2. There are some multiple-choice questions for which incorrect answers carry part marks. This
is indicated in the relevant questions.

3. If your have any doubts about a question, write your assumption down. If they are sensible,
they will be taken into account.

Question 1. (8 marks). Warm Up Questions.

Answer the following questions by circling the most appropriate answer.

(a) The default access control specifier for class members is ________.

a. private
b. public
c. both private and public
d. Neither private nor public

(b) A user defined header file called file.h is included in a program as ________.

a. #include <file>
b. #include “file.h”
c. #include “file”
d. #include file.h

(c) cin is ________.

a. a class
b. an object
c. a package
d. a namespace

(d) The operator to access members of an object using the objects name is _______.

a. .
b. ->
c. *
d. None of the above

(e) Friend functions of a class are __________.

a. functions that are called “friend”
b. functions allowed to access private members of the class
c. functions allowed to access public members of the class
d. b. and c.
e. All of the above

Page 3 of 28	

(f) The this keyword in a method gives __________.

a. the object on which a method is invoked
b. a pointer to the method that is invoked
c. a pointer to the object on which the method is invoked
d. a pointer to the class to which the method belongs

(g) The copy constructor is executed when __________.

a. an object is assigned from another object of the same type
b. an object is created as a copy of another object of the same type
c. an object is passed to a function and the pass mechanism is by reference
d. b. and c.
e. None of the above

(h) One key advantage of separate compilation is ________.

a. to use more command to compile and link
b. to speed up the program development cycle
c. to discover more bugs
d. There is really no advantage

Page 4 of 28	

Question 2. (8 marks). Classes.

Consider the definition of a class called Nova, which is in the file Nova.h.

#include <iostream>
using namespace std;

class Nova {
 private:
 // Private members not shown

 public:
 // Public members not shown

};

Now consider the following program that uses the Nova class. The program compiles and runs
correctly.

#include <iostream>
using namespace std;

#include “Nova.h”

int main () {
 Nova a(3,8.1);
 Nova* p;
 Nova b(a);
 ++a.it;
 a.setAll(1,7.8);
 p = new Nova(9,12.7);
 if (a != b) *p = a + b;
 delete p;

 return 0;
}

What members of the class Nova must exist for the above code to compile with no errors? Give
variable declarations and/or method prototypes in the table below. Note that you may or may not
need to fill every row in the table.

Page 5 of 28	

Page 6 of 28	

Question 3. (8 marks). Classes and Objects.

Consider the following class definition and implementation. You may assume they are error free.

#include <iostream>
using namespace std;

class Fraction {
 int numerator;
 int denominator;
 public:
 Fraction (int x, int y); // Method 1
 Fraction (const Fraction& source); // Method 2
 ~Fraction (); // Method 3
 Fraction& operator= (Fraction & rhs); // Method 4
 void print(Fraction obj) const; // Method 5
};

Fraction::Fraction(int x, int y) {
 numerator = x;
 denominator = y;
}

Fraction::Fraction(const Fraction& source) {
 numerator = source.numerator;
 denominator = source.denominator;
}

Fraction::~Fraction() { }

Fraction & Fraction::operator=(Fraction& rhs) {
 numerator = rhs.numerator;
 denominator = rhs.denominator;
 return (*this);
}

void Fraction::print(Fraction obj) const {
 cout << “(“ << obj.numerator << “/” << obj.denominator
 << “)” << endl;
}

Assume each of the following snippets of code, is in a main function, where iostream is included
and the std namespace is used. For each code snippet, indicate which methods are invoked.

Treat each code snippet by itself, independent of the other code snippets. Circle only one answer.

Note: while the correct answer gets full marks, some incorrect answers get part marks (and some get
none).

Page 7 of 28	

1. Fraction* undefined;

a. None
b. Method 1
c. Methods 1 and 2
d. Methods 1 and 3
e. Methods 1 and 4
f. Methods 2, 3 and 4
g. The code snippet results in a compile time error

2. Fraction threeQuarters (3,4);

cout << threeQuarters.numerator << “/”
 << threeQuarters. denominator << endl;

a. None
b. Method 1
c. Methods 1 and 2
d. Methods 1 and 3
e. Methods 1 and 4
f. Methods 2, 3 and 4
g. The code snippet results in a compile time error

3. Fraction* undefined = new Fraction[100];

a. None
b. Method 1
c. Methods 1 and 2
d. Methods 1 and 3
e. Methods 1 and 4
f. Methods 2, 3 and 4
g. The code snippet results in a compile time error

4. Fraction threeQuarters (3,4);

Fraction zeroPoint75 (threeQuarters);

a. None
b. Method 1
c. Methods 1 and 2
d. Methods 1 and 3
e. Methods 1 and 4
f. Methods 2, 3 and 4
g. The code snippet results in a compile time error

Page 8 of 28	

5. Fraction threeQuarters (3,4);
Fraction half (1,2);
half.print(threeQuarters);

a. None
b. Methods 1 and 5
c. Methods 1, 2, 3 and 5
d. Methods 1, 2 and 5
e. Methods 1, 4 and 5
f. Methods 2, 3, 4 and 5
g. The code snippet results in a compile time error

6. Fraction threeQuarters (3,4);
Fraction sixeighth (6,8);
threeQuarters = sixeighth;

a. None
b. Method 1
c. Methods 1 and 2
d. Methods 1 and 4
e. Methods 1, 2 and 4
f. Methods 1, 2, 3 and 4
g. The code snippet results in a compile time error

Page 9 of 28	

Question 4. (8 marks). Methods, Functions and Objects.

Assume there exists three classes: SuperHero, Villain and Winner. These classes are
implemented correctly and are available for use.

(a) Complete below the prototype of a non-member function called Fight. The function takes two

arguments. The first is called superman that is an object of type SuperHero, passed by
value. The second is an object of type Villain called Luthor, passed by value. The function
returns by value an object of type Winner.

 Fight ();

(b) Complete below the prototype of a non-member function called CreateVillain. The
function takes two arguments. The first is called batman that is an object of type SuperHero,
passed by value. The second is a pointer to an object of type Villain called ptr. The function
allocates a new object of type Villain and stores its address in the second argument of the
function, i.e., ptr. The function returns nothing.

 CreateVillain ();

(c) Complete below the prototype of a non-member function called MakeSuperHero. The

function takes one argument called kind of type string, passed by value. It returns by
reference an object of type SuperHero.

 MakeSuperHero ();

Page 10 of 28	

Question 5. (4 marks). Functions and Objects.

Consider a (non-member) function called doIt, which takes a single object of type
DayOfYear and returns a single object also of type DayOfYear. You may assume that the
class DayOfYear is correctly implemented and that DayOfYear.h is included. Which of the
following implementations of this function is problem-free? Indicate your answer by placing an
X in the appropriate column in the table.

Implementation Problem-

Free?
Has a

problem?

 DayOfYear doIt(DayOfYear & arg) {
 DayOfYear temp;
 temp = arg;
 return (arg);
 }

 DayOfYear doIt(DayOfYear & arg) {
 DayOfYear temp;
 temp = arg;
 return (temp);
 }

 DayOfYear & doIt(DayOfYear & arg) {
 DayOfYear temp;
 temp = arg;
 return (*this);
 }

 DayOfYear & doIt(DayOfYear & arg) {
 DayOfYear temp;
 temp = arg;
 return (temp);
 }

	
	 	

Page 11 of 28	

Question 6. (4 marks). C++ I/O.

For each of the following main functions, indicate the output produced in response to the user
entering 1 2 3 4 five on the keyboard followed by the Enter key. Circle only one answer.

Note: while the correct answer gets full marks, some incorrect answers get part marks (and some get
none).

(a) (2 marks).

Circle one answer:
1. 6
2. 10
3. 14
4. None; the program runs in an infinite loop

(b) (2 marks).

#include <iostream>
using namespace std;

int main() {
 int num = 0;
 int sum = 0;

 while (!cin.fail()) {
 cin >> num;
 sum = sum + num;
 }
 cout << sum << endl;
 return (0);
}

#include <iostream>
using namespace std;

int main() {
 int num = 0;
 int sum = 0;
 bool more = true;

 while (more) {
 cin >> num;
 if (cin.fail()) more = false;
 else sum = sum + num;
 }
 cout << sum << endl;
 return (0);
}

	
Circle one answer:

1. 6
2. 10
3. 14
4. None; the program runs in an infinite loop

	

Page 12 of 28	

Question 7. (9 marks). C++ I/O.

Write a C++ function void readInts() that repeatedly reads integers from the standard input
(using cin) and then immediately outputs the input integer (using cout), one integer per line.
When the end-of-file is reached, the function prints the message End of File Reached on a
line by itself before returning. If a non-integer is input the function should print the message
Invalid Input on a line by itself, should discard the rest of the stream and should continue
reading integers again until the end-of-file is reached.

Write your code in the box below.
	
	

#include <iostream>
using namespace std;

void readInts() {

}	

	

Page 13 of 28	

Question 8. (7 marks). Pointers.
	
Assume that the following code compiles and runs properly.
	
 int a = 6;
 int* b = &a;

 int* foo(int** c) {
 (**c)++;
 *c = b;
 int* d = new int;
 *d = 10;
 // Point #1
 return d;
 }

 int main() {
 int e = 7;
 int* f = &e;
 b = foo(&f);
 // Point #2
 return 0;
 }

	
(a) (3.5 marks). Complete the following diagram by showing the values of variables and/or pointers

when execution reaches the point labeled “Point #1”. For an integer variable, simply show the
integer value inside the corresponding box. For a pointer, indicate the value of the pointer by
drawing an arrow from the box corresponding to the pointer to the box corresponding to the
variable the pointer points to.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

a c b

e d f

new int

Page 14 of 28	

(b) (3.5 marks). Complete the following diagram by showing the values of variables or pointers
when execution reaches the point labeled “Point #2”. For an integer variable, simply show the
integer value inside the corresponding box. For a pointer, indicate the value of the pointer by
drawing an arrow from the box corresponding to the pointer to the box corresponding to the
variable the pointer points to. Cross out any variables (automatic, dynamic or pointers) that no
longer exist.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

a c b

e d f

new int

Page 15 of 28	

Question 9. (5 marks). Pointers and Arrays.

In the blank space for each part (a) – (d) below, provide the declaration and initialization of the
variable i (for example: int i = 10;). Your initialization of i must make use of the variable j,
and lead to the expected output when used in the statements that follow it.

(a) int j = 10; Expected Output of (a)

// declare and initialize i:
 10
 5

cout << *i << endl;
j = 5;
cout << *i << endl;

(b) int j = 10; Expected Output of (b)

// declare and initialize i:
 10
 10

cout << i << endl;
j = 5;
cout << i << endl;

(c) int j = 10; Expected Output of (c)

// declare and initialize i:
 10
 10

cout << i[0] << endl;
j = 5;
cout << i[1] << endl;

Page 16 of 28	

(d) int j = 10; Expected Output of (d)

// declare and initialize i:
 10
 5

cout << *(i[0]) << endl;
j = 5;
cout << *(i[1]) << endl;

Page 17 of 28	

Question 10. (10 marks). Arrays and Objects.

Consider the following modified and simplified definition/implementation of the class Shape, used
in your lab assignment 3. You may assume the class is correctly defined/implemented.

 #include <iostream>
 using namespace std;
#include <string>

class Shape {
 private:
 string name;
 string type;
 public:
 Shape() { }
 string getName() const {return name;}
 string getType() const {return type;}
 void setName(string n) {name = n;}
 void setType(string t) {type = t;}
};

A main function dynamically allocates then de-allocates n Shape objects, along with other
dynamically allocated variables, where n is an integer value read from cin. The code to de-allocate
the objects and the other variables (so that no memory leak exists) is show below at the end of main.

Give the code to allocate the n objects and to set the type of each of the n Shape objects to the
string circle. Assume iostream has been included and that the std namespace is used.

int main () {
 int n;
 cin >> n;

 // Write code to allocate objects and other variables here

 // Write code to set type of each Shape object to circle here

// De-allocate all dynamically allocated variables
 for (int i=0; i < n; ++i) {
 delete *(p[i]);
 delete p[i];
 }
 delete [] p;
 return (0);
}

	
	
	
	
	

Page 18 of 28	

Question 11. (5 marks). Dynamic Memory Allocation.

Study the following program and answer the questions below. You may assume that the class Nova
is correctly defined an implemented.

#include “Nova.h”
void MostNova (Nova* y) {
 Nova* ptr = new Nova();
 delete [] y;
 Nova x;
 // Point Z
 return;
}

void MoreNova (Nova & x) {
 Nova a;
 // Point Y
 Nova b;
 Nova* ptr = new Nova[10];
 MostNova(ptr);
 // Point W
 return;
}

int main() {
 Nova a;
 Nova* b;
 b = new Nova[2];
 // Point X
 MoreNova(a);
 // Point Q
 return (0);
}

(a) Indicate the number of objects of type Nova that exist in memory when the program execution
reaches Point X.

Answer:

(b) Indicate the change in the number of objects of type Nova that exist in memory and that occurs

during program execution between Point X and Point Y. For example, if 5 more objects
exist, write +5. If two fewer objects exist, write -2.

Answer:

Page 19 of 28	

(c) Indicate the change in the number of objects of type Nova that exist in memory and that occurs

during program execution between Point Y and Point Z. For example, if 5 more objects
exist, write +5. If two fewer objects exist, write -2.

Answer:

(d) Indicate the change in the number of objects of type Nova that exist in memory and that occurs
during program execution between Point Z and Point W. For example, if 5 more objects
exist, write +5. If two fewer objects exist, write -2.

Answer:

(e) Indicate the change in the number of objects of type Nova that exist in memory and that occurs
during program execution between Point W and Point Q. For example, if 5 more objects
exist, write +5. If two fewer objects exist, write -2.

Answer:

Hint: Draw a picture!

Page 20 of 28	

Question 12. (7 marks). Constructors and Stringstreams.

Consider the following declaration of a class that represents a time of day, in the file Time.h. You
may assume that this class is implemented correctly and is error-free.

#include <iostream>
using namespace std;

class Time {
 private:
 int hour, minute, second;

 public:
 Time (int h, int m, int s);

 int getHour() const;
 int getMinute() const;
 int getSecond() const;

 void setHour(int h);
 void setMinute(int m);
 void setSecond(int s);
};

We wish to be able to write the following code in the function main.
	

#include <Time.h” // This includes the above definition of Time
#include <string>
#include <sstream>

using namespace std;

int main () {
 string s;
 s = “13 5 10”; // hour is 13, minute is 5, second is 10
 // assume no errors in s
 Time now(s);

 return (0);
}

The above code requires that one member function be added to the class. Write this function in the
space below. Your answer should not exceed a few lines of code.

	
	
	
	

{

}

Write function
header here

Write function
body here

Page 21 of 28	

Question 13. (8 marks). Constructors and Destructor.

Consider the following definition/implementation of a class called Box that appears in the file:
Box.h. You can assume that the file has no compile-time errors.

#include <iostream>
using namespace std;

class Box {
 private:
 int ID;

 public:
 Box () {
 ID = 0;
 cout << "Constructor 1 " << ID << endl;
 }

 Box (int id) {
 ID = id;
 cout << "Constructor 2 " << ID << endl;
 }

 Box (const Box & s) {
 ID = s.ID;
 cout << "Constructor 3 " << ID << endl;
 }

 ~Box() { cout << "Destructor " << endl;}

 Box& operator=(Box & rhs) {
 cout << "Operator= " << ID << endl;
 ID = rhs.ID;
 return (*this);
 }

 int getID() const { return ID; }
 void setID(int id) { ID = id; }
};

Page 22 of 28	

The following is a main program that uses the above class. You should assume it compiles and runs
correctly.

#include <iostream>
using namespace std;

#include “Box.h”

int getID (Box & s) {s.setID(9); return s.getID();}
int getBoxID(Box s) {s.setID(3); return s.getID();}
void setID (Box s) {s.setID(7);}

Box square;

int main () {
 Box rectangle(5);
 Box cube[2];
 Box* hexagon[2];
 hexagon[0] = new Box(rectangle);
 hexagon[1] = hexagon[0];
 cube[0] = *hexagon[0];
 cube[1] = *hexagon[1];
 cout << getBoxID(cube[0]) << endl;
 cout << cube[0].getID() << endl;
 cout << getID(cube[0]) << endl;
 cout << cube[0].getID() << endl;
 setID(cube[1]);
 cout << cube[1].getID() << endl;

 return 0;
}

What is the output of the program? Select one of the answers from the table below. Do NOT circle
an answer in the table. Put your answer in the box below.

Write one of A, B, C, D, E, or F here:

Note: There is only one correct answer that receives the full mark. However, incorrect answers do
get part marks (some get more than others and some get none).

Page 23 of 28	

A

Constructor 2 5
Constructor 1 0
Constructor 1 0
Constructor 3 5
Operator= 0
Operator= 0
Constructor 3 5
3
Destructor
5
9
9
Constructor 3 5
Destructor
5
Destructor
Destructor
Destructor

D

Constructor 1 0
Constructor 2 5
Constructor 1 0
Constructor 1 0
Constructor 3 5
Operator= 0
Operator= 0
Constructor 3 5
3
Destructor
5
Constructor 3 5
9
Destructor
5
Constructor 3 5
Destructor
5
Destructor
Destructor
Destructor
Destructor

B

Constructor 1 0
Constructor 2 5
Constructor 1 0
Constructor 1 0
Constructor 3 5
Operator= 5
Operator= 0
Operator= 0
Constructor 3 5
3
Destructor
5
9
9
Constructor 3 5
Destructor
5
Destructor
Destructor
Destructor
Destructor

E

Constructor 1 0
Constructor 2 5
Constructor 1 0
Constructor 1 0
Constructor 3 5
Operator= 0
Operator= 0
3
3
9
9
Constructor 3 5
Destructor
5
Destructor
Destructor
Destructor
Destructor

Page 24 of 28	

C

Constructor 1 0
Constructor 2 5
Constructor 1 0
Constructor 1 0
Constructor 3 5
Operator= 0
Operator= 0
Constructor 3 5
3
Destructor
5
9
9
Constructor 3 5
Destructor
5
Destructor
Destructor
Destructor
Destructor

F

Constructor 2 5
Constructor 1 0
Constructor 1 0
Constructor 3 5
Operator= 0
Operator= 0
Constructor 3 5
3
Destructor
5
9
9
7
Destructor
Destructor
Destructor

Page 25 of 28	

Question 14. (9 marks). Operator Overloading.

The following class is used to create objects that represent ordinary fractions n/d, consisting of a
numerator n and a denominator d.

#include <iostream>
using namespace std;

class Fraction {
 private:
 int numerator;
 int denominator;

 public:
 Fraction(int num, int denm);
 int getNumerator();
 int getDenominator();
 void setNumerator(int num);
 void setDenominator(int denm);
 void print();
};

Fraction::Fraction(int num, int denm) {
 numerator = num;
 // Should check that denm is not 0, but ignore for now
 denominator = denm;
}

int Fraction::getNumerator() {
 return (numerator);
}

int Fraction::getDenominator() {
 return (denominator);
}

void Fraction::setNumerator(int num) {
 numerator = num;
}

void Fraction::setDenominator(int denm) {
 // Should check that denm is not 0, but ignore for now
 denominator = denm;
}

void Fraction::print() {
 cout << numerator << “/” << denominator << endl;
}

Page 26 of 28	

We wish to overload the “*” operator for the Fraction class to be able to write code like this in a
non-member function (say main):

 Fraction X(1,5);
 Fraction Y(4,6);
 :
 .. = X * Y; // The first multiply operation
 .. = X * 2; // The second multiply operation

For example, if X represents “1/5” and Y represents “4/6” then X * Y results in an object that
represents “4/30”, while X * 2 results in an object that represents “2/10”. That is, both the
numerator and denominator are multiplied by 2.

Write the implementation of the two overloaded operator functions as members of the class
Fraction. Clearly show the function header and its body.

(a) (6 marks). Overload the multiplication operator * as a member of the class Fraction to be
able to perform the first multiply operation (see comment above). Write your answer in the box
below. Be sure to indicate both the header and the body of the method. You need not worry
about using const modifiers.

	
	
	

	

{

}

Write function
header here

Write function
body here

Page 27 of 28	

(b) (3 marks). Overload the multiplication operator * as a member of the class Fraction to be
able to perform the second multiply operation (see comment above). Write your answer in the
box below. Be sure to indicate both the header and the body of the method. You need not worry
about using const modifiers.

	
	
	

{

}

Write function
header here

Write function
body here

Page 28 of 28	

This Page is Intentionally Left Blank – Use for Rough Work

