UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE AND ENGINEERING

Midterm EXAMINATION , February, 2015
Third Year — Materials
ECE344H1 - Operating Systems
Calculator Type: 2
Exam Type: A
Examiner — D. Yuan

Please Read All Questions Carefully! Please keep your answers as concise as possible.
You do not need to fill the whole space provided for answers.

There are 15 total numbered pages, 8 Questions.
You have 2 hours. Budget your time carefully!

Please put your FULL NAME, UTORIid, Student ID on THIS page only.

Name:

UTORId:

Student ID:

Page 1 of 15

Grading Page

Total Marks Marks Received

Question 1 22
Question 2 6
Question 3 6
Question 4 19
Question 5 10
Question 6 9
Question 7 28

Total 100

Page 2 of 15

Question 1 (22 marks, 2 marks each): True or False (No explanations needed)

(a) Application programmers use library functions (e.g., printf()) more often than system calls
(e.g., write()) because the former is faster than the latter.
_True X False

(b) One cannot implement an OS without the hardware support of user/kernel mode.
_True X False

(c) Spinlock (i.e., busy waiting) is always less efficient than a blocking wait operation
_True X False

(d) User-level thread should be used when every thread frequently performs 1/0O operation
_True X False

(e) On a machine with a single core CPU, there can be only one process that is in RUNNING
state.
X True LIFalse

For each of the following instructions/operations, answer whether it is a protected instruction.
(f) load (to load the content stored at an address into a register)
_Protected instruction X Not a protected instruction

(g9) Modifying the values of stack pointer registers
_Protected instruction X Not a protected instruction

(h) Modifying the value of PC (i.e., program counter)
_Protected instruction X Not a protected instruction

(i) Modify the CPU register that controls whether the CPU executes in user-mode or
kernel-mode.

X Protected instruction [INot a protected instruction

(j) test-and-set
_Protected instruction X Not a protected instruction

(k) splhigh() in OS161
X Protected instruction [INot a protected instruction

Page 3 of 15

Question 2 (6 marks) When a divide-by-zero instruction is executed by a process, it crashes.
Describe the important steps that take place from the execution of divide-by-zero instruction
to the crash of the process.

Answer:

1. CPU detects the divide-by-zero fault

2. CPU saves all the states (e.g., register values), switches to kernel mode and executes the
handler function for this fault

3. The handler function (part of the OS kernel) checks the fault, finds out that the user process
does not register a handler for this fault

4. Therefore the handler function sends a signal to the user process to have it killed.

Question 3 (6 marks) Here is the implementation of the ‘open (path, flags, mode)’ system
call in FreeBSD:

open: , FreeBSD convention:
; parameters via stacks.
push dword mode
push dword flags
push dword path
mov eax, 5
push dword eax ,; syscall number
int 80h
add esp, byte 16

(a)(3 marks) Who executes this code snippet? User-level processes or OS kernel?
Answer: user-level process will call open.

(b)(3 marks) What is the purpose of “add esp, byte 16” at the last line?
Answer: It is to rewind the stack to delete the “mode, flags, paths, and 5 (syscall number)”.

Page 4 of 15

Question 4 (19 marks) Consider the following code snippet:

// program 1
for (i = 0; fork(); 1i++) {
if (i == 4) { break; }
printf ("PID: %d, 1 = %d\n", getpid(), 1):

Assume that initially the process ID executing this code is 2394, and the PID always
increases sequentially by 1. For example, the first time this process calls fork() the PID of the
child is 2395. You can also assume no other processes in the system are calling fork() after
this program starts to execute.

(a)(4 marks) What are the possible outputs of this program?

PID: 2394,i=0
PID: 2394, i=1
PID: 2394,i=2
PID: 2394, i=3

This is the only possible output it can have.
(b)(3 marks) During the entire lifespan of this program, how many times is “fork()” being

called?
Answer: fork() is called 5 times.

Now consider this code snippet:
// program 2
for (i = 0; i<4; i++) {
if (fork()) { break; }
printf ("PID: %d, 1 = %d\n", getpid(), 1):

Under the same assumption as above, answer the following questions.

(c)(4 marks) What are the possible outputs of this program?

PID: 2395,i=0
PID: 2396, i =1
PID: 2397,i=2
PID: 2398,i=3

Page 5 of 15

This is the only possible output.

(d)(3 marks) During the entire lifespan of this program, how many times is “fork()” being
called?
Answer: 4 times.

(e)(5 marks) If you run these two programs from a command line shell (e.g., bash), you will
notice one difference: when running program 1, your shell’s next prompt will always appear
after the last output line of the program, while for program 2 the next prompt may appear in
the middle of the outputs of your program. For example, the output can be like:

user@machine$./program?2.out user@machine$./programl.out
PID: XXX, i = XXX PID: XXX, i = XXX
user@machine$ PID: XXX, 1 = XXX

PID: XXX, 1 = XXX

user@machines$

Why?

Answer: This is because the shell only waits for the first process it creates (i.e., process with
PID = 2394 in this case) to finish. In program 1, all the output lines are from process 2394,
therefore the bash only prints the prompt after the last line of output is printed. In program 2,
however, all the 4 lines of output are from the children of process 2394. Since the shell only
waits for the termination of 2394, and 2394 does not waits for its children to terminate,
therefore the shell can print the next prompt before the other children processes.

Page 6 of 15

Question 5 (10 marks) Consider the thread_fork() function in OS161:

/* Make a new thread, which will start executing at "func". The
* "data" arguments (one pointer, one integer) are passed to the
* function. */

int thread fork(const char *name,

void *datal, unsigned long dataZz,
void (*func) (void *, unsigned long),
struct thread **ret);

Now consider the following code:
void func () {

int 1i;

for (i = 0; 1 < 10; i++)

thread fork(“test”, (void *) &i, 0, thread func, NULL);

}
void thread func(void *ptr, unsigned long dummy) {

int id = *((int *)ptr);

kprintf (“id = %d\n”, id);

(a)(5 marks) If we define the correctness criteria for this program is that it should output 10
lines, each prints a unique integer value between [0, 9], is this program correct? Why?

Answer: Not correct, because the parameter passed in to “thread_func” is an address of a
local variable in func. By the time thread_func gets executed, the content of this memory,
which is “iI” in func(), might have been modified since the time a thread_fork was called. We
can end up with output like:

(b)(5 marks) If we change the code to the following:
void func () {

int 1i;

for (i = 0; 1 < 10; i++)

thread fork(“test”, NULL, (unsigned long) i, thread func, NULL);

}
void thread func(void *ptr, unsigned long 1) {

int id = (int) i;

Page 7 of 15

kprintf (“id = %d\n”, id);

Is this program correct? Why?

Answer: Yes, this version of the program works correctly. This is because now “i” is passed in
by value, where another copy of the value i is created and passed into thread_func.

Question 6 (9 marks) Locks should be used to protect the critical regions like the following:

acquire (lock);
Critical region...
release (lock);

For each of the lock implementations below, choose one or more correct choices from the
following (no explanations needed):

A. It works on single-core machines because it disables context switches within
critical region

B. It works on single-core machines even when there are context switches within
critical region

C. It does not work on single core CPU

D. It does not work on multi-core CPU

(a)(3 marks) Lock implementation 1:
int lock;

void acquire (lock) {
while (lock);
lock = 1;

}

void release (lock) {

lock = 0;

Page 8 of 15

Answer: C, D.

(b)(3 marks) Lock implementation 2:
int lock;

void acquire (lock) {
while (test-and-set(&lock));
}
void release (lock) {
lock = 0;
}

Answer: B

(c)(3 marks) Lock implementation 3:

void acquire (lock) {
disable interrupts;

}

void release (lock) {

enable interrupts;

Answer: A, D.

Question 7 (28 marks) Consider the reader/writer problem we discussed in the lecture,
where multiple threads are executing reader and writer functions to read/write the shared
object. Recall that the correctness criteria is that there can be multiple readers at the same
time, but only one writer.

Consider the code snippet below:

// number of readers
int readcount = 0;

Page 9 of 15

// mutual exclusion to readcount
Semaphore mutex = 1;

// exclusive writer or reader
Semaphore w or r = 1;

writer {
P(w_or_r); // lock out readers
Write;
V(w_or_r); // up for grabs

reader {
P (mutex) ; // lock readcount
readcount += 1; // one more reader
if (readcount == 1) {
V (mutex) ; // unlock readcount

P(w_or_r); // synch w/ writers

}

Read;
P (mutex) ; // lock readcount
readcount -= 1; // one less reader

if (readcount == 0)
V(w_or_r); // up for grabs
V (mutex) ; // unlock readcount}

(a)(5 marks) Does it work? Why? If it doesn’t work, fix the bug.

Answer: No it doesn’t work.
Reason: there could the following context switch:

reader 1 {
P (mutex) ; // lock readcount
readcount += 1; // one more reader
if (readcount == 1) {
V (mutex) ; // unlock readcount
— context switch to another reader

reader 2 {
P (mutex) ;
readcount += 1;

Page 10 of 15

if (readcount == 1) {
// readcount == 2
}
Read;
— context switch to a writer

Now the writer can proceed to write because w_or_r is still open. This violates the correctness
semantic.

Another problematic situation:

reader {

P (mutex) ; // lock readcount
readcount += 1; // one more reader

if (readcount == 1) {
V (mutex) ; // unlock readcount
P(w or r); // synch w/ writers
}
Read;

— context switch to another reader

reader 2 {
P (mutex) ;
readcount += 1;
if (readcount == 1) {
// skip, since readcount == 2
}
Read;
P(mutex) « now, 1it’s a deadlock!

Correct code:

reader {
P (mutex) ; // lock readcount
readcount += 1; // one more reader
if (readcount == 1) {

-- V(mutex) ; // unlock readcount

P(w_or_r); // synch w/ writers

}

+++V (mutex) ; // unlock readcount
Read;
P (mutex) ; // lock readcount
readcount -= 1; // one less reader

if (readcount == 0)

Page 11 of 15

V(w_or_r); // up for grabs

V (mutex) ; // unlock readcount}

(b)(3 marks) One problem with the solution we discussed in the lecture is starvation. Please

use no more than 2 sentences to describe the problem.

Answer: Starvation is the problem where if more readers keep come, a writer thread will
never get its chance to execute.

(c)(20 marks) How do you fix the starvation problem? Write the code. Note that you can not
make any assumption on the scheduler. In other words, you can only change the writer and
reader functions. You can also add additional synchronizations, but you are only allowed to
use locks or semaphores.

Answer:

writer{

}

P(writer waiting mutex);
P(w or r); // lock out readers
Write;,

V(w_or_r); // up for grabs
V(writer waiting mutex);

reader {

P(writer waiting mutex);

V(writer waiting mutex);

P (mutex) ; // lock readcount
readcount += 1; // one more reader
if (readcount == 1) {

P(w or r); // synch w/ writers
}
V (mutex) ; // unlock readcount
Read;
P (mutex) ; // lock readcount
readcount -= 1; // one less reader

if (readcount == 0)

Page 12 of 15

V(w_or_r); // up for grabs
V (mutex) ; // unlock readcount

Page 13 of 15

