
Operating Systems Final ECE344, Winter 2021

Duration: 3 hours

Examiner: D. Yuan

Instructions
Examination Aids: This is an open book exam.

All questions have been provided in this exam booklet. You need to provide your answers in
Quercus. Copy the answers of all sub-questions into the text box of each question.

If any of the questions appear unclear or ambiguous to you, then make any assumptions you
need, state them and answer the question that way. If you believe there is an error, state what
the error is, fix it, and respond as if fixed.

Please be brief and specific as possible. Clear, concise answers will be given higher marks than
vague, wordy answers. Marks will be deducted for incorrect statements in an answer.

The questions are not necessarily ordered by the difficulty.

All the names in this exam are made-up -- don't read too much into them.

Work independently.

MARKING GUIDE
Q1: 9
Q2: 13
Q3: 7
Q4: 5
Q5: 34
TOTAL: (68)

Question 1 (9 marks): Memory Management (I)
When you clean up your room, you found a laptop from more than 10 years ago. You
want to make it useful and install the latest TensorFlood on it. However, TensorFlood
won’t run on it. You try to understand why and perhaps solve the problem. Here are
some specs on this laptop:

Operating system: Doors 7 32-bit with full virtual memory support and the page size of
4KB
CPU: Intal Kore 7 x344: it has a 32-bit processor with hardware-managed TLB
Physical Memory (RAM): 2 GB
Hard drive: 128GB

 Answer the following questions:
a. (1 mark) How large is the virtual address space in Bytes of your laptop?

2^32 = 4GB
Marking: binary

b. (1 mark) What’s the number of bits of the Virtual Page Number of your laptop?

20
Marking: binary

According to TensorFlood’s website, it requires at least 5GB of RAM to run. Your
roommate Dijkstra thinks that it’s the reason why it won’t run and suggested you
upgrade the RAM to 6GB.

c. (1 mark) Do you think upgrading the RAM will work? Why?

No. B/c a single process cannot use more than 4GB of memory (limited by the size of
address space, 4GB).
Marking: binary.

d. (1 mark) However, you found that an alternative to TensorFlood, Matlad, which
requires 3GB of memory, can run on your laptop without any problem, even with only
2GB of RAM. Why?

Because the VM subsystem can swap data back-and-forth between memory and disk.
Marking: binary. -.5 for mistakes made on top of the right answer.

When you browse Heapoverflow, some people suggest that enlarging the page size will
allow your laptop to support larger memory. And you found that your laptop's hardware
and OS allows you to change the size of page size to 2MB. Dijkstra thinks that by
changing the page size to 2MB will allow you to run TensorFlood.

e. (2 mark) Do you think it’s true? Why?
No. still limited by the 4GB address space size limit.
Marking: binary, -.5 for each mistake.

f. (3 marks) What other benefits will the larger page size bring?

+ Larger TLB reach -> less TLB misses
+ Less page faults
+ Smaller page tables

Marking: 1 mark each correct answer, -.5 each wrong answer.

Question 2 (13 marks): Memory Management (II)

You need to port the virtual memory system for 344OS to a new
architecture. The processor has a 16-bit virtual address space. A two-level
page table is used, with 16 entries in the page directory (first-level) and 64
entries in the second-level page table. Each page table is page aligned,
i.e., its beginning address is at the start of a page. Each page table entry
is two bytes wide and has the following format

 1 bit 1 bit 1 bit 1 bit 12 bits
Valid (V) Readable (R) Writeable (W) Executable (X) Frame number

Note that for both levels of page tables, the last 12 bits of the page table
entry are the page frame (i.e., physical page) number instead of being
the complete physical address.

For page directories, the R, W, and X bits are unused and should be set to
zero. For second-level page tables, the R bit indicates whether the page
can be read by the thread; the W bit indicates whether the page can be
written by the thread; and the X bit indicates whether the page can be
used to fetch instructions for execution.

A partial listing of the machine’s physical memory is shown below. (For
convenience we are showing the contents of memory four bytes at a time.
For example, the value at the physical address 0x01 in memory is 0xf7.)

0x00 6b f7 30 7b 0xa0 8a be 9b 09 0x140 7c a7 00 80

0x04 da 0b 6a ff 0xa4 53 f0 13 31 0x144 e6 30 d2 71

0x08 9f 07 7a 8e 0xa8 b4 38 60 85 0x148 0f 1e 21 9e
0x0c 42 47 b8 2e 0xac e3 8e 2b 36 0x14c f1 98 97 6e
0x10 c6 17 d2 41 0xb0 34 bc e0 07 0x150 c0 12 d0 04

0x14 50 11 f0 00 0xb4 0b 3f 30 1a 0x154 11 81 d0 72
0x18 b6 ff f2 4c 0xb8 16 31 61 7c 0x158 96 7b d6 5b
0x1c f3 ce a4 28 0xbc 38 ab 42 06 0x15c e3 bb ef e6

0x20 c0 5a 18 25 0xc0 64 0f aa ac 0x160 0b a1 c6 d4
0x24 95 95 b9 be 0xc4 72 d2 07 b6 0x164 c7 1a a3 ca

0x28 0b c2 01 f1 0xc8 cc 12 c2 50 0x168 6b f7 30 7b

0x2c c9 f7 f8 88 0xcc 05 ca 78 2b 0x16c ad 6c 01 22
0x30 44 16 6e 48 0xd0 02 ce 70 3e 0x170 5b fd ab 63
0x34 3a d1 2b ca 0xd4 d0 df 45 e6 0x174 b0 d7 14 06
0x38 2d 15 31 1a 0xd8 6b d5 1f 4c 0x178 93 12 4c 1f

0x3c 72 be bc b4 0xdc 00 a7 80 02 0x17c 8b 42 47 f3

0x40 f2 bc 4e 89 0xe0 80 03 00 41 0x180 ac 3e e7 89

0x44 58 19 a0 2d 0xe4 00 16 80 06 0x184 78 49 5d ba

0x48 7f f2 ab 03 0xe8 00 03 80 00 0x188 34 43 4d 8e

0x4c 1a 01 d2 e1 0xec 80 05 00 09 0x18c c8 96 d8 40

0x50 84 01 4b 80 0xf0 89 2d c6 d5 0x190 56 78 69 ea

0x54 19 ba 67 3f 0xf4 b2 d3 53 58 0x194 90 37 16 89

0x58 78 82 75 95 0xf8 8a be 9b 09 0x198 f2 89 34 f1

0x5c 84 52 00 08 0xfc e1 7a d9 12 0x19c 19 e4 26 16

0x60 30 b5 17 dd 0x100 22 9c 18 67 0x1a0 17 90 91 a0

0x64 f2 ba 51 0a 0x104 b5 37 23 8f 0x1a4 1d ad 95 de

0x68 bc 04 ed 19 0x108 b6 94 c6 d8 0x1a8 af 87 3d d7

0x6c 57 84 dd 3f 0x10c cc f7 3f e8 0x1ac fe 42 dd 41

0x70 5a 2a 3d 4e 0x110 13 ef 40 4e 0x1b0 52 d2 0b 3a

0x74 b9 a7 89 d8 0x114 f4 a1 2c 6a 0x1b4 44 06 28 55

0x78 6c d2 d8 65 0x118 ed 6e 6e 5c 0x1b8 31 f3 b4 ee

0x7c 3a b3 87 81 0x11c ce a2 8b 8f 0x1bc 31 56 3d 23

0x80 00 10 00 00 0x120 58 ae fe b5 0x1c0 8c d1 19 c6

0x84 00 03 80 08 0x124 1f a3 0d 82 0x1c4 fa 69 8b 2f

0x88 80 f4 80 cc 0x128 1a af 41 78 0x1c8 75 16 cb f7

0x8c 00 a7 80 0a 0x12c e5 9e cb 97 0x1cc 32 5a 6d 2c

0x90 80 04 00 41 0x130 fd cd ee f6 0x1d0 73 23 20 04

0x94 00 03 80 00 0x134 1d e0 0e 18 0x1d4 02 55 bb 8d

0x98 80 07 00 09 0x138 da 4c 36 a2 0x1d8 62 ee 09 20

0x9c 00 03 80 0c 0x13c 49 0c 20 9d 0x1dc 62 db d1 5c

The 2 bytes of each page table entry are stored in memory in big endian
order, i.e., the lower address stores the higher-order byte. For example,
the first page table entry at the address 0x88, which has content 0x80f4,
has the following page table entry:

Valid Readable Writeable Executable Frame number

1 0 0 0 0x0f4

a. (2 mark) What is the size of each page in bytes?

 2^6 = 64 bytes

b. (2 mark) What is the maximum size of the physical memory it can address in
bytes?

 12 bits of frame number + 6 bits of offset = 18 bits
2^18 = 256KB

6 bits

- Page table
- First level - 16 entries - 4 bits
- Second Level - 64 entries - 6 bits

- 16 - 4 - 6 = 6 bits of offset

c. (3 mark) Assume that the current process's page directory starts at physical
address 0x80. List the entries of the page directory here.

Index Valid Page Frame Number

0 0 0x010
1 0 000
2 0 003
3 1 008
4 1 0f4
5 1 0cc
6 0 0a7
7 1 00a
8 1 004
9 0 041
10 0 003
11 1 000
12 1 007
13 0 009
14 0 003
15 1 00c

Marking: -.5 each mistake?

d. (6 mark) Translate each of the following virtual addresses from the current
process as in (c) into a physical address (not page frame number). The
V/R/W/X bits below are the permission bits on the target physical page, not
the 0s in the page directory.

Virtual
address

Primary page
table entry value

Secondary page
table entry value V? R? W? X? Physical

address

0x808d 0x8004 0xb537 1 0 1 1 0x14dcd

0x2142 0x0003 N/A - - - -

0xc112 0x8007 7516 0 1 1 1 N/A

1 mark for primary page table entry
1 mark for secondary + bits + phy (all or nothing)
 Primary page table must be correct to get 0

Question 3 (7 marks): OS161
In OS161, there is a function md_forkentry() which you needed to implement in lab 3.
What is the purpose of this function? List all the writes to the trapframe that you made
in this function, and describe the purpose of each.

Answer: purpose of the function: kernel entry function for the newly created child
process after fork. It needs to perform preparation work before start executing the
child's userspace code, including (1) copy & activate the address space, (2)
setup the trapframe, and (3) context switch to user mode.

Writes to trapframe:

● set tf_v0 to 0: this is the return value of fork(), indicating it's the child
● tf_a3=0: indicating there is no error
● tf_eps += 4: point to the next instruction after the syscall

(Note there is slide online explaining this:
https://cs.gmu.edu/~yuecheng/teaching/cs471_fall19/_static/lecs/lec-os161-sysc
all.pdf)

Question 4 (5 marks): Scheduling
Most of the OS schedulers prioritize interactive jobs. How can the OS tell if a process is
interactive?

Answer: Interactive = frequent I/O. If the process blocks frequently, not using up its time
slice, and spends much more time waiting for I/O than using CPU, it's a sign of an
interactive process.

5: mention io/blocking/input and time slice/quantum
4: mentioned only 1 of the abov
1: left blank
Subtract 1 mark if they say something wrong

Question 5 (34 marks): File System and its Synchronization

In this question, we consider the problems you'll encounter when implementing a real
file system. In addition to the inode, file, and directory data structures, the file system
also needs the following:

● A super block that contains the metadata of the file system
● An inode map, or imap for short, which maps an inode number to the block

number of the inode
● An inode bitmap, which uses 1 bit for each inode number to indicate whether that

inode free or in-use
● A free block bitmap, which uses 1 bit for each block to indicate whether the block

is free or in-use

The layout of the disk is as following:

Super block
(1 block)

imap (a number
of blocks)

inode bitmap (a
number of
blocks)

free block bitmap
(a number of
blocks)

blocks for
inodes,
directories,
and files

Consider the following file system configurations:

● Block size is B Bytes
● The block number is 32-bit long.
● An inode number is also 32-bit long.
● This HDD has N available blocks in total
● Each inode occupies one block. The inode structure is the same as taught in the

lecture: it has 15 block pointers, among them 12 are direct block pointers, then
single, double, and triple indirect.

● Each directory entry is of D Bytes in size
● For each directory, it will have at least two entries: “.” and “..”

Unless otherwise specified, assume the file system is a regular Unix file system instead
of being log-structured.

Answer the following questions:

a. (1 marks) How many blocks should you allocate for the inode map and inode
bitmap? Explain your answer.
Answer: Since each file needs an inode block, so the most number of files is N/2.
Hence there are at most N/2 inodes.

of blocks for inode map: N/2 x 8B (4B inode # + 4B block #) = 4N/B blocks

of blocks for inode bitmap: N/2 x 1/8 x 1/B = N/(16B) blocks.
(This is an approximation, as some of the blocks are further allocated by super
blocks, imap, etc.)

Marking: 2 concepts:

● The # of inodes is limited by the number of addressable blocks: min(# of
blocks, 2^32)

● Half of the blocks need to be allocated for inodes
So 0.5 marks each.

b. (1 marks) How many blocks should you allocate for the free block bitmap?
Answer: N/(8B)
(I also gave them full marks if they answer 2^32/8B, which means they assume
the total # of blocks is 2^32.)

c. (1 marks) Is there a limit on the total number of files (here assume a directory is
also a file), measured in the number of blocks, in this file system on this HDD? If
so, what is it? If not, why?

Yes. It's limited by the # of blocks.
(N - a's answer - b's answer - 1 (super block) - freeblockbitmap)/2
We divide by 2 b/c there is 1 inode for each file/dir.
Shawn: unless they assume that an empty file requires only a single inode (i.e. no data
blocks)
0.5 marks for correctly realizing that it's constrained by the # of blocks
0.5 marks for identifying that inodes need half of the blocks.

d. (1 marks) Is there a limit on the maximum size of a single file in this file system?
If so, what is it? If not, why?

Yes. Limited by the inode's index:
(12 (direct) + B/4 (single indirect) + B/4 x B/4 (double indirect) + (B/4)^3) x B bytes

Marking: 0.5 on realizing that it's limited by the inode index. 0.5 for the rest part of the
math.

e. (1 marks) Is there a limit to the total number of files in a single directory in this file
system, other than the limit in part c (i.e. assume there is no limit in part c)? If so,
what is it? If not, why?

Yes. d/D.
Binary: as long as they realize it's limited by D.
0.5 for mentioning its limited by D, and 0.5 for the formula

f. (2 marks for each subquestion) Assume this file system already has the following
files and directories (and there are no other files/directories):

a. /ece/344/cheat_sheet Occupies 1 block
b. /covid/stay_home Occupies 2 blocks

Recall that you may want to update the following in a file system operation:

● Free block bitmap
● Inode map (one entry each time)
● Inode bitmap
● Inode (one field each time)
● Directory (one directory entry each time)
● Data block

You can assume that each update to the above is atomic (i.e. it’s either done completely
or as if it has not happened at all).

You also need to consider crash consistency. The system can crash at any given time,
and after you reboot, your file system can be in an inconsistent state. For example, if
the system crashes when you're creating a file "/a/b", your file system is inconsistent if,
after the reboot, you see there is an entry named "b" in the directory "/a", but it points to
an invalid inode or a file block that has not been allocated. Specifically, you could get
the following possible errors:

A. Data block leak (data block is lost for any future use; occurs when
the block is no longer used, but the free block bitmap still marks it
as in use)

B. Inode leak (inode is lost for any future use; occurs when the inode
is not used, but the inode bitmap still marks it as in use)

C. Inconsistent inode metadata (Some inode field does not match
what is stored in data blocks)

D. Data corruption (file system data corrupted, including the above
example that /a/b pointing to an unallocated file)

Assume that the only metadata store in the inode is (1) the size of the file, and (2) the
last-modification-time of the file.

For each of the following operations, first list all the items that are needed to be updated
in order, as well as which file/directory it belongs to; then indicate all the possible errors
that may occur if a crash happens during the operation. If none, write so. For updates to
the inode, specify which fields are updated; if there are multiple fields that are updated,
separate them as separate updates. Carefully think about the order of operations, since
the errors that could occur depend on the order.

E.g. Modify data of file /covid/stay-home

Need to update:
(1) Data block of stay-home
(2) Inode of stay-home (for updating last modified time)

Errors may occur:
C. (last modified time not updated if a crash happens between the two
operations)

I. Append 1 byte to file /ece/344/cheat-sheet (no extra block needs to be

allocated)

● Data block of cheat-sheet
● inode of cheat-sheet (last mod time & size)

Errors may occur: C

Marking: 1 for blocks updated and 1 for errors. -.5 for each mistake.
For blocks updates: 1 mark for all correct (don't care about bitmap).
0.5 for getting at least half of the steps correct
0 for the other.

II. Append 1 block of data to file /covid/stay-home
● Free block bitmap
● New data block
● inode of stay-home (block ptr)
● inode of stay-home (size & last mod time)

Errors: A, C

III. Delete file /covid/stay_home

● /covid directory
● inode of /covid (size)
● inode of /covid (last-mode time)
● free block bitmap
● inode bitmap (mark the inode for stay-home as free)

Error C, A, B

IV. Create an empty file with the name hacking under /covid/

● inode bitmap
● free block map
● inode map
● /covid dir
● inode of covid dir (size & last mod time)

Error: ABC

V. Create an empty directory os161 under /ece/344/

● inode bitmap
● free block map (2 blocks)
● Inode map
● Inode of os161
● Dirent of /ece/344
● Inode of /ece/344 (last modified)

Error: ABC

VI. Rename directory /covid/ to /my-life/

● Dirent of /
● Inode of / (last modified)

Error: C

Marking: I accept the answer if they called the directory entry as “the inode of
/” or “the data block of /” or “the directory listing of /” or “databloc in root”

g.(1 mark each subquestion) Now assume this file system is log structured. For the
same operations, list the data structures that need to be updated other than the ones
you already listed above. You don't need to consider the order or crash consistency
issues.

VII. Append 1 byte to file /ece/344/cheat-sheet (no extra block needs to be
allocated)

inode and data block of cheat-sheet will be relocated to the end of log.

● inode map (change the block address of the inode of cheat-sheet)
● inode's block address pointer (since the data block is now relocated)
● freeblock bitmap

inode map worths 0.5, and inode's block addr ptr worths another 0.5

VIII. Append 1 block of data to file /covid/stay-home

● inode map (since we need to relocate the inode of stay-home)
● freeblock bitmap
●

inode map worths 0.5, any additional mistakes further -.5

IX. Delete file /covid/stay_home

● inode map (since we need to relocate the inode of covid)
● freeblock bitmap

X. Create an empty file with the name hacking under /covid/

● inode map (since we relocate the inode of /covid)
● freeblock bitmap
●

XI. Create an empty directory os161 under /ece/344/

● inode map (relocate the inode of 344), note that inode map already
needed to be modified in Q5f(V), so students may answer nothing to
change

● freeblock bitmap
●

XII. Rename directory /covid/ to /my-life/

● inode map (since we relocated the inode of /)
● freeblock bitmap
●

h. (2 marks) Now we consider data races on the file system. You notice that if multiple
processes are accessing the bitmap (both inode and free data block) at the same time,
a race condition may occur. Which file system error (or errors) given in part f may occur
if such race condition happens? Explain.

ABCD (we decided to give all students 2 marks on this question)

(C is acceptable if explained reasonably)

Marking: full marks for all correct answers;
1 for identifying (1) D or (2) D and C;
0 for not identifying D at all.

i. (3 marks each subquestion) You are working on a solution to the problem above. You
already know that lock could solve this problem. However, you learnt that locks could be
slow. You noticed someone mentioned “lockless programming” on Heapoverflow. You
decide to try it out. You found that x344 architecture provides the following atomic
instructions (uint32_t is 32-bit unsigned integer):
● uint32_t atomic_and_fetch(uint32_t *ptr, uint32_t val)

● uint32_t atomic_or_fetch(uint32_t *ptr, uint32_t val)

In particular, atomic_and_fetch does the following atomically (note: it’s an instruction.
The code below just shows its semantics.)
uint32_t atomic_and_fetch(uint32_t *ptr, uint32_t val){

 *ptr = *ptr & val;

 return *ptr;

}

atomic_or_fetch has a similar semantic, except it performs the “|” operation instead of
"&".

Another version of these is also available:
● uint32_t atomic_fetch_and(uint32_t *ptr, uint32_t val)
● uint32_t atomic_fetch_or(uint32_t *ptr, uint32_t val)

In particular, atomic_fetch_and has the following semantic:
uint32_t atomic_fetch_and(uint32_t *ptr, uint32_t val){

 uint32_t ret = *ptr;

 *ptr = *ptr & val;

 return ret;

}

Can you write C code for the following operations using the above atomic
instructions such that they fix the data races (properly synchronized), without using
any other synchronization primitives? Assume the inputs of the functions are all valid
(i.e. pointers are valid, location is within the boundary, etc.) The argument bitmap is
always pointing to the beginning of the bitmap.

And assume the machine is 32-bit.

I. void set_at(uint32_t * bitmap, uint32_t n) //set the n-th bit to
1, regardless of its previous value

uint32_t step = n >> 5;

uint32_t pattern = 1 << (n & 31); // n & 31 is equivalent to n%32

atomic_fetch_or(bitmap + step, pattern);

Marking: 3 steps, 1 mark each

● Locate the correct word
● Construct the correct bit pattern
● Use the correct atomic operation

Students are most likely to get the last step correct. (except III)

II. void unset_at(uint32_t * bitmap, uint32_t n) //unset the n-th
bit. I.e. change it to 0, regardless of its previous value

uint32_t step = n >> 5;

uint32_t pattern = ~(1 << (n & 31));

atomic_fetch_and(bitmap + step, pattern);

III. uint32_t allocate_one(uint32_t * bitmap) //find the first 0 bit,
change it to 1, and return the location of this bit.

int n = 0;

uint32_t step = n >> 5;

unit32_t pattern = 1 << (n & 31);

while (atomic_fetch_or(bitmap + step, pattern)) {
 n++;
 step = n >> 5;

 pattern = 1 << (n & 31);

}

Must use atomic_fetch_or

Careful about the difference of “fetch_or” and “or_fetch”

	Operating Systems Final ECE344, Winter 2021
	Duration: 3 hours
	Examiner: D. Yuan
	Instructions
	MARKING GUIDE

