
ECE244 Programming Fundamentals Fall 2022

Introduction to Debugging

1 Introduction

Software virtually never works correctly the first time it is run, and the process of finding and fixing
bugs often takes much longer than actually writing the program. In fact, the debugging process can
be so lengthy and time-consuming that most processor manufacturers include significant hardware
features to help programmers by allowing them to pause the program and transfer control to
another program when certain conditions are met. Those features are typically used by a program
called a debugger, rather than by application programmers directly. Most bugs arise because the
programmer has reasoned incorrectly about the program’s state: the value of variables, registers,
and memory locations are not what the programmer thought they would be. Hence, the most
important needs of the programmer in trying to find bugs are to inspect and modify the program
state with as much detail as possible.

A debugger is a program with special privileges allowing it to start, stop, pause, inspect, and
even modify the state of other programs while they are running for the purpose of finding software
bugs. It is a fundamental tool for software development. One very popular example is the GNU
Debugger (GDB), which is free, open-source, and available for an extremely large variety of com-
puter platforms and OSes. While GDB itself is a command-line tool which takes some effort to
learn, NetBeans provides a graphical interface to it that is integrated within the IDE itself, making
the process much more intuitive. This introduction to debugging illustrates the most common uses
of the debugger within NetBeans.

For those wishing to know more about GDB and its command-line use there are many resources
available, for instance: type man gdb in most Linux/UNIX distributions; the GDB online manual1;
numerous online tutorials (just search with Google); or the online help interface within GDB (run
by typing gdb at the command prompt, then type help).

2 Preparation - Compile Flags

When the computer runs your program, it loads the machine code (sequence of bits and bytes)
into memory then starts reading and executing the instructions. All variable and function names
have at this point been translated by the compiler and linker into memory addresses storing the
variables and functions, which are simply numbers usually printed in hexadecimal - not easily
understandable. Running the debugger will allow you to view the values, but they will not hold
very much meaning for the programmer.

For this information to be useful, we would like to know what function and variable names
correspond to the binary values in memory and registers. For that, we need the compiler and linker
to produce a mapping called debug symbols. With debug symbols enabled, the debugger will be
able to specify where it is in terms of functions, source files, and line numbers which is much more
convenient. With the GCC compiler (as used by default in NetBeans), that option is -g. It will
be enabled by default when you build a Debug configuration (see the NetBeans tutorial for more
info). It is also enabled by default in the Makefiles provided with the labs.

1http://www.gnu.org/software/gdb/documentation/

Page 1 of 7

http://www.gnu.org/software/gdb/documentation/

3 Using the Debugger

3.1 Controlling Program Execution

One of the most fundamental functions of the debugger is to “pause” a program either at a specified
source line, or when a certain condition is true to let you inspect what is going on. The simplest
way to do this is through setting a breakpoint.

3.1.1 Breakpoints

A breakpoint is a designated source line where the program will pause each time it is reached.
When being debugged, the program will run up to (but not including) the line at the breakpoint.
When paused, you can inspect the program’s state, change the state (memory, registers), set other
breakpoints, etc. Virtually the only thing you cannot do is change the source code or compilation
options - those require you to end your debug session and recompile before they take effect. Once
done, you may continue. The software will run until it hits another breakpoint (or the same one
again).

Breakpoints can be set by clicking on the line numbers at the left of the source editor. You
do not need to recompile after changing breakpoints. When set, a red square appears. You can
clear it by clicking again. Any number of breakpoints can be set. When the program pauses at a
breakpoint, the current line about to be executed will be highlighted in green in the editor window.

Figure 1: Setting a breakpoint

Figure 2: The run-build toolbar, showing the buttons to start a debug session

1. Compile hello.cpp, ensuring that debugger symbols are enabled

2. Set a breakpoint on the line where “world” is printed (Fig 1).

Page 2 of 7

3. Run the program normally, noting that it runs just like before: the breakpoint does nothing
unless we start the debugger.

4. Now run with the debugger. Either click the button that shows a breakpoint with a green
triangle at lower right (Fig 2, or menu Debug → Debug Main Project.

5. Note that the program prints “Hello,” and stops. The source line is also highlighted in red.
The program execution has paused, waiting for your action. In this case, simply click continue
(green circle with inset arrow), or go to Debug → Continue. The program will print the rest
and finish.

You can also view a list of all breakpoints in all source files (useful for larger programs) in the
breakpoints pane (bottom of window, or menu Window → Debugging → Breakpoints).

Figure 3: The debugging toolbar

3.1.2 Stepping

Once paused, there are several ways you may step through your program, with the basic ones listed
below:

Continue Executes until the next breakpoint (including arriving at the current break-
point again) or watch is triggered

Step Into Executes only the first line in the called function then stops
Step Over Executes the next function call in its entirety, without stepping you through

the intermediate instructions
Step Out Runs to the end of the current function, then stops at the next line in the

calling function
Run to Cursor You may select a source line using the cursor in the editor, and the program

will run up to that point before pausing again

3.2 Inspecting Program State

3.3 The call stack

A stack is one of the most basic data structures in computing. As the name suggests, it can be
imagined as a stack of heavy objects where you can only lift one at a time - as a result, items must
be added or removed from the top. Placing an item on the stack is known as pushing, while removal

Page 3 of 7

is called popping. For instance, if items A, B, C were pushed onto the stack in order, then A would
be at the bottom and C at the top. If this stack were to be popped three times, the resulting items
would be C, B, A since it goes from the top down. This ordering is also called LIFO for Last In
First Out.

The call stack is a stack used by computers to keep track of what functions have been called,
their arguments, and where the current function should return to. Each time a function call is
made, the current instruction pointer (location within the code) is pushed onto the stack along
with the function arguments. The use of a stack is natural for this purpose, because the processor
needs to know where to go when it reaches the end of the function. With a stack, the most recent
value (the one we need to return to) is at the top. The stack is also used to create local storage,
but that is not important for this discussion.

When debugging a program, the call stack can be inspected by clicking the “Call Stack” pane
below the editor, or by using the menu entry Window → Debugging → Call Stack. Entries on
the call stack are displayed with the innermost (current) function at the top. The function that
called the current function is next, then the function that called it, on down to main(). You may
double-click on one of the entries to open the source file which defines the function. When doing
so, you can also see the values of variables in the Variables pane, or by hovering over any reference
to the variable in the source code.

1 #include <iostream>

2 #include <fstream>

3 #include <cmath>

4 using namespace std;

5

6 float f(float);

7 float g(float);

8

9 void readLinesFromFile(string filename,int nLines);

10

11 float f(float x)

12 {

13 return g(x-1) + 2*x;

14 }

15

16 float g(float y)

17 {

18 return y*y + 3;

19 }

20

21 int main(int argc,char **argv)

22 {

23 ifstream is;

24 string str;

25

26 coot << f(2) << endl;

27 cout << "f(2) = " << f(2) << endl;

28

29 return 0;

30 }

An example of inspecting the call stack for the program above is given in Fig 4, with the
program starting (as always) in main. To compute the value to be printed, main() has to call f(),
which in turn calls g(). So, initially the call stack will contain a return address from main() and
the values of the command-line arguments argc and argv. When it reaches the call to f(), the

Page 4 of 7

return address (next instruction within main()) will be pushed, along with the argument x (in this
case with value 2).

As you may be able to recognize from the figure, a breakpoint was set at the cout<< statement
in main(). The program was run and paused at the breakpoint. From there, single-stepping was
used to get into f() and then into g(). You can try this process yourself using the source code in
the folder fgx.

Figure 4: Inspecting the call stack

3.3.1 Exercises

1. Load fgx.cpp and set a breakpoint in main() on the line where f(2) is called. Run the
program and inspect the call stack when the program pauses at the breakpoint. Now run
Step Into several times to see how the call stack changes as the function calls are carried
out.

2. Load factorial.cpp, which calculates the factorial function recursively. Set a break at the

Page 5 of 7

call to factorial and step in to watch how the call stack changes. You can also inspect the
return value in f n minus one. Run a few times and try using the step out and step over
functions as well to see how they differ.

3.4 Local variables

The debugger also allows you to inspect the value of local variables. If you click on the “variables”
tab below the source editor (if it’s missing, go to the menu Window → Debugging → Variables),
you will be able to see the values of all local variables when the program is stopped.

3.5 Watches

Watches are the NetBeans name for the what GDB does when given the display command. It
is a set of variables or expressions that are displayed in a window when execution is stopped. For
instance, if the values of variables x and y are of interest, we can view them in the Variables pane.
If, however, it is some function of them (for instance x+2*y) that we want to view, a Watch can
be established to print out that expression every time the program is stopped. You can also use
pointer arithmetic, such as dereference (* operator) or take-address (& operator) in the expressions.

3.6 Exception handling

Sometimes due to a bug your program will terminate early with a serious error called an exception,
often printing an error message to the terminal. By definition, an exception condition is exceptional
- a properly-written program should never terminate this way. You should always check for (or
prevent) errors, catch them, and handle them properly.

3.6.1 Common Exceptions

Some of the more common exceptions that you should watch out for are:

• Dividing by zero, or other invalid arithmetic operations

• Reading or writing past the end of an array
int x[100];

x[100] = 1; // oops! (remember x[100] runs from x[0] to x[99])

• Reading or writing memory that does not belong to the program, for instance with an unini-
tialized pointer or reading past the end of a block of memory
int *p; // uninitialized pointer

p=2; // what does p point to?

• Trying to read something into a buffer that is too small
char dst[10];

strcpy(dst,very long string); // copying a string that is too large

gets(dst,f); // reads a line from file - length unknown (hopefully less than 10!)

• Trying to execute an invalid instruction (eg. if the call stack gets overwritten and an invalid
return address is used leading to invalid instructions being issued)

Page 6 of 7

• Running out of stack space (often if a program uses too much recursion, or is stuck in an
infinite loop)
void f()

{
f(); // just keeps calling itself infinitely...

}

The debugger can be extremely useful in locating such errors, because when the debugger is
running and a program exits due to an exception it pauses at that point (just like a breakpoint) and
provides information about the exception. You can then use the debugger to inspect the program
state and determine why the exception occurred. First and most trivially, it shows you the source
line where the error occurred which is sometimes sufficient. Next, there are other tricks you can
try:

• Check the values of local variables - are they what you expect?

• Examine the call stack and arguments - how did we get here? Do the arguments make sense?

• Look in memory, make sure the contents of your data structures are valid

Some of the more common exceptions are listed below, with tips on how to fix them.

3.6.2 Segmentation fault

For security reasons, modern processors and operating systems only allow programs to read and
write to their own areas (segments) of memory, as allocated by the OS (your program can request
more using new, or malloc in C). A segmentation fault is raised when the program tries to access
memory other than what it is permitted to. The most common cause of a segmentation fault is
trying to write or read an invalid address - usually through a pointer that is either uninitialized
(contains random values), NULL, incorrectly allocated/freed, or by accessing past the end of an
array2. There is an excellent free and open-source tool called Valgrind (info here3) that helps
diagnose invalid new/delete and read/write problems. It is installed on ECF machines if you want
to try it.

The example file segfault.cpp and its associated project illustrate use of the debugger to trace
a segmentation fault.

3.6.3 Divide by zero

As the name implies, division by zero is an illegal operation, causing a floating point exception
that will halt your program. If a divide-by-zero occurs in your program, you should check whether
zero is within your expected range for the divisor (generally it should not be since divide-by-zero is
not physically meaningful). If so, it will be necessary to treat it as a special case. Otherwise, you
should check why you are getting a value outside the expected range using the techniques outlined
above.

2Check zero-based vs. one-based indexing: remember that int x[100] is 100 elements and runs from x[0] to x[99]
3www.valgrind.org

Page 7 of 7

http://www.valgrind.org

	Introduction
	Preparation - Compile Flags
	Using the Debugger
	Controlling Program Execution
	Breakpoints
	Stepping

	Inspecting Program State
	The call stack
	Exercises

	Local variables
	Watches
	Exception handling
	Common Exceptions
	Segmentation fault
	Divide by zero

