
The Interaction of

Architecture and Operating System Design

Thomas E. Anderson, Henry M. Levy, Brian N. Bershad, and Edward D. Lazowska

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

Abstract

Today’s high-performance RISC microprocessors have been

highly tuned for integer and floating point application per-

formance. These architectures have paid less attention to

operating system requirements. At the same time, new op-

erating system designs often have overlooked modern archi-

tectural trends which may unavoidably change the relative

cost of certain primitive operations. The result is that op-

erating system performance is well below application code

performance on contemporary RISCS.

This paper examines recent directions in computer ar-

chitecture and operating systems, and the implications of

changes in each domain for the other. The requirements of

three components of operating system design are discussed

in detail: interprocess communication, virt ual memory, and

thread management. For each component, we relate operat-

ing system functional and performance needs to the mech-

anisms available on commercial RISC architectures such as

the MIPS R2000 and R3000, Sun SPARC, IBM RS6000,

Motorola 88000, and Intel i860.

Our analysis reveals a number of specific reasons why

the performance of operating system primitives on RISCS

has not scaled with integer performance. In addition,

we identify areas in which architectures could better (and

cost-effectively) accommodate operating system needs, and

areas in which operating system design could accommo-

date certain necessary characteristics of cost-effective high-

performance microprocessors.
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1 Introduction

The last decade has seen substantial change in computer

architecture. This change has resulted primarily from the

RISC/CISC discussions of the early 1980s [Patterson &

Ditzel 80, Patterson & Sequin 82, Hennessy et al. 82, Radin

82], along with new hardware technology that has both

enabled and required new architectural trends. Among

the most important of these trends are (1) a move to-

wards simple, directly-executed instruction sets, (2) an open-

architecture philosophy that makes implementation visible

to higher-level software, (3) the migration of function from

hardware to software, and (4) a performance-oriented ap-

proach in which architectural featurea are removed unless

they can be justified on a cost/performance basis.

Over the same period, operating systems too have seen

an evolution. Operating system functions have changed

to meet new requirements: fast local communication, dis-

tributed programming, parallel programming, virtual mem-

ory, and others. For improved extensibility, maintainabil-

ity, and fault tolerance, modern operating eystems such as

Mach [Jones & Raehid 86] are moving from the traditional

monolithic structure to a more modular organization. These

requirements have led to much research in new underlying

structures. Thus, while the Unix system interface has be-

come standard in engineering and scientific computing, fu-

ture Unix systems are unlikely to resemble current Unix im-

plementations at lower levels. Newer operating systems will

simply support Unix as one of several available interfaces, as

is done, for example, on V [Cheriton et al. 90], Mach [Golub

et al. 90], and Topaz [Thacker et al. 88].

Unfortunately, modern operating systems and architec-

tures have evolved somewhat independently:

e While simulation and measurement studies (such

w [Katevenis 85]) have been used to guide hardware

design tradeoffs, these studies have tended to overlook

the operating system. The problem is partly tech-

nological: most early program tracing tools were un-

able to trace operating system code. But the amount

of information overlooked can be huge. In trace-

driven studies gathered through a microcode-based

tool, Agarwal et al. found that during the execution of

two VAX Ultrix worldoads, over 5070 of the references

were system references [Agarwal et al. 88]; worse, this

study and others (such as [Clark & Emer 85]) have
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shown operating system behavior to differ significantly
from application behavior. Thus, the result of ignoring
such a large execution component could be dramatic.

● In those modern architectures where the needs of op-

erating systems have been carefully considered, ctra-

ditional Unix” has driven the design. But, as noted,

a variety of new requirements are changing the design

of operating systems in ways that make “traditional

Unix,” and applications built on top of it, inappropri-

ate benchmarks.

● Operating system research has strongly focused on

performance. In many cases, the performance of oper-

ating system facilities has been optimized to where it

meets hardware limits [Schroeder & Burrows 90, Ber-

shad et al. 90a, van Renesse et al. 88, Massalin & Pu

89], leaving hardware, not software, as the bottleneck.

Yet whiIe these facilities make optimal use of hard-

ware, they often are predicated on the performance

characteristics of earlier processors. They may not

exploit the strengths or minimize the weaknesses of

newer architectures, and may not perform adequately

in the future, given current architectural trends.

● While some high-level operating system functions have

been heavily optimized, software implementors may

have overlooked the importance of low-level functions.

In particular, some functions that were formerly opti-

mized through microcode must now be carefully im-

plemented in software for the system to perform effec-

tively.

This paper examines recent changes and directions in

computer architecture and operating systems, and the impli-

cations of changes in each domain on the other. Ousterhout

has already demonstrated that operating systems are not re-

ceiving the same benefit as applications from new hardware

platforms [Ousterhout 90 b]. He attributes this principally to

the operating system’s appetite for memory bandwidth and

disk performance. In this paper we look at a different granu-

larity, focusing instead on the relationship between essential

operating system primitives and hardware support. Rel-

ative to previous-generation machines, new RISC-oriented

architectures have added and removed features; both the

additions and the deletions have affected the performance of

operating system primitives. At the same time, relative to

previous-generation operating systems, newer operating sys-

tems have added features that may require (for acceptable

performance) hardware support that no longer exists, and

have failed to optimize certain functions that have recently

become more important.

1.1 Motivation

To motivate our study, we compared the performance of sev-
eral modern microprocessors executing the following primi-
tive operating system functions:

● Null system call — the time for a user program to
enter a null C procedure in the kernel, with interrupts
(re-)enabled, and then return.

s

●

●

Trap — the time for a user program to take a data

access fault (e.g., on a protection violation), vector to

a null C procedure in the kernel, and return to the

user program. This requires saving and restoring any

registers that are not preserved across procedure calls.

Page table entry change — the time, once in the ker-

nel, to convert a virtual address into its corresponding

page table entry, update that entry to change protec-

tion information, and then update any hardware (e.g.,

the translation buffer) that caches this information.

Context switch — the time, once in the kernel, to save

one process context and resume another, including the

time to change address spaces in the hardware. This

does not include the time to find another process to

run.

Our measurements examined a CISC implementation, the

VAXstation 3200 (11.1 MHz CVAX [Leonard 87]), and four

RISC implementations: the Tektronix XD88/01 (2o MHz

Motorola 88000 [Mot 88a, Mot 88b]), DECstation 3100 (16.6

MHz MIPS R2000 [Kane 87]), DECstation 5000/200 (25

MHz MIPS R30001 ), and SPARCstation 1+ (25 MHz Sun

SPARC [Sun 87, Cyp 90]). For brevity, our tables list the ar-

chitecture or microprocessor names, rather than the system

names, although performance is of course affected not only

by instruction set architecture and processor technology, but

by attributes specific to particular system-level implementa-

tion choices, such as cache size and organization.

For software, we began with the vendor-supplied Unix

handlers shipped with these systems. Our objective was

to isolate the architectural impact on these operating sys-

tem functions. Therefore, we attempted to restructure the

drivers in order to remove operating system dependencies

and measure only the operating system independent parts;

this often reduced the execution times by a factor of two

from the vendor-supplied versions. We further optimized

where possible (e.g., removing extraneous procedure calls)

subject to the rules that our resultant code would still be

able to boot Unix and would still maintain the standard

conventions for register usage between the compiler, operat-

ing system, and applications. The resulting handlers were

almost entirely written in assembler.

The system call time was measured directly by repeated

calls from user level to an otherwise unused system call code.

The time to change a page table entry (PTE) and to con-

text switch was measured by writing special system calls,

and then subtracting the system call time from the mea-

sured time. For the trap time, we repeatedly called the sys-

tem call to unmap a page from the test program’s address

space, then referenced the unmapped page from user-level,

and within the trap handler re-mapped the page. The trap

time is this measurement minus the system call, unmap, and

remap times. For all measurements, the operating system

was allowed to assume that a purely integer application was
running (e.g., that there were no floating point operations

in progress and that floating point registers did not need to

be saved on context switches). The performance of some of

the RISC architectures relative to the CVAX would be worse

1The MIPS R3000 uses the same instruction set as the R2000.
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Time (pseconds) Relative Speed
DEC Motorola MIPS MIPS Sun (RISCiCVAX)

Operation CVAX 88000 R2000 R3000 SPARC 88000 R2000 R3000 SPARC

Null system call 15.8 11.8 9.0 4.1 15.2 1.3 1.8 3.9 1.0

TraD 23.1 14.4 15.4 5.2 17.1 1.6 1.5 4.4 1.4

Page t~ble

entry change 8.8 3.9 3.1 2.0 2.7 2.3 2.8 4.4 3.3

Context switch 28.3 22.8 14.8 7.4 53.9 1.2 1.9 3.8 .5

Application Performance 3.5 4.2 6.7 4.3

Table 1: Relative Performance of Primitive OS Functions

without this assumption; we consider this effect in Sections 3

and 4.

Our measurements, presented in Table 1, show that while

the application code performance of the RISCS is excellent

relative to the CVAX (we use the SPECmark [SPEC 90] as

a measure of application performance), the performance of

these operating system functions has not scaled in a com-

mensurate way.

In the following sections we will discuss why these primi-

tive functions are import ant, and why they have not received

the expected performance gain. In part, we will show that

current architectures have made the implementation of these

functions more difficult, and therefore performance is harder

to achieve. To illustrate this point, Table 2 shows a count of

the number of instructions executed along the shortest path

in our drivers used for Table 1 (along with a similar estimate

for the Intel i860 [Int 89]). These numbers are meant only to
give a qualitative indication of the added complexity; obvi-

ously some VAX instructions, such as those used for context

switching, do large amounts of work in microcode. However,

some may still be surprised by the order of magnitude dif-

ference in the number of instructions needed in some cases

by the RISCS relative to the VAX, and by the variation in

instruction counts even among the RISCS.

Our objective in implementing drivers for Tables 1 and

2 was to remove operating system dependencies and to do

reasonable optimizations in a way that was equitable to all

of the architectures. We do not claim that our driver im-

plementations are optimal. With some effort, we are cer-

tain that the performance of all of these functions on all

of the architectures could be further improved. In the past,

these functions have typically been implemented and highly-

optimized through the use of microcode. Implementors of

current RISC operating systems may not have paid as much

attention to performance as previous microprogrammers, or

may not yet have as much experience optimizing code for

their architectures and implementations.

1.2 Organization of the Paper

This paper is organized around the characteristics of three
major components of operating system design. In each case

we first discuss the functional and performance needs of the

operating system component, and then describe how it can

be facilitated or inhibited by particular architectural fea-

tures. Section 2 describes interprocess communication mech-

anisms; architecturally, it concentrates on the system call

and interrupt processing facility of modern microprocessors.

Section 3 describes virtual memory systems and the func-

tions they provide; it focuses on page fault handling as well

as page table and translation buffer management. Section 4

describes lightweight thread support in multiprocessor op-

erating systems; it examines the management of processor

state in run-time thread systems. In each section we select

architectural examples from contemporary microprocessor

architectures.

Finally, Section 5 presents frequency measurements to

show why the performance of operating system primitives

is important to application performance. Section 6 summa-

rizes our results.

2 Interprocess Communication

Interprocess communication is central to modern operating

system structure and performance. Operating systems have

evolved from monolithic, centralized kernels to a more de-

centralized structure [Baskett et al. 75, Ra.shid & Robert-

son 81, Cheriton 84, Jones & Rashid 86]. The reasons for

this evolution are two-fold. First, by structuring the oper-

ating system as independent address spaces communicating

through messages, modularity, fault tolerance, and exten-

sibility are enhanced. Second, using messages rather than

shared memory as the principal communication mechanism

simplifies the move to a physically distributed topology.

While monolithic Unix systems are still the basis for much

of today’s computing, newer implementations such as Mach

are moving to a “small-kernel> or “kernelized” structure, in

which many operating system components are implemented

as servers outside of the kernel. These servers communicate

with users, with the kernel, and with each other through

message passing. As operating system structure continues

to decentralize, communication performance becomes crucial

to overall system performance. In fact, good, communication

performance is key to enabling this structure; poor commu-

nication performance is likely to guarantee maintenance of

the status quo, i.e., monolithic design.

Communication performance also is key to effective use

of contemporary distributed computing environments. Al-

though many modern processors are designed as standalone

workstations, the need for data and device sharing, the po-

tential of networks of computers to be used as multiproces-
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Operation CVAX 88000 R2/3000 SPARC i860

Null system call 12 122 84 128 86

TraD 14 156 103 145 155

Page table

entry change 11 24 36 15 559

Context switch 9 98 135 326 618

Table 2: Instructions Executed for Primitive OS Functions

..... .
1 ----

. . . ..”6” ”...~
> ! 30%

. . II

Table 3: RPC Processing Time in SRC RPC

sors, and the growing computational power of new processors

has led to increasing use of file and computation servers in

networks. This use is predicated on the ability of processors

to communicate efficiently across networks. In fact, in many

environments, truly stand-alone computers no longer exist.

2.1 Cross-Machine Communication

To simplify communication for the programmer, most sye-

tems now support Remote Procedure Call (RPC) [Birrell

& Nelson 84]. RPC has become the preferred method to

communicate between address spaces, both on the same ma-

chine and across a network, because it encapsulates message-

oriented communication in procedure call semantics. In an

RPC system, clients make procedure calls to remote servers.

The client’s call actually is made to an automatically-

generated stub procedure that is linked into the client. The

stub is responsible for packaging the procedure’s parameters

in a message packet, and transmitting that packet to a simi-

lar stub linked with the server. The server stub receives the

message, removes the parameters, and makes a procedure

call into the server. The return travels back in the oppo-

site direction, with the server stub sending the results in a

message packet to the client stub.

Surprisingly, communication performance typically is not

limited by network speed. Because cross-machine RPC in-

volves communication between two remote address spaces,

the operating system must be involved to transfer control

and data between the client and server. This operating sys-

tem involvement adds overhead that usually dominates net-

work latency. For example, Table 3 shows the distribution

of time spent in a round-trip cross-machine null RPC for a

small (74-byte) packet in SRC RPC [Schroeder & Burrows

90] executing on pVAX-11 Firefly multiprocessors [Thacker

et al. 88] connected by an Ethernet. For SRC RPC, one of

the fastest RPC systems, only 17% of the time for a small

packet is spent on the wire.

Given the significant CPU requirements of cross-machine

RPC, one would expect a substantial RPC performance im-

provement to accompany any improvement in CPU perfor-

mance. Indeed, Schroeder and Burrows suggest that tripling

CPU speed would reduce SRC RPC latency for a small

packet by about 50Y0, on the expectation that the 83% of

the time not spent on the wire will decrease by a factor of

3. Looking at Table 3, however, we see that much of the

RPC time goes to functions that may not benefit propor-

tionally from modern architectures. For example, Table 1

shows that system calls and traps do not scale well, and the

stub and interrupt processing components of the round-trip

RPC include several system calls and interrupts. Large reg-

ister sets and pipelines, present on most modern RISCS, are

not likely to benefit interrupt processing and thread manage-

ment because of the additional state to examine, save, and

restore. The only real ‘computation” in RPC, in the tradi-

tional sense, is the checksum processing, and this in fact is

memory intensive and not compute intensive; each checksum

addition is paired with a load (which on some RISCS will

likely fetch from a non-cached 1/0 buffer). Thus, Ouster-

hout found in the Sprite operating system [Ousterhout et al.

88] that kernel-to-kernel null RPC time was reduced by only

half when moving from a Sun-3/75 to a SPARCstation-l,

even though integer performance increased by a factor of

five [Ousterhout 90a].

For larger RPC requests, network transmission time be-

comes more significant: e.g., nearly 5070 for SRC RPC with

a 1500-byte result packet. However, the checksum compo-

nent also doubles in percentage, and the cost of parameter

copying (called “marshaling” ) becomes substantial since it

too is memory intensive. Thus, larger packets also have

higher CPU costs. Moreover, network bandwidths are in-

creasing quickly; with 10- to 100-fold improvements likely

over the next several years, the lower bound on RPC perfor-

mance will be due to the cost of operating system primitives

that include interrupt processing, thread management, and

memory-intensive byte copying or checksum operations. We

evaluate the costs of interrupt processing in more detail in

Section 2.3 and the costs of thread management in Section 4.

2.2 Local Communication

The performance of cross-machine RPC determines how ef-

fectively programs can use the network. The performance of

local cross-address space RPC determines how effectively the

operating system can be decomposed, aa well as how rapidly
clients can communicate with 10A servers. One mechanism

geared to rapid local communication is called lightweight re-

mote procedure call (LRPC) [Bershad et al. 90a]. LRPC

achieves performance for the null call that only marginally

exceeds the optimal time permitted by the hardware. For

the simplest local calls, LRPC achieves a 3-fold performance
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Hardware LRPC

Operation Minimum Overhead

~
Kernel transfer I

— 17%

rl-. .l Cnw. flow.
IolJal I u3/u *u/u

Table 4: LRPC Processing Time

improvement over previous methods. This gain is obtained

through the use of shared, statically-mapped buffers for pa-

rameter passing, and by allowing the client’s thread to di-

rectly execute in the server’s address space. The second

technique nearly eliminates the thread management over-

head inherent in message-oriented RPCS.

Table 4 shows the distribution of time for a null LRPC

on a CVAX Firefly. With LRPC, the real factor limiting

performance is the hardware cost of communicating through

the kernel. Each LRPC must enter the kernel twice (once

for the call and once for the return). Once inside the ker-

nel, the kernel must perform a cent ext switch, changing the

hardware address mapping context from the client to the

server address space (vice versa on the return path). Un-

fortunately, this kernel bottleneck is even worse on newer

architectures, because the overhead of system calls and con-

text switching has not decreased proportionally with overall

processor speed (cf. Table 1).

With respect to the context switch needed for cross-

address space communication, there are two components:

the cost of saving and restoring state, and the cost of trans-

lation lookaside buffer (TLB) misses caused by the address

space change. Both of these will be discussed in later sec-

tions. However, it is worth noting that the number of ad-

dress spaces, aa well as the number of cross-address space

calls, will be larger for kernelized operating systems (as we

will show in Section 5). This may have an effect on TLB

efficiency.

2.3 System Calls and Interrupt

Handling

Part of the reason for the high cost of system calls on mod-

ern processors is the mismatch between the hardware trap

support and the software requirements of system calls. Ta-

ble 5 shows the distribution of time spent by the CVAX,

the R2000, and the SPARC in the three components of the

null system call: kernel entry/exit, call preparation, and C

call/return. In aggregate, we see that the MIPS R2000 and

SPARC, while substantially faster than the CVAX on inte-
gerperformance, are only marginally faster for a null system

call.

Looking at the data in a slightly different way, RISCS such

as the SPARC and the 88000 (from Table 1) spend many

more cycles in software for a system call than the CVAX

hardware support requires in microcode. Thus, while the

RISCS move the work done by VAX microcode into software,

they seem to require much more work overall due to the

management of new features. The MIPS R2000 requires

15% fewer cycles than the CVAX for a system call, but this

is small compared to the advantage the R2000 should have

over the CVAX in total required cycles [Clark & Bhandarkar

91].

The most telling row of Table 5 shows the cost of call

preparation for these three machines — the work needed,

following the trap, to prepare the processor to execute a

procedure call to a C-level operating system routine. Call

preparation includes vectoring from the trap entry point

to the specific exception handler, window management (on

the SPARC), machine state management (e.g., manipula-

tion of machine registers and kernel stack pointers), and

saving/restoring of registers that must be preserved across

system calls. Because the VAX performs some of these func-

tions in hardware as part of the system call and return from

exception instructions, the time to enter and exit the kernel

is longer, but the cost once in the kernel is much less.

One reason for this is the addition of new RISC features

requiring software management. For example, SPARC has

register windows to improve application performance, but

the windows reduce kernel trap performance; we estimate

that 30% of the null system call time on the SPARC is associ-

ated with register window processing. In SPARC, hardware

ensures that one register frame is available for execution of

the trap handler on exceptions. When a system call occurs,

the trap handler must then ensure that another frame is

available for its call to the specified operating system rou-

tine. This requires examination of the register window point-

ers and possible saving (and later restoration) of frames to

memory. Because a frame for the low-Ievel handler is inter-

posed between the user-level caller and the system routine

being called, parameters and results must be copied an extra

time.

Similarly, the Motorola 88000 loses much of its perfor-

mance advantage because of the complexity of managing its

pipelines in software when a trap occurs. The 88000 in-

cludes a large number of registers containing pipelke state,

and these must be examined and manipulated on a trap to

check for and service any outstanding faults.

While RISCS such as the SPARC and 88OOO have directly

vectored interrupt dispatching, some RISCS have eliminated

this, choosing instead to do vectoring through software. For

example, nearly all exceptions on the MIPS R2000, and all

exceptions on the Intel i860, are vectored through one han-

dler. In their paper on MIPS operating system support,

DeMoney et al. [1986] claim that separate vectoring is un-

necessary, and that “most Unix systems fill these [vector]

addresses with code to save the cause and then jump to a

common interrupt handler, thus adding several cycles.” This

assumes that a specific implementation of a last-generation

operating system will be sufficient for the future. Luckily, de-

spite this argument, the designers provided a separate han-

dler for user-level TLB misses, recognizing that a TLB miss

is not an “exceptional” event. However, a system call is

not an exceptional event either, and the frequency of sys-

tem calls, and hence the importance of efficient traps, is in-

creased by modern small-kernel operating system structure

(as we will show in Section 5).
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Time (pseconds) Relative Speed

RISC/CVAX

Function CVAX R2000 SPARC R2000 SPARC

Kernel entry/exit 4.5 .6 .6 7.5 7.5

Call preparation 3,1 6,3 13.1 .5 .24

Call/return to C 8.2 2.1 1.4 3.9 5.8

Total 15.8 9.0 15.2 1.8 1.0

Table 5: Time in Null System Call

Other factors contributing to relatively poor system call

performance on RISCS are more subtle. For example, low-

level trap handling code on the R2000 makes relatively poor

use of load and branch delay slots. Nearly 50V0 of the delay

slots in this code path are unfilled, accounting for approxi-

mately 13yo of the null system call time on the R2000. Fur-

thermore, the R2000-based DECstation 3100 has a 4-deep

write-through buffer, but will stall for 5 cycles on every suc-

cessive write once the buffer is full. Successive stores are

frequent in many operating system functions, such as trap

handling or context switch, where registers must be written

to memory. We estimate that write buffer strolls account for

30% of the interrupt overhead on the DECstation 31oo.

In contrast, the DECstation 5000 has a 6-deep write buffer

that can retire a write every cycle if successive writes are to

the same page, as they typically are in trap handling, This

accounts in part for the the fact that trap performance of the

DECstation 5000 is better relative to the DECstation 3100

than one would expect based on their integer performance,

With its write buffer, the DECstation 5000 runs without

memory-induced slowdown in the common case of cache hits

on reads and successive writes to a page, but even so, its trap

performance still does not scale with the CVAX.

2.4 Data Copying

As noted by Ousterhout [Ousterhout 90 b], data copying is

another area in which modern processors have not scaled

proportionally to their integer performance, yet it is an im-

portant aspect of local and remote communication. In a con-

ventional message passing or RPC system, arguments may

have to be copied as many as 4 times: from client to kernel,

from kernel to server, from server to kernel, and from kernel

to client. Various optimizations can be applied, but even in

LRPC which uses a shared client/server buffer, two copies

are necessary: one to copy arguments from the invocation

stack on the call, and one to copy results on the return.

The problem is that faster systems often have a mismatch

between memory speed and processor speed, In fact, Ouster-

hout found that for a range of RISCS and CISCS, “the rel-

ative performance of memory copying drops almost mono-

tonically with faster processors, both for RISC and CISC

machines [Ousterhout 90b] .“ This should not be surprising,

in part because the same commodity memory parts are typ-

ically used for main memories on both RISCS and CISCS in

various performance ranges. Most modern processors have

on-chip caches, as well as second-level caches, but these on-

chip caches are still relatively small. A limitation during

parameter copying is the large number of consecutive write

requests, which will stall on some write-through caches. A

write-back cache or DECstation 5000-style memory can help,

at the cost of added complexity. The problem of data copy-

ing for message passing and cache interference is significant

enough that some researchers have proposed special archi-

tectural support to optimize copy operations [Cheriton et al.

88].

2.5 Summary

In modern operating systems, communication performance

is crucial, because it enables good operating system struc-

ture and allows effective use of networks and distribution.

Good communication performance relies on several primitive

functions — including system calls, interrupt handling, con-

text switching, and data copying — that do not fully benefit

from modern architectural innovations. In some cases, ar-

chitectures could improve on the performance of these prim-

itives. For example, on a system call, which is a voluntary

exception, a processor like the 88OOO could wait for other

exceptions to occur before servicing the call, reducing the

processing needed in the trap handler to check for faults.

Similarly, the SPARC could take a window fault if needed

before the call, rather than emulating the check within the

trap handler.

We have also seen that techniques used to improve appli-

cation performance, such as branch delays and write buffers,

work less well on some operating system code. Operating

system designers must be aware that architectural trends

will lead towards relatively more expensive system calls, and

should look for mechanisms that avoid the kernel when pos-

sible (e.g., [Bershad et al. 90b]).

3 Virtual Memory

The most basic use of virtual memory is to support address

spaces larger than the physical memory. For this function,

all that is needed is a level of indirection between virtual and

physical addresses, provided through TLBs and page tables,

plus the ability to fault on an instruction referencing a non-

resident page. In general, performance of a virtual memory

system is related to the ratio of physical to virtual memory

size, the size and organization of the TLB, the cost of ser-

vicing a fault, and the page replacement algorithms used.

For the operating system, the main issues are the flexibility

of the addressing mechanism, the information provided by

that mechanism, and the ease of handling faults and chang-

ing hardware VM addressing state.
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In addition to supporting large address spaces, modern

operating systems are making new demands on virtual mem-

ory, often to enhance system performance. For example,

Accent and Mach use a copy-on-write mechanism to speed

program startup and cross-address space communication for

large data messages [Fitzgerald & Rashid 86, Young et al.

87]. In the latter case, the kernel maps large message buffers

into the receiver’s address space, so they are shared read-only

by both sender and receiver. Copy-on-write saves memory

and avoids copying in the case where the message is not

modified after it is sent. If either the sender or receiver at-

tempts to write the buffer, a trap occurs and the buffer is

copied. This relies on the ability to quickly trap and chauge

page protection bits.

Virtual memory also can be used to transparently sup

port parallel programming across networks. Such loosely-

coupled multiprocessing will become increasingly common

as today’s Ethernets are replaced by much faster networks.

In systems such as Ivy [Li & Hudak 89], a network-wide

shared virtual memory is used to give the programmer on

a workstation network the illusion of a shared-memory mul-

tiprocessor. Pages can be replicated on different worksta-

tions as long as the copies are mapped read-only, When one

node attempts a write, it faults. Software then executes an

invalidation-based coherence protocol, invalidating all copies

except the writer’s, whose mapping is changed to read-write.

The writer then makes any changes on its unique copy. Later

execution of a read request on a remote node faults, causing

another replica to be created and the writer’s copy to be

changed back to read-only.

Along with copy-on-write and distributed virtual mem-

ory, other operating system functions are being overloaded

on virtual memory protection bits as well: these include

garbage collection [Ellis et al. 88], checkpointing [Li et al.

90], recoverable virtual memory [Eppinger 89], and transac-

tion locking [Radin 82], Because these functions often are

implemented at the run-time level, their implementations

are simplified by user-level handling of page faults and ef-

ficient modification of TLB or page table entry access bits.

As a result, systems must find a way of quickly reflecting

page faults back to the user level, so that user-level code can

make an appropriate management decision [Young et al. 87].

This requires both efficient dispatching of the fault within

the kernel (i.e., trap handling) and efficient crossing from

kernel space to user space and back (i.e., system calls).

3.1 Handling Memory Management

Faults

Unfortunately, at the same time that operating systems are

making more demands of the virtual memory system, mem-

ory management on newer architectures has become more

difficult. We have already mentioned that on some RISC

processors, exception handling is more complex. There are

two other factors that can make the situation worse.

First is the existence of pipelined execution units. While

many previous machines have been pipelined, the pipelines

were typically invisible to software. On some current RISCS,

the pipeline structure is “exposed ,“ that is, compilers and

operating systems must deal with the pipeline as part of a

process’ visible context. On these machines, pipeline visi-

bility is required both for performance and for correctness,

and the operating system must manage the pipeline when

an exception arises.

As one example, the Motorola 88000 has 5 internal

pipelines, includlng an instruction fetch pipeline, each of

which must be restarted after a fault. Associated with these

pipelined execution units are nearly 30 internal registers.

During an exception, many of these registers must be read,

saved, and restored, adding to the complexity and latency

of fault handling. When a page fault occurs on the 88000,

several instructions may be in the process of execution, and

instructions following the faulting instruction may have al-

ready completed. For this reason, the program cannot be

restarted at the faulting instruction. Instead, the operat-

ing system must examine a collection of special registers to

find the types of memory accesses underway, the addresses

of reads in progress, and the addresses and data values of

writes in progress. Then the operating system must emulate

the execution of the store or read request that caused the

fault.

Even the existence of a floating point pipeline can compli-

cate page fault handling. When a page fault occurs on the

88000, hardware “freezes” execution of the floating point

unit. Because the floating point unit performs integer mul-

tiplication instructions, though, it must be restarted for the

fault handler to proceed. Unfortunately, when the floating

point unit is reenabled it may complete outstanding oper-

ations, writing their results into general-purpose registers

that are in use by the fault handler. In effect, a trap must

be handled as though it were a full context switch to the

FPU; the fault handler must store needed interrupt con-

text in memory, enable the floating-point unit, allow the

pipeline to clear, and then save general-purpose registers

once they are safe from corruption — all before starting to

handle the memory management condition. Similarly, on

an interrupt the Intel i860 must save the current state of

its pipelines and restore them when the interrupted process

is continued. If the floating point pipeline could be in use,

the save/restore process adds 60 or more instructions to i860

page fault and other exception handling, Such complexities

are not necessary; for example, the IBM RS6000 [IBM 90],

the SPARC, and the R2/3000, each of which haa several in-

dependent pipelined functional units, implement precise in-

terrupts [Smith & Pleszkun 88], thereby shielding software

from much of the detail of pipelined processing.

A second factor in fault handling is the reduction, in some

processors, of the information provided to handle faults. On

the Intel i860, for example, the processor provides no in-

formation on the faulting address; in fact, it provides little

information about why the fault occurred. On a page fault,

the i860 trap handler knows only that a data access fault

of some type occurred, and the address of the faulting in-

struction. The fault handler must then interpret the faulting

instruction to determine the type of fault and the offending

address. This requirement adds 26 instructions to our trap

handler in Table 2, despite the fact that the hardware must

have the faulting address available when the fault occurs.
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3.2 Translation Buffers and Page Tables

While most modern computers have rather standard, 32-

bltpaged virtual memories, address space management has

changed somewhat over the psst few years. On conventional

systems, virtuaJ address translation conceptually requires

one or two overhead memory references for each user mem-

ory access. These page table accesses are usually avoided

through the use of a TLB, whose entries are searched by

hardware prior to a physical cache access. Formerly, TLB

miss handling was hidden from the operating system, but

some new RISC architectures have moved TLB management

into software. For example, the MIPS R2000 has a 64-entry

TLB that is loaded by operating system software on misses.

One great advantage of this structure is that the architecture

does notdictate page table structure. Theoperating system

is free to choose whatever page table structure it likes, and

handling of sparse address spaces, which is problematic on a

linear page table system like the VAX, is greatly simplified.

While the MIPS TLB structure has moved in the direction

of added operating system flexibility for page tables, it is also

more restrictive in some ways. Like the VAX, the MIPS vir-

tualaddress space isdivided into two halves: user space and

system space. User space addresses are always translated

through the TLB. System space, however, is again subdi-

vided into four regions: unmapped and cached, unmapped

and uncached, mapped and cached, and mapped and un-

cached. The reason for having uncached regions is to avoid

cache replacements on, for example, writes to 1/0 buffers

that are unlikely to be referenced again. The reason for an

unmapped (i.e., physicsNy based) segment is to avoid the

translation overhead —in this case to save TLB entries—

for operating system components that are typically memory

resident anyway. Furthermore, this can be justified because,

aa with caches, TLBs are poorly used by the operating sys-

temrelative touser-mode programs. Forexample, in astudy

of TLB performance on the VAX-11/780, Clark and Emer

found that while the VMS operating system accounts for

only one fifth of all references, it accounts for more than two

thirds of all TLB misses [Clark & Emer 85].

On the other hand, this system space structure haasev-

eral problems with respect to modern operating systems.

Because the unmapped region is accessed directly through a

physical base register, there is no indirection and therefore

no ability to specify page-level protection or access control,

except to the entire region. The unmapped region of the

address space is protected only by kernel mode execution,

i.e., code executing in kernel mode can access this region

while non-kernel mode code cannot. This organization is

therefore best suited to a monolithic kernel structure, like

current Unix implementations. With small-kernel operating

systems, much operating system code runs in user mode and

therefore cannot benefit from this hardware.

Perhaps abetter solution to increasing the utilization of

TLB entries, particularly forthe operating system, is found

in the SPARC/Cypress [Cyp 90] implementation. In this

case, the architecture supports a3-level page table structure.

The first-level table maps theentire4GB address space; it

contains pointers to second-level tables, each of which maps

a 16MB region. Each second-level table contains pointers to

third-level tables, each of which maps 256KBof 4KB pages.

At each level, an entry can either be a pointer to the next-

level table, oraterminal pagetable entry. Ifaterminal page

table entry is found in the second level, for example, it maps

a contiguous 256KB region, and a single TLB entry can be

used to hold the mapping for this entire region. Because the

region is addressed using PTEs and TLB entries, the stan-

dardprotection mechanism is still utilized. Furthermore, an

operating system specified portion of the 64-entry TLB can

be “locked” to prevent hardware from replacing entries in

that section.

Many of the newer RISCS have process ID tags in their

TLB entries, which allows theentries tolive across context

switches. This gives them an advantage over untagged sys-

tems such as the VAX. In fact, in a null LRPC (Table 4),

an estimated 25~o of the time is lost to TLB misses on the

CVAX, because theentire TLB must be purged twice, once

during the call and once on return. It is worth noting that

kernelized operating systems will increase the demand for

tag bltsand TLB size, since akernelized structure increases

the number of address spaces and context switches.

A final complexity for new architectures is the inclusion

ofvirtually addressed caches. Virtually addressed caches are

attractive because they can reduce cycle time by removing

the need for a virtual address translation preceding cache

lookup. Virtually addressed caches aresimilar to translation

buffers in two ways: (1) the cache address tags are context

dependent, and therefore the cache must be flushed on a

context switch, and (2) each cache entry contains protection

bits, so entries must be invalidated when a PTE is changed.

Depending on the architecture, virtually addressed caches

can increase the cost oflow-level operating system functions

by anorder of magnitude. Cache flushing at context switch

time can be extremely expensive, as shown by the high in-

struction count for the i860 context switch in Table 2. Pro-

cess IDs can eliminate the need for this, though.

Efficiently changing page table protection information in

a virtually addressed cache is more difficult. At most one

entry in a TLB need be invalidated when a page’s protection

is changed. With a virtually addressed cache, however, any

change to a page’s protection requires a complete search of

the cache and (typically) invalidation of any blocks on that

page; thk is a time-consuming operation. on the i860, for

example, 536 out of the 559 instructions required to change

a PTE are concerned with flushing the virtual cache.

3.3 Summary

New architectures can simplify memory management, but

they also can add significant complexity and latency to the

memory management task. At a time when operating sys-

tems are making new uses of memory management, e.g., for

copy-on-write message passing or transaction support, archi-

tectures can help by not hiding information, such as the fault
address needed for fast fault handling. On the other side,

with the potential performance advantages of virtually ad-

dressed caches and imprecise interrupts, operating systems

for modern architectures may need to be less aggressive in

their use of copy-on-write and similar mechanisms that rely

on fast fault handling.
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4 Threads and Multiprocessing

Threads, or “lightweight processes,” have become a common

and necessary component of new languages and operating

systems [Jones& Rashid86, Halstead 85, Bershadet al. 88].

Threads allow the programmer or compiler to express, cre-

ate, and control parallel activities, contributing tothestruc-

ture and performance of parallel programs. Athreadissim-

plyonestream of control within a parallel program. Because

threads within a single application are “lightweight” (i.e.,

they share a single address space), threads do not require

the large amount ofsoftware and hardware state needed by

a full process that contains hardware context for address

space management.

Threads can be supported by the operating system, by

the application run-time level, or by both. At the operating

system level, threads allow theapplication to create multiple

units of work within an address space that are individually

schedulable by the operating system. The advantage is that

the operating system provides a uniformity of function. At

therun-time level, threads are completely managed by user-

level code invisibly tothe operating system. The advantage

is performance and flexibility; thread operations do not need

to cross kernel boundaries, and a thread system can be spe-

cially tailored to an application’s needs.

With carefully-implemented user-level thread systems, it

is possible to provide high-performance parallel program-

ming primitives that approach minimal hardware costs, e.g.,

new thread creation in 5–10 times the cost of a procedure

call [Anderson et al. 89, Massalin & Pu 89]. This is due to

the low cost of communication within a single address space

running in a single protection mode. Also, through careful

kernel-to-user interface design, user-level threads can pro-

vide all of the function of kernel-level threads without sacri-

ficing performance [Anderson et al. 90].

It is likely that the importance of threads will continue

to increase in the future, as programmers and compilers

seek speed up through finer and finer grained parallelism.

The ability to obtain speedups in this way — through fine-

grained parallelism — is dependent to a great extent on the

cost of thread creation and thread operations. If thread op-

erations are inexpensive, then threads can be freely used for

fine-grained activities; if thread operations are costly, then

only coarse-grained parallelism can be effectively supported.

4.1 Architecture and User-Level

Threads

While fine-grained user-level threads require no special ar-

chitect ural support, the architecture can have a large impact

on thread performance. Most crucial is the amount of state

that must be managed to context switch from one thread

to another thread in the same address space. (Note that

the context switch measured in Table 1 includes this cost,

plus the cost of changing the address space.) Table 6 shows

the amount of thread state for several modern architectures.

Most of the newer RISC processors, such as the Sun SPARC,

the MIPS R2000 and the IBM RS6000, have more than 64

registers, compared to 16 in most earlier 32-bit CISC archi-

tectures, such as the VAX. On a context switch, these reg-

isters must be written into a thread control block, and an

equal number of reads are required to load the registers for

the newly scheduled thread. In a context switch that passes

through the operating system, this cost may be noticeable

but small relative to the total context switch overhead. But,

in a fine-grained user-level thread system, these reads and

writes become the dominating cost. Optimizations that re-

duce the amount of state saving, e.g., saving only those reg-

isters that are in active use [Wall 86], may become crucial

to minimizing context switch costs.

On the SPARC architecture, the number of registers to

be saved depends on the number of register windows in use

at the time of the cent ext switch. Measurements of Sun

Unix have shown that for SPARC systems with 8 windows,

on average three need to be saved/restored on each context

switch [Kleiman & Williams 88]. Our SPARC context switch

driver for Table 1, which assumes the SUN Unix average,

spends 7070 of its time saving and restoring windows (12.8

pseconds per window). Thus, the cost of reading and writing

these registers makes fine-grained threads highly inefficient.

Worse, because SPARC’S current window pointer is in a priv-

ileged register, a completely user-level thread context switch

is impossible; a kernel trap is required to change the current

window point er in order to switch from the current thread’s

register windows to the new thread’s windows.

The large register sets on architectures such as SPARC

are not gratuitous; they were motivated by scores of mea-

surements taken primarily on sequential Unix application

programs. Larger register sets can reduce memory accesses,

which have become relatively more costly as processor speeds

have increased. In particular, register windows greatly re-

duce the cost of parameter passing and register saving on

procedure call. The assumption was that procedure calls

are much more frequent than context switches. Since con-

text switching was expensive in earlier operating systems,

it was avoided if possible. But to realize potential speedup

on current parallel machines, thread context switches imple-

ment ed completely at user-level may become more frequent.

As one test, we ran several experiments with the Synapse

parallel simulation environment [Wagner 89] executing on

a Sequent shared-memory multiprocessor. Synapse is an

object-oriented system with lightweight threads scheduled at

user-level. Across the experiments measured, we found that

the ratio of procedure calls to context switches varied from

21:1 to 42:1 (8 calls were made by the run-time system, the

rest by the application). Synapse is object-oriented, which

tends to be procedure cal-intensive, and its run-time system

implementation explicitly attempts to reduce the number

of context switches. Even so, on a SPARC Synapse would

spend more of its time doing context switches than procedure

calls, because the cost of a thread context switch is 50 times

that of a procedure call, assuming 3 window save/restores

for each context switch. Thus, for this parallel application,

the SPARC tradeoff of improving procedure call time at the

expense of increasing the time to do context switches is less

cost effective than on sequential programs. It is not sur-

prising, then, that some researchers use a SPARC register

window per thread as a way of optimizing context switches

instead of procedure calls [Agarwal et al. 90].
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VAX 88000 R2/3000 SPARC i860 RS6000

Registers 16 32 32 136 32 32

F.P. State o 0 32 32 32 64

Misc. State 1 27 5 6 9 4

Table 6: Processor Thread State (32-bit words)

Although many context switches in a user-level thread

package are voluntary, such packages must also perform in-

voluntary swaps w a result of asynchronous events, for in-

stance due to signals or exceptions. As noted in Section 3.1,

exception handling is more difficult in newer architectures.

Kernel-level threads can be problematic too, e.g., causing

decreased TLB effectiveness due to an increased number of

thread context switches between threads in separate address

spaces. This is a particular problem for architectures with

small numbers of TLB entries. The problem occurs espe-

ciaUy if threads are scheduled independently of the address

space with which they are associated.

A final issue for multiprocessing is support for atomic

memory lock instructions, required to synchronize fine-

grained access to shared resources. The MIPS R2000/R3000

has no atomic semaphore instruction; this omission hurts

uniprocessor performance as well as multiprocessor perfor-

mance, since threads often are used for program structure as

well as for parallel programming. On the MIPS, threads that

wish to synchronize must either trap into the kernel, where

interrupts can be disabled, or resort to a complex locking

algorithm. Both are expensive. For example, parthenon, a

resolution-based theorem prover that exploits or-parallelism,

is able to decrease its total execution time by 10% on a

MIPS R3000-based uniprocessor through the use of multiple

threads. However, this program spends roughly 1/5 of its

time synchronizing through the kernel.

Lock management can be particularly difficult on archi-

tectures in which the operating system must handle excep-

tions that arise in the middle of an atomic instruction or

critical section. On the Intel i860, for example, software

must be able to restart the critical section at the lock in-

struction when a fault occurs inside a critical section. If the

critical section includes non-reexecutable store instruction,

the software must first store unmodified values in store tar-

gets of those non-reexecutable instructions to ensure that

no fault occurs. The Motorola 88000 has a similar situation

in which faults cannot be allowed on the write portion of a

read-modify-write instruction. These problems are not in-

surmountable, and code can be written to perform an atomic

sequence correctly, but not without a cost in the latency of

lock acquisition and a possible expansion of the critical sec-

tion, reducing throughput and potential parallelism.

4.2 Summary

Thread management seems to be an area in which archi-

tectures and operating systems have moved at cross pur-

poses. While architectural mechanisms have been added

to speed the execution of sequential programs, operating

systems have been changing to snpport fine-grained paral-

lel decomposition through threads. Unfortunately, the best

assumptions for efficient sequential execution (e.g., long se-

quences of uninterrupted instructions) and the best archi-

tectural features (e.g., large amounts of processor state) are

the worst choices for fine-grained multithreaded programs.

5 The Behavior of Operating

Systems and Applications

We have shown that the performance of primitive operating

system functions has not scaled with overall processor per-

formance, and we have explored a number of the reasons for

this fact. In this section, we support the importance of these

primitives by showing that:

1. low-level primitives such as trap and context switch

are frequently used, and

2. these primitives are becoming more frequently used as

operating system structure evolves.

To demonstrate the first point, we monitored operating sys-

tem behavior during the execution of a set of applications.

To demonstrate the second point, we ran each application

on two different versions of Mach, a binary compatible reim-

plementation of Unix. The first version, Mach 2.5, is mono-

lithic: the entire operating system executes in a privileged

kernel address space. The second version, Mach 3.o, has a

small message-based kernel on which traditional operating

system services are implemented as user-level programs. It

is important to note that Mach 3.0 is not a “completely de-

composed” operating system: many services are provided by

a single application-level server which could more logically

be provided by multiple servers. Our measurements indi-

cate that the performance of operating system primitives on

current architectures may limit the extent to which systems

such as Mach can be further decomposed without compro-

mising application performance.

We selected applications that we believe are representative

of a t ypicrd workload in a workstation environment. These

were: spellcheck- 1 (spellcheck a 1 page document); latem150

(format a 150 page document); andrew-local (a script of file

system intensive programs such as copy, compile and search,

run using an entirely local file system); ad-ew-remote (the

same script run using a remote file system); link- umunix (the

final link phase of a Mach kernel build) and parthenon (a

resolution-based theorem prover that rises multiple threads
to exploit or-parallelism).

All applications were run on a MIPS R3000-baaed DEC-

station 5000/200 with 24 megabytes of memory. We ran each

program three times to smooth out the effects of paging and

file caching. Over the second and third runs there was little

variation in performance. We instrumented the operating
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Mach 2.5 fmonolithic)

spellcheck- 1

latex-150

andrew-local

andrew-remote

link-vmunix

parthenon (1 thread)

parthenon (10 threads)

Mach 3.o (decomposed)

spellcheck- 1

latex-150

andrew-local

andrew-remote

Iink-vmunix

parthenon (1 thread)

parthenon (10 threads)

Time Address Thread System Emul. KTLB Other $ZOTime

(sec.) Space Context Calls Instrs. Misses Excep- in OS

Switches Switches tions Prims.

2.3 139 238 802 39 2953 2274

69.3 2336 2952 5513 320 34203 15049

73.9 3477 5788 35168 331 145446 67611

92.5 3904 6779 35498 410 205799 67618

25.5 537 994 13099 137 46628 15365

22.9 171 309 257 1395555 1077 2660

20.8 176 1165 268 1254087 2961 3360

1.4 1277 1418 1898 13807 22931 2824 20%

80.9 16208 19068 16561 213781 378159 19309 5%

99.2 41355 50865 70495 492179 1136756 144122 12%

150.0 128874 144919 160233 1601813 1865436 187804 16%

29.9 24589 25830 26904 164436 423607 28796 16%

28.8 1723 2211 1308 1406792 12675 3385 18%

26.3 1785 3963 1372 1341130 18038 4045 19%

Table 7: Application Reliance on Operating System Primitives

system kernels to count the occurrences of the primitive op-

erations described in previous sections.

Table 7 summarizes our measurements. For each applica-

tion running on each Mach version, it shows (for the final

two runs) the average elapsed time, and the average number

of address space context switches, kernel-level thread con-

text switchesz, kernel-handled system calls, kernel-emulated

instructions, kernel-mode address TLB misses, and other ex-

ceptions (primarily interrupts and page faults, but exclud-

ing user-mode TLB misses). For Mach 3.0 we also show the

percentage of its elapsed time that each application spends

executing these low-level system primitives (not including,

in the case of system calls and other exceptions, the time

spent actually executing the called system procedure).

The table illustrates several key points about application

behavior and operating system structure. First, and most

import ant, operating system primitives occur frequently,

particularly in a small-kernel operating system such aa Mach

3.o, and their performance hsa a clear effect on application

performance. Under Mach 3.0, most of the applications

spend bet ween 15 and 20 percent of their time executing

these primitives. For example, execution of these primitives

during the remote Andrew script consumes nearly 26 sec-

onds out of 150. Clearly this overhead is substantial, and

any attempt to optimize the execution of this application

would have to take this component into consideration. Fur-

ther, while the percentages reported in Table 7 are specific

to the MIPS R3000, the performance of the primitives would

also be important on other architectures. For example, the

combination of Tables 1 and 7 indicates that a SPARC would

spend 9.4 seconds just in the overhead for system calls and

context switches in executing the remote Andrew script on

Mach 3.0.

2In Mach 3.0, an address space context switch implies a kernel-
level thread context switch, but not vice versa.

Second, from the two halves of Table 7 we see that a de-

composed system will execute more low-level system func-

tions than a monolithic system. Many operating system calls

which in Mach 2.5 are implemented in the kernel, are pro-

vided in Mach 3.0 by cross-address space RPCS to operating

system servers running at user-level. Each invocation of an

operating system service via an RPC requires at least two

system calls and two context switches (one to send the re-

quest; another to send the reply) to do the work of one

system call in a monolithic system. In addition, the number

of context switches for a program running on a decomposed

system increases because the operating system servers are

themselves multithreaded and can run concurrently with ap

placations. As an example of this effect, there is a 33-fold

increase in context switches for the remote Andrew bench-

mark on Mach 3.0 over Mach 2.5. This benchmark modifies

a large number of files, and each open and close operation

involves at least two local RPCS — one to the local Unix

server and another to the local file cache manager. In con-

trast, the Mach 2.5 kernel implements all this functionality

itself; one system call handles everything.

Third, the number of kernel-level TLB misses is signif-

icantly larger for all applications running under Mach 3.o

than it is under Mach 2.5. TLB misses on the R3000 are

handled by one of two software exception handlers. One

deals with user-space misses and haa a latency of about a

dozen cycles. The second handles misses in kernel space

and is presumed to be infrequently invoked because much of

kernel space can run unmapped (thereby increasing the ef-

fectiveness of the fixed-size TLB), but haa a latency of a few

hundred cycles. Page tables, for instance, remain mapped in

kernel mode; TLB entries are needed to map the page tables

themselves. With much of the operating system moved to

the user level, less code and data are using the unmapped

regions, and frequent context switching stresses the limited

number of TLB entries on the R3000. These effects increase
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the number of second-level misses by an order of magnitude.

Finally, the emulated instruction counts demonstrate the

significant performance impact that can arise from the omis-

sion of an important architectural feature, in this case the

lack of an atomic Test-and-Set instruction. While critical

sections are commonplace in the Mach 2.5 operating sye-

tem, they execute in kernel mode and can simply disable

interrupts. But in Mach 3.o the operating system’s critical

sections execute at user-level; a trap to the kernel is needed

to provide mutual exclusion. (Existing non-trap based solu-

tions to the mutual exclusion problem (e.g., [Lamport 87])

still have overheads on the order of dozens of cycles.)

6 Conclusions

We have described the operating system needs in three fun-

damental areas and the relationship of modern architectures

to those needs. In general, we have seen that:

●

o

●

Operating systems are being decomposed into ker-

nelized structures with independent servers executing

in separate address spaces. These separate address

spaces communicate with users and with each other

using RPC. At the same time, architectures have made

message-based communication (relatively) more ex-

pensive because system calls, interrupt handling, and

byte copying are (relatively) more expensive.

Operating systems are requiring more use of memory

management, at a time when handling memory man-

agement events has become more difficult.

Operating systems are moving towards support of fine-

grained rnultithreaded appli~ation programs. At the

same time, architectures are adding more processor

state, which makes fine-grained threads more expen-

sive.

The current state of affairs is definitely not catastrophic
. the performance of today’s desktop workstations was

unimaginable (or at least unaffordable) only 5 years ago.

On the other hand, unless architects pay more attention to

operating systems, and operating system designers pay more

attention to architecture, operating system performance will

become a severe bottleneck in next-generation computer sys-

tems.
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